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Chapter 11 Incomplete Block Designs

▶ Balanced Incomplete Block Designs (BIBD)
▶ Skip Section 11.3.2, 11.3.3, 11.4.5, 11.4.6 on Group Divisible

Designs and Cyclic Designs
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Incomplete Block Designs

Recall for a randomized complete block design (RCBD) of g
treatments, the size k of each block has to be g (or multiples of
g). Each treatment appear the same number of time(s) in a block.

In practice, the natural size of a block might not be equal to and is
often smaller than the numbers of treatments (k < g).
We cannot include every treatment to every block.

We then have Incomplete Block Design (IBD).
IBD is more difficult to analyze than complete block designs, but
sometimes it’s inevitable.
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An Example We Must Use Incomplete Blocks

Eye irritation can be reduced with eyedrops. Three brands of
eyedrops are to be compared for their ability to reduce eye
irritation.

As there is a strong individual effect, subjects should be used as
blocks.

If a subject can only be tested in one treatment period, the
researchers can apply one brand of drop in the left eye and another
brand in the right eye. The natural block size is limited to k = 2.

The study is force into incomplete blocks, with

k = 2 < 3 = g
(block size) < (number of treatments)
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Example — A Marketing Psychology Experiment
▶ Goal: comparing 5 commercial ads: A, B, C , D, E
▶ Response: subjects’ rating of a commercial after watching it
▶ A subject can watch multiple ads. A subject is a block
▶ Can use a RCBD of all subjects can watch all the 5 ads
▶ However, subjects may lose patience after watching too many

ads, and they may forget the first few ads they see. Their
response will be less accurate.

▶ To ensure the quality of the response of subjects, we may
restrict the number of ads each subject watch to, say, 3. The
block size is limited to k = 3.

Subject
1 2 3 4 5 6 7 8 9 10
A B E A C D B E D C
B D A C A E C B E D
C A B D E A D C B E
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Some Poor Incomplete Block Designs (1)

Block
1 2 3 4 5
A B C D E
A B C D E
A B C D E

▶ What’s the drawback of the design above?

▶ block effect and treatment effects are confounded
▶ To eliminate of block effects, better compare treatments

within a block.
▶ No treatment should appear twice in any block as they

contributes nothing no within block comparisons.
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Some Poor Incomplete Block Designs (2)

Block
1 2 3 4
A B E E
B C F F
C D G G

Based on the model

yij = µ + αi + βj + εij
(treatment) (block) (i.i.d. N(0, σ2))

can one find an unbiased estimate for

▶ αA − αB?
▶ αA − αD?
▶ αA − αE ?
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Some Poor Incomplete Block Designs (2) — A v.s. B
Block

1 2 3 4
A B E E
B C F F
C D G G

Based on the model

yij = µ + αi + βj + εij
(treatment) (block) (i.i.d. N(0, σ2))

can one find an unbiased estimate for αA − αB?

Yes, yA1 − yB1 is an unbiased estimate for αA − αB since

E[yA1 − yB1] = (µ + αA + β1) − (µ + αB + β1)
= αA − αB
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Some Poor Incomplete Block Designs (2) — A v.s. D
Block

1 2 3 4
A B E E
B C F F
C D G G

Based on the model
yij = µ + αi + βj + εij

(treatment) (block) (i.i.d. N(0, σ2))

can one find an unbiased estimate for αA − αD?

Yes,
▶ yA1 − yB1 is an unbiased estimate for αA − αB
▶ yB2 − yD2 is an unbiased estimate for αB − αD
▶ Their sum yA1 − yB1 + yB2 − yD2 would be an unbiased

estimate for

(αA − αB) + (αB − αD) = αA − αD
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Some Poor Incomplete Block Designs (2) — A v.s. E
Block

1 2 3 4
A B E E
B C F F
C D G G

Based on the model
yij = µ + αi + βj + εij

(treatment) (block) (i.i.d. N(0, σ2))

can one find an unbiased estimate for αA − αE ?

Incomplete block designs must be “connected”
or not all pairwise comparisons can be estimated.
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Balanced Incomplete Block Designs (BIBD)
BIBD is not balanced in the general sense that all treatment-block
combinations occur equally often. Rather they are balanced in the
looser sense by the criteria described below.

A balanced incomplete block design with

g treatments,
b blocks,
k as the size of each block,
r replications of each treatment,

is a design satisfying the following:

Incomplete: ▶ k < g .
Balanced: ▶ Each treatment appears at most once per block

and has the same number of replicates r
▶ Each pair of treatments appear in a block the

same number of times λ
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Subject 1 2 3 4 5 6 7 8 9 10
A B E A C D B E D C
B D A C A E C B E D
C A B D E A D C B E

The design of the marketing psychology study is a BIBD with
g = number of treatments = 5
b = number of blocks = 10
k = size of each block = 3
r = number replicates per treatment = 6

The table below shows the blocks each treatment appears, verifying that
each treatment appears r = 6 times.

Block
Treatment 1 2 3 4 5 6 7 8 9 10

A
√ √ √ √ √ √

B
√ √ √ √ √ √

C
√ √ √ √ √ √

D
√ √ √ √ √ √

E
√ √ √ √ √ √
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Subject 1 2 3 4 5 6 7 8 9 10
A B E A C D B E D C
B D A C A E C B E D
C A B D E A D C B E

BIBD requires each pair of treatments appears in a block the same
number (λ) of times. The table below verifies that, each treatment
pair appears λ = 3 times for the design above.

Block
Treatment-pair 1 2 3 4 5 6 7 8 9 10

AB
√ √ √

AC
√ √ √

AD
√ √ √

AE
√ √ √

BC
√ √ √

BD
√ √ √

BE
√ √ √

CD
√ √ √

CE
√ √ √

DE
√ √ √
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First Balancing Condition of BIBD

The five numbers that describe a BIBD: g , b, k, r , and λ are not
arbitrary.

There might not exist an allocation b blocks of k units to g
treatments that is a BIBD.

▶ There are b blocks of size k each,
⇒ total number of experimental units is N = bk.

▶ There are g treatments, each appears r times in the design
⇒ total number of experimental units is N = rg .

Hence a BIBD must satisfy the first balancing condition:

N = bk = rg .
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Second Balancing Condition of BIBD

In a BIBD, every pair of treatments must appears in a block the
same number of times, say λ times.

Observe the total number of pairings involving treatment A
equals

▶ λ(g − 1), since A may be paired (appear in the same block) λ
times with any of the other g − 1 treatments,

▶ r(k − 1) since treatment A appears in r blocks. Within each
of those blocks, there are k − 1 pairs including A as the block
size is k

The second balancing condition

r(k − 1) = λ(g − 1)
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Given g treatments and b blocks of size k, one can show that a
BIBD that with r replicates per treatment and each pair of
treatments show in a block λ times exists if and only if

bk = rg and r(k − 1) = λ(g − 1).

Example (Eyedrop): g = 3, k = 2.
▶ Is it possible to find a BIBD w/ b = 5 subjects (blocks)?

No. r = bk/g = 2 × 5/3 = 10/3 is NOT an integer.

▶ Is it possible to find a BIBD w/ b = 6 subjects (blocks)?

Yes, as r = bk/g = 2 × 6/3 = 4 and λ = r(k−1)
(g−1) = 4(2−1)

3−1 = 2
are both integers

Example (Marketing Psychology): g = 5, k = 3.
▶ Is it possible to find a BIBD w/ b = 5 subjects (blocks)?

No. r = bk/g = 3 · 5/5 = 3 is an integer, but
λ = r(k−1)

(g−1) = 3(3−1)
5−1 = 6/4 is NOT an integer.

▶ Is it possible to find a BIBD w/ b = 10 subjects (blocks)?

Yes, as r = bk/g = 10 · 3/5 = 6 and λ = r(k−1)
(g−1) = 6(3−1)

5−1 = 3
are both integers
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Just like Latin Squares, it’s not trivial to find a BIBD by oneself.

Appendix C.2 on p.609-615 of Oehlert’s textbook gives a list of
BIBD designs for g ≤ 9.

▶ A BIBD can be replicated to conduct a larger study.
E.g., in the marketing psychology experiment, if we have
b = 20 subjects (blocks) instead of 10, then we can do 2
repetitions of the BIBD below with g = 5, k = 3, b = 10,
r = 6, λ = 3:

A B E A C D B E D C
B D A C A E C B E D
C A B D E A D C B E

▶ How to Do Randomization in BIBD?
One obvious randomization is to randomize subjects to
columns, then randomize the order of treatments in each
block based on the above design.

17 / 57



Models for BIBD

yij = µ + αi + βj + εij
(treatment) (block) (i.i.d. N(0, σ2))

for i = 1, . . . , g , and j = 1, . . . , b with∑g
i=1

αi =
∑b

j=1
βj = 0.

▶ additive model (no treatment-block interaction)
▶ Not all yij exist because of incompleteness
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Parameter Estimates for BIBD

Let
Iij =

{
1, if treatment i appears in block j ,
0, otherwise.

and define

Qi = yi• − 1
k

∑
j

Iijy•j , Q′
j = y•j − 1

r
∑

i
Iijyi•

the least square estimates for µ, αi , βj are

µ̂ = y••
N , α̂i = kQi

λg , β̂j =
kQ′

j
λb

Remark: Can verify that
∑

i Qi = 0 ⇒
∑

i α̂i = 0.

You won’t be asked to estimate parameters manually for a BIBD.
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Example of BIBD— Problem 14.3 on. p.381 in Oehlert

The State Board of Education has adopted basic skills tests for
high school graduation. One of these is a writing test. The student
writing samples are graded by professional graders, and the board
is taking some care to be sure that the graders are grading to the
same standard. We examine grader differences with the following
experiment. There are 25 graders available. We select 30 writing
samples at random, each writing sample will be graded by 5
graders. Thus each grader will grade 30 × 5/25 = 6 samples.

Data: http://users.stat.umn.edu/~gary/book/fcdae.data/pr14.3

Questions of Interest:

▶ Did the 25 graders grade consistently with each other?
▶ How to adjust the scores if graders didn’t grade consistently?
▶ If graders didn’t grade consistently, can we identify the

graders that were inconsistent with others?
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382 Incomplete Block Designs

Exam Grader Score Exam Grader Score

1 1 2 3 4 5 60 59 51 64 53 16 1 9 12 20 23 61 67 69 68 65
2 6 7 8 9 10 64 69 63 63 71 17 2 10 13 16 24 78 75 76 75 72
3 11 12 13 14 15 84 85 86 85 83 18 3 6 14 17 25 67 72 72 75 76
4 16 17 18 19 20 72 76 77 74 77 19 4 7 15 18 21 84 81 76 79 77
5 21 22 23 24 25 65 73 70 71 70 20 5 8 11 19 22 81 84 85 84 81
6 1 6 11 16 21 52 54 62 54 55 21 1 8 15 17 24 70 65 61 66 66
7 2 7 12 17 22 56 51 52 57 51 22 2 9 11 18 25 84 82 86 85 86
8 3 8 13 18 23 55 60 59 60 61 23 3 10 12 19 21 72 85 77 82 79
9 4 9 14 19 24 88 76 77 77 74 24 4 6 13 20 22 85 75 78 82 83

10 5 10 15 20 25 65 68 72 74 77 25 5 7 14 16 23 58 64 58 57 58
11 1 10 14 18 22 79 77 77 77 79 26 1 7 13 19 25 66 71 73 70 70
12 2 6 15 19 23 70 66 63 62 66 27 2 8 14 20 21 73 67 63 70 66
13 3 7 11 20 24 48 49 51 48 50 28 3 9 15 16 22 58 70 69 61 71
14 4 8 12 16 25 75 64 75 68 65 29 4 10 11 17 23 95 84 88 88 87
15 5 9 13 17 21 79 77 81 79 83 30 5 6 12 18 24 47 47 51 49 56

Analyze these data to determine if graders differ, and if so,how. Be sure to
describe the design.

Thirty consumers are asked to rate the softness of clothes washed by tenProblem 14.4
different detergents, but each consumer rates only four different detergents.
The design and responses are given below:

Trts Softness Trts Softness

1 A B C D 37 23 37 41 16 A B C D 52 41 45 48
2 A B E F 35 32 39 37 17 A B E F 46 42 45 42
3 A C G H 39 45 39 41 18 A C G H 44 43 41 36
4 A D I J 44 42 46 44 19 A D I J 32 42 36 29
5 A E G I 44 44 45 50 20 A E G I 43 42 44 44
6 A F H J 55 45 53 49 21 A F H J 46 41 43 45
7 B C F I 47 50 48 52 22 B C F I 43 51 40 42
8 B D G J 37 42 40 37 23 B D G J 38 37 36 34
9 B E H J 32 34 39 29 24 B E H J 40 49 43 44

10 B G H I 36 41 39 43 25 B G H I 23 20 27 29
11 C E I J 45 44 40 36 26 C E I J 46 49 48 43
12 C F G J 42 38 39 39 27 C F G J 48 43 48 41
13 C D E H 47 48 46 47 28 C D E H 35 35 31 26
14 D E F G 43 47 48 41 29 D E F G 45 47 47 42
15 D F H I 39 32 32 31 30 D F H I 43 39 38 39

Analyze these data for treatment effects and report your findings.

Here a exam is a writing sample.
▶ Which factor is the treatment factor? Graders or Exams?

Graders.

▶ Which factor is the block factor? Graders or writing samples?

Exams.

▶ Is this a BIBD?

Yes, g = 25, b = 30, k = 5, r = bk
g = 6, λ = r(k−1)

g−1 = 1.
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12 C F G J 42 38 39 39 27 C F G J 48 43 48 41
13 C D E H 47 48 46 47 28 C D E H 35 35 31 26
14 D E F G 43 47 48 41 29 D E F G 45 47 47 42
15 D F H I 39 32 32 31 30 D F H I 43 39 38 39

Analyze these data for treatment effects and report your findings.

Here a exam is a writing sample.
▶ Which factor is the treatment factor? Graders or Exams?

Graders.
▶ Which factor is the block factor? Graders or writing samples?

Exams.
▶ Is this a BIBD?

Yes, g = 25, b = 30, k = 5, r = bk
g = 6, λ = r(k−1)

g−1 = 1.
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382 Incomplete Block Designs
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yij = µ + αi + βj + εij
(score) (grader) (exam)

As writing samples differ in levels, we expect βj not all equal.

If graders were consistent, they should give the same score to the
same writing sample, i.e., α1 = α2 = · · · = α25

pr14.3 = read.table(
"http://users.stat.umn.edu/~gary/book/fcdae.data/pr14.3", h=T)

pr14.3$EXAM = as.factor(pr14.3$exam)
pr14.3$GRADER = as.factor(pr14.3$grader)
lm1 = lm(score ~ EXAM + GRADER, data=pr14.3)
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Always Check Model Assumptions First
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How to Adjust Scores as Graders Were Inconsistent?
Based on the model yij = µ + αi + βj + εij , the score of the ith
writing sample is µ + βj , which is estimated by µ̂ + β̂j .

How to get β̂j in R? Recall R by default estimates parameters
using the baseline constraints α1 = β1 = 0, not the zero-sum
constraints

∑g
i=1 αi =

∑b
j=1 βj = 0.

One can use constrasts() and contr.sum() to force R using
the zero-sum constraints.
contrasts(pr14.3$EXAM) = contr.sum(30)
contrasts(pr14.3$GRADER) = contr.sum(25)
lm1 = lm(score ~ EXAM + GRADER, data=pr14.3)

lm1$coef
(Intercept) EXAM1 EXAM2 .... (omitted)

69.960 -12.568 -3.368
EXAM28 EXAM29 GRADER1 .... (omotted) GRADER24
-2.128 16.192 -0.840 0.160

Why is there no estimate for exam #30, nor for grader #25?
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muhat = lm1$coef[1]
betahat = vector("numeric",length=30)
betahat[1:29] = lm1$coef[2:30]
betahat[30] = -sum(betahat[1:29])
adjustedscore = muhat + betahat; adjustedscore
[1] 57.39 66.59 84.39 75.15 69.47 56.38 51.62 60.42 77.50 71.50

[11] 77.85 65.65 49.33 68.21 80.57 65.79 74.79 73.95 78.11 83.35
[21] 66.12 83.44 80.24 78.76 60.24 69.51 67.67 67.83 86.15 50.83
names(adjustedscore) = 1:30
adjustedscore

1 2 3 4 5 6 7 8 9 10
57.39 66.59 84.39 75.15 69.47 56.38 51.62 60.42 77.50 71.50

11 12 13 14 15 16 17 18 19 20
77.85 65.65 49.33 68.21 80.57 65.79 74.79 73.95 78.11 83.35

21 22 23 24 25 26 27 28 29 30
66.12 83.44 80.24 78.76 60.24 69.51 67.67 67.83 86.15 50.83
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Compare adjusted scores with unadjusted scores (average of the 5
raw scores per exam).
library(mosaic)
unadjustedscore = mean(score ~ EXAM, data=pr14.3)
unadjustedscore

1 2 3 4 5 6 7 8 9 10 11 12 13
57.4 66.0 84.6 75.2 69.8 55.4 53.4 59.0 78.4 71.2 77.8 65.4 49.2

14 15 16 17 18 19 20 21 22 23 24 25 26
69.4 79.8 66.0 75.2 72.4 79.4 83.0 65.6 84.6 79.0 80.6 59.0 70.0

27 28 29 30
67.8 65.8 88.4 50.0

Difference of unadjusted and adjusted scores:
sort(unadjustedscore - adjustedscore)

28 18 8 23 25 6 30 15 2
-2.032 -1.552 -1.416 -1.240 -1.240 -0.976 -0.832 -0.768 -0.592

21 20 10 12 13 11 1 4 27
-0.520 -0.352 -0.296 -0.248 -0.128 -0.048 0.008 0.048 0.128

3 16 5 17 26 9 22 14 19
0.208 0.208 0.328 0.408 0.488 0.904 1.160 1.192 1.288

7 24 29
1.784 1.840 2.248

Exam #28 and #29 are off by over 2 points after adjustment.
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ANOVA Table for BIBD

anova(lm(score ~ GRADER + EXAM, data=pr14.3))
Analysis of Variance Table

Response: score
Df Sum Sq Mean Sq F value Pr(>F)

GRADER 24 4073.1 169.71 23.659 < 2.2e-16
EXAM 29 13342.0 460.07 64.138 < 2.2e-16
Residuals 96 688.6 7.17
anova(lm(score ~ EXAM + GRADER, data=pr14.3))
Analysis of Variance Table

Response: score
Df Sum Sq Mean Sq F value Pr(>F)

EXAM 29 16609.0 572.72 79.8424 < 2.2e-16
GRADER 24 806.2 33.59 4.6828 0.00000002694
Residuals 96 688.6 7.17

The two ANOVA tables have identical SSE
but different SS for EXAM and GRADER. Why?
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▶ As a BIBD doesn’t include all treatment-block combination, it
does NOT have a balanced factorial structure of treatment ×
block.

▶ For unbalanced factorial data, there are 3 types of sum of
squares
▶ the anova() command gives the Type I sum of squares
▶ What’s a Type I Sum of Square?
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Digression: Sum of Squares
for Unbalanced Factorial Data
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What Happens If Factorial Data Become Unbalanced

▶ no simple formulae for parameter estimates and SS.
▶ the parameter estimates and SS of a term will depend on the

presence of other terms in the model, e.g., the estimates for
αi ’s might be different in the following 3 models

yijk = µ + αi + βj + αβij + εijk

yijk = µ + αi + βj + εijk

yijk = µ + αi + εijk

▶ need to rely on statistical software for computation
▶ there are 3 variations of SS
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Notation for Models
In the following, we denote various models by listing the included
effect. For example,

▶ (1, A, B, AB) denotes the model yijk = µ + αi + βj + αβij + εijk
▶ (1, A, B) denotes the model yijk = µ + αi + βj + εijk
▶ (1, A, B, C , AB, AC) denotes the model

yijkl = µ + αi + βj + γk + αβij + αγik + εijkl

Here the “1” stands for the grand mean µ.

In the following SSE(model) denotes the SSE of that model, e.g.,
SSE(1, A, B, AB) means the SSE of the model

yijk = µ + αi + βj + αβij + εijk .

For unbalanced data, there is no simple formula to compute the
SSE. One must write the model as a regression model and use
statistical software to compute the SSE.
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Adjusted Sum of Squares (1)

The adjusted sum of squares for main effects B adjusted for A is
defined as

SS(B|1, A) = SSE(1, A) − SSE(1, A, B).

▶ SS(B|1, A) ≥ 0 since the model (1, A) is included (nested) in
the model (1, A, B) and hence the latter always has a smaller
SSE

▶ SS(B|1, A) is the reduction in SSE after B is included in the
model

▶ SS(B|1, A) describes the effect of B adjusted for A since with
consider two models that A is present in both and the two
models only differ by B
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Adjusted Sum of Squares (2)

Likewise, the adjusted sum of squares for main effects B
adjusted for A, C, and AC is

SS(B|1, A, C , AC) = SSE(1, A, C , AC) − SSE(1, A, B, C , AC).

In general, the adjusted sum of squares for a term adjusted for
some other terms is

SS(a term|some other terms)
= SSE(some other terms) − SSE(a term, some other terms)

For balanced data, adjusted SS = unadjusted SS

SS(A|1, B) = SS(A|1, B, C) = SS(A|1, B, C , BC) = SS(A|1).
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Type I Sum of Squares
For a specified model, the Type I Sum of Squares (aka. Sequential
Sum of Squares) for any term is adjusted for those terms that
precede it in the model.
▶ E.g, the Type I SS’s for the model (1, A, B, AB, C) are

Source d.f. Type I SS
A a − 1 SS(A|1)
B b − 1 SS(B|1, A)

AB (a − 1)(b − 1) SS(AB|1, A, B)
C c − 1 SS(C |1, A, B, AB)

Type I SS’s depend on how the terms are ordered in a model:
▶ E.g, if the terms in the model (1, A, B, AB, C) is reshuffled as

(1, C, A, B, AB), then the Type I SS’s become
Source d.f. Type I SS

C c − 1 SS(C |1)
A a − 1 SS(A|1, C)
B b − 1 SS(B|1, A, C)

AB (a − 1)(b − 1) SS(AB|1, A, B, C)
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Type I Sum of Squares and SSE Add Up to SST (1)

Source Type I SS

A SS(A|1) = SSE(1) − SSE(1, A)

B SS(B|1, A) = SSE(1, A) − SSE(1, A, B)

AB SS(AB|1, A, B) = SSE(1, A, B) − SSE(1, A, B, AB)

C SS(C |1, A, B, AB) = SSE(1, A, B, AB) − SSE(1, A, B, AB, C)

Error SSE(1, A, B, AB, C)

Sum

SSE(1) = SST

SSE(1) is the SSE for the model yijkℓ = µ + εijkℓ, of which the
optimal (least square) estimate for µ is the overall mean y••••.
Hence,

SSE(1) =
∑
ijkℓ

(yijkℓ − y••••)2 = SST.
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Type I Sum of Squares and SSE Add Up to SST (2)
If the order of terms in the model (1, A, B, AB, C) is changed to
(1, C , A, B, AB),

▶ the Type I SS’s are changed;
▶ SSE(1, A, B, AB, C) = SSE(1, C , A, B, AB) is not affected by

the order of terms;
▶ the Type I SS’s and the SSE always add up to SST.

Source Type I SS

C SS(C |1) = SSE(1) − SSE(1, C)

A SS(A|1, C) = SSE(1, C) − SSE(1, C , A)

B SS(B|1, C , A) = SSE(1, C , A) − SSE(1, C , A, B)

AB SS(AB|1, A, B, C) = SSE(1, C , A, B) − SSE(1, A, B, C , AB)

Error SSE(1, C , A, B, AB)

Sum

SSE(1) = SST
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Example: Popcorn Microwave Data Revisit

3 × 2 × 3 factorial design with 2 replicates.

Brand Power Time (k)
(i) (j) 1 (4 min) 2 (4.5 min) 3 (5 min)
1 1 (500 W) 73.8 , 65.5 70.3, 91.0 72.7, 81.9
1 2 (625 W) 70.8, 75.3 78.7, 88.7 74.1, 72.1
2 1 (500 W) 73.7, 65.8 93.4, 76.3 45.3, 47.6
2 2 (625 W) 79.3, 86.5 92.2, 84.7 66.3, 45.7
3 1 (500 W) 62.5, 65.0 50.1, 81.5 51.4, 67.7
3 2 (625 W) 82.1, 74.5 71.5, 80.0 64.0, 77.0

popcorn = read.table(
"http://www.stat.uchicago.edu/~yibi/s222/popcorn.txt", h=T)

popcorn$brand = as.factor(popcorn$brand)
popcorn$power = as.factor(popcorn$power)
popcorn$time = as.factor(popcorn$time)
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For balanced data, SS’s are not affected by the order of the terms
in the model
anova(lm(y ~ brand*time+power, data=popcorn))
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

brand 2 331.10 165.55 2.3031 0.1199906
time 2 1554.58 777.29 10.8133 0.0003825
power 1 455.11 455.11 6.3313 0.0183703
brand:time 4 1433.86 358.46 4.9868 0.0040523
Residuals 26 1868.95 71.88
anova(lm(y ~ power+brand*time, data=popcorn))
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

power 1 455.11 455.11 6.3313 0.0183703
brand 2 331.10 165.55 2.3031 0.1199906
time 2 1554.58 777.29 10.8133 0.0003825
brand:time 4 1433.86 358.46 4.9868 0.0040523
Residuals 26 1868.95 71.88
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If the first observation (73.8) is removed popcorn[-1,] is
removed, the data become unbalanced.
anova(lm(y ~ brand*time+power, data=popcorn[-1,]))
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

brand 2 334.95 167.48 2.3017 0.1209104
time 2 1559.57 779.79 10.7172 0.0004353
power 1 443.81 443.81 6.0996 0.0206998
brand:time 4 1483.60 370.90 5.0975 0.0038263
Residuals 25 1819.02 72.76
anova(lm(y ~ power+brand*time, data=popcorn[-1,]))
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

power 1 480.66 480.66 6.6061 0.0165065
brand 2 304.29 152.15 2.0911 0.1446414
time 2 1553.38 776.69 10.6746 0.0004454
brand:time 4 1483.60 370.90 5.0975 0.0038263
Residuals 25 1819.02 72.76
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Type I ANOVA table
The Type I ANOVA table for unbalanced data are identical to the
ANOVA table for balanced data in every aspect except the SS’s are
replaced by the Type I SS.

Source d.f. Type I SS MS F -value
A a − 1 SS(A|1) SSA/dfA MSA/MSE
B b − 1 SS(B|1, A) SSB/dfB MSB/MSE
C c − 1 SS(C |1, A, B) SSC /dfC MSC /MSE

AB (a − 1)(b − 1) SS(AB|1, A, B, C) SSAB/dfAB MSAB/MSE
AC (a − 1)(c − 1) SS(AC |1, A, B, C , AB) SSAC /dfAC MSAC /MSE
BC (a − 1)(c − 1) SS(BC |1, A, B, C , AB, AC) SSBC /dfBC MSBC /MSE

ABC (a−1)(b−1)(c−1) SS(ABC |1,A,B,C,AB,AC,BC) SSABC /dfABC MSABC /MSE

Error N − abc SSE SSE/dfE
Total N − 1 SST

Type I SS’s and the SSE always add up to SST.
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Why Type I SS’s Are Not Ideal?
Look the 3 F -statistic for the 3 main effects in the previous page.

▶ The F -statistic for A is unadjusted
▶ The F -statistic for B is adjusted with A
▶ The F -statistic for C is adjusted with both A and B

When considering whether a term, say A, is needed in a model,
one should look at the net effect of A after adjusting for the effect
of other terms.

▶ What are the terms that should be accounted for before
considering A?

1, B, C , BC .

▶ Why not adjusting for AB, AC and ABC?
▶ Thus, a more sensible adjusted SS for A is SS(A|1, B, C , BC).
▶ Such adjusted SS’s are called the Type II Sum of Squares.
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Type II Sum of Squares

The Type II SSU of an effect U (U can be a main effect or an
interaction) is computed as follows:

▶ take the biggest hierarchical model without effect U, and then
compare it to the model with U added.

Here “largest hierarchical model” means all the effects that don’t
include term U. E.g., for the model (1, A, B, C, AB, AC, BC,
ABC),

▶ the Type II SS for AB is SS(AB|1, A, B, C , AC , BC)
▶ the Type II SS for C is SS(C |1, A, B, AB) but not SS(C |1, A)

or SS(C |1, A, AB)

Unlike Type I SS, Type II SS does NOT depend on the order of
terms in a model.
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Type II ANOVA table for 3-Way Data

Source d.f. Type II SS MS F -value
A a − 1 SS(A|1, B, C , BC) SSA/dfA MSA/MSE
B b − 1 SS(B|1, A, C , AC) SSB/dfB MSB/MSE
C c − 1 SS(C |1, A, B, AB) SSC /dfC MSC /MSE

AB (a − 1)(b − 1) SS(AB|1, A, B, C , AC , BC) SSAB/dfAB MSAB/MSE
AC (a − 1)(c − 1) SS(AC |1, A, B, C , AB, BC) SSAC /dfAC MSAC /MSE
BC (a − 1)(c − 1) SS(BC |1, A, B, C , AB, AC) SSBC /dfBC MSBC /MSE

ABC (a−1)(b−1)(c−1) SS(ABC |1,A,B,C,AB,AC,BC) SSABC /dfABC MSABC /MSE

Error N − abc SSE SSE/dfE

Type II SS of terms in a model will NOT sum to SST
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Computing Type II ANOVA Table in R

The build-in function anova() in R gives Type I SS’s only. To get
the Type II SS’s, first load the library car (which is the short for
“Companion to Applied Regression”), and then use the function
Anova() as follows.

library(car)
Anova(yourmodel, type=2)

Note the first letter A in Anova() is a capital letter A.
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Type II ANOVA table:

library(car)
lm2 = lm(y ~ brand*power*time, data=popcorn[-1,])
Anova(lm2, type=2)
Anova Table (Type II tests)

Response: y
Sum Sq Df F value Pr(>F)

brand 292.02 2 1.6082 0.229256
power 497.05 1 5.4747 0.031753
time 1559.33 2 8.5876 0.002644
brand:power 141.08 2 0.7770 0.475450
brand:time 1464.49 4 4.0326 0.017689
power:time 68.18 2 0.3755 0.692505
brand:power:time 49.33 4 0.1358 0.966830
Residuals 1543.43 17
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lm2 = lm(y ~ brand*power*time, data=popcorn[-1,])
anova(lm2)
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

brand 2 334.95 167.48 1.8447 0.188353
power 1 450.00 450.00 4.9565 0.039804
time 2 1553.38 776.69 8.5548 0.002688
brand:power 2 205.72 102.86 1.1330 0.345227
brand:time 4 1435.95 358.99 3.9540 0.019026
power:time 2 68.18 34.09 0.3755 0.692505
brand:power:time 4 49.33 12.33 0.1358 0.966830
Residuals 17 1543.43 90.79

Note the Type I ANOVA table given by build-in anova()
command is different from the Type II table given by the Anova()
in the car library.
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Back to BIBD

47 / 57



ANOVA for BIBD (Type I Sum of Squares!)
Source d.f. SS MS F -value
Block b − 1 SSblock MSblock (MSblock/MSE)

Treatment g − 1 SStrt MStrt MStrt/MSE
Error N− g − b+1 SSE MSE
Total N − 1 SStotal

Let Iij =
{

1, if treatment i appears in block j ,
0, otherwise.

Then SStotal =
∑g

i=1

∑b

j=1
Iij(yij − y••)2

SSblock = k
∑b

j=1
(y•j − y••)2 (unadjusted, Type I)

SStrt = k
λg

∑
i

Q2
i = λg

k
∑

i
α̂2

i (adjusted for block, Type I & II)

SSE = SStotal − SSblock − SStrt

For incomplete block designs, always place Block ahead of Treatment
in the ANOVA table. The SStrt will then be adjusted for Block and
hence is Type II.
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anova(lm(score ~ GRADER + EXAM, data=pr14.3))
Analysis of Variance Table

Response: score
Df Sum Sq Mean Sq F value Pr(>F)

GRADER 24 4073.09 169.712 23.6593 < 2.22e-16
EXAM 29 13342.04 460.070 64.1377 < 2.22e-16
Residuals 96 688.62 7.173
anova(lm(score ~ EXAM + GRADER, data=pr14.3))
Analysis of Variance Table

Response: score
Df Sum Sq Mean Sq F value Pr(>F)

EXAM 29 16608.96 572.723 79.84239 < 2.22e-16
GRADER 24 806.18 33.591 4.68282 0.00000002694
Residuals 96 688.62 7.173

Which ANOVA table should we look at to determine the
significance of treatment (GRADER)?
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Pairwise Comparisons

Estimate of αi1 − αi2 is

α̂i1 − α̂i2 = k
λg (Qi1 − Qi2)

▶ SE(α̂i1 − α̂i2) =
√

MSE
( 2k

λg

)
▶ t-statistic = α̂i1 − α̂i2

SE with df = df of MSE
▶ Tukey’s HSD controlling FWER at α is

HSD = qα(g , df of MSE)√
2

× SE.

50 / 57



How to Identify Inconsistent Graders?

We can do pairwise comparisons for the grader effects αi1 − αi2

using the t-statistic = α̂i1 − α̂i2
SE where

SE =
√

MSE
( 2k

λg

)
=

√
7.173

( 2 × 5
1 × 25

)
≈ 1.6939

with df = (df of MSE) = 96.

Tukey’s critical value for FWER = 0.05 is

qtukey(0.95, 25, df = 96)/sqrt(2)
[1] 3.768

Tukey’s HSD = q0.05(25, 96)√
2

SE = 3.7676 × 1.6939 ≈ 6.382.
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We have obtained α̂1, α̂2, . . . , α̂24 in R on page 21.

lm1$coef[31:54]
GRADER1 GRADER2 GRADER3 GRADER4 GRADER5 GRADER6 GRADER7

-0.84 3.24 -6.36 7.48 -3.48 -2.36 1.60
GRADER8 GRADER9 GRADER10 GRADER11 GRADER12 GRADER13 GRADER14

-1.56 -1.12 0.48 2.16 1.32 0.76 -1.60
GRADER15 GRADER16 GRADER17 GRADER18 GRADER19 GRADER20 GRADER21

-1.60 -2.60 1.24 0.20 -0.40 1.80 -1.24
GRADER22 GRADER23 GRADER24

1.52 -0.12 0.16

The last one can be computed as α̂25 = −
∑24

i=1 α̂i = 1.32 as∑25
i=1 α̂i = 0.

alphahat25 = -sum(lm1$coef[31:54]); alphahat25
[1] 1.32
names(alphahat25) = "GRADER25"
alphahat = c(lm1$coef[31:54], alphahat25)
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sort(alphahat)
GRADER3 GRADER5 GRADER16 GRADER6 GRADER15 GRADER14 GRADER8

-6.36 -3.48 -2.60 -2.36 -1.60 -1.60 -1.56
GRADER21 GRADER9 GRADER1 GRADER19 GRADER23 GRADER24 GRADER18

-1.24 -1.12 -0.84 -0.40 -0.12 0.16 0.20
GRADER10 GRADER13 GRADER17 GRADER25 GRADER12 GRADER22 GRADER7

0.48 0.76 1.24 1.32 1.32 1.52 1.60
GRADER20 GRADER11 GRADER2 GRADER4

1.80 2.16 3.24 7.48

Underline Diagram for pairwise comparison between graders:
(at FWER = 5%, Tukey’s HSD = 6.38)

3 5 16 6 15 14 8 21 9 1 19 23 24 18 10 13 17 25 12 22 7 20 11 2 4

After Tukey’s adjustment, only Grader #3 and # 4 are
significantly inconsistent with most other graders.

Grader #2 and #5 were consistent with all the rest except #3 and
#4.
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▶ Grader #3 always gave the lowest score among the 5 graders
grading the same exam

▶ Grader #4 always gave scores that substantially higher than
the scores given by the other graders for the same exam.

▶ Grader #2 tends to give higher scores, Grader #5 tended to
give lower scores, but not as much as Grader #3 and #4.
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Tukey’s HSD in emmeans

The emmeans library also works for incomplete block designs.

library(emmeans)
lm1 = lm(score ~ EXAM + GRADER, data=pr14.3)
lm1em = emmeans(lm1, "GRADER")
summary(pairs(lm1em, infer=c(T,T), level=0.95, adjust="tukey"))

Output on the next page.

Observe the CI’s all equals to their respective estimate ± HSD.
e.g., the CI for Grade #1- Grade #2 is

−4.08 ± 6.382 = (2.302, −10.462).
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contrast estimate SE df lower.CL upper.CL t.ratio p.value
1 - 2 -4.08 1.69 96 -10.462 2.302 -2.409 0.7545
1 - 3 5.52 1.69 96 -0.862 11.902 3.259 0.1919
1 - 4 -8.32 1.69 96 -14.702 -1.938 -4.912 0.0009
1 - 5 2.64 1.69 96 -3.742 9.022 1.559 0.9973
1 - 6 1.52 1.69 96 -4.862 7.902 0.897 1.0000
1 - 7 -2.44 1.69 96 -8.822 3.942 -1.440 0.9991
1 - 8 0.72 1.69 96 -5.662 7.102 0.425 1.0000
1 - 9 0.28 1.69 96 -6.102 6.662 0.165 1.0000
1 - 10 -1.32 1.69 96 -7.702 5.062 -0.779 1.0000
1 - 11 -3.00 1.69 96 -9.382 3.382 -1.771 0.9857
1 - 12 -2.16 1.69 96 -8.542 4.222 -1.275 0.9999
1 - 13 -1.60 1.69 96 -7.982 4.782 -0.945 1.0000
1 - 14 0.76 1.69 96 -5.622 7.142 0.449 1.0000
1 - 15 0.76 1.69 96 -5.622 7.142 0.449 1.0000
1 - 16 1.76 1.69 96 -4.622 8.142 1.039 1.0000
[ reached getOption("max.print") -- omitted 285 rows ]

Results are averaged over the levels of: EXAM
Confidence level used: 0.95
Conf-level adjustment: tukey method for comparing a family of 25 estimates
P value adjustment: tukey method for comparing a family of 25 estimates
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out = summary(pairs(lm1em, infer=c(F,T), level=0.95, adjust="tukey"))
subset(out, out$p.value < 0.05)

contrast estimate SE df t.ratio p.value
3 1 - 4 -8.32 1.6939 96 -4.9118 0.00093757984520
25 2 - 3 9.60 1.6939 96 5.6674 0.00004203552076
27 2 - 5 6.72 1.6939 96 3.9672 0.02714856237458
48 3 - 4 -13.84 1.6939 96 -8.1705 0.00000000079632
51 3 - 7 -7.96 1.6939 96 -4.6992 0.00211890975287
54 3 - 10 -6.84 1.6939 96 -4.0380 0.02164538214065
55 3 - 11 -8.52 1.6939 96 -5.0298 0.00058886856553
56 3 - 12 -7.68 1.6939 96 -4.5339 0.00391182008602
57 3 - 13 -7.12 1.6939 96 -4.2033 0.01252639251896
61 3 - 17 -7.60 1.6939 96 -4.4867 0.00464383583599
62 3 - 18 -6.56 1.6939 96 -3.8727 0.03643635567587
64 3 - 20 -8.16 1.6939 96 -4.8173 0.00135190254111
66 3 - 22 -7.88 1.6939 96 -4.6520 0.00252953732975
68 3 - 24 -6.52 1.6939 96 -3.8491 0.03916121121781
69 3 - 25 -7.68 1.6939 96 -4.5339 0.00391182008602
70 4 - 5 10.96 1.6939 96 6.4703 0.00000118997242
[ reached 'max' / getOption("max.print") -- omitted 13 rows ]
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