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Coverage

▶ Chapter 10 Randomized Complete Block Designs (RCBD)
▶ Chapter 12 Latin Square Designs (except Section 12.2.3 and

12.5)
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Randomized Complete Block Designs (RCBD)
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Exercise 12.8: Air Freshener Sale (p. 427 Dean & Voss)

▶ Goal: comparing 4 price+display treatments on the sales of a
brand of air fresheners.
▶ Treatment A = high price + extra display
▶ Treatment B = middle price + extra display
▶ Treatment C = low price + extra display
▶ Treatment D = middle price + no extra display

▶ conducted at 8 stores for 4 weeks and each treatment lasts for
one week in each store

▶ Response: unit sales in a one-week period

Week Store
1 2 3 4 5 6 7 8

1 B 31 A 23 C 12 D 3 A 10 C 30 B 23 D 14
2 A 19 D 16 B 14 C 4 B 21 D 25 C 17 A 14
3 D 15 C 30 A 12 B 6 C 12 A 47 D 5 B 3
4 C 16 B 27 D 5 A 11 D 12 B 38 A 13 C 6
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One-Way Analysis of Air Freshener Sales Data
freshener = read.table(

"http://www.stat.uchicago.edu/~yibi/s222/air.freshener.txt",h=T)
freshener$trtmt = factor(freshener$trtmt, labels=LETTERS[1:4])

Treatments appear insignificant if
analyzed like data from a one-
way Completely Randomized De-
sign (CRD) w/ 4 treatments.

yij = µi + εij ,

for i = A, B, C , D.
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lm0 = lm(sales ~ trtmt, data=freshener)
anova(lm0)
Analysis of Variance Table

Response: sales
Df Sum Sq Mean Sq F value Pr(>F)

trtmt 3 329 110 0.98 0.41
Residuals 28 3123 112

5 / 65



Air Freshener Sales — Why Account For Store Effect?
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▶ Substantial variation in sales between stores
▶ Within each store, Treatment D was almost always the worst

▶ evidence of treatment effects

▶ Better take store effect into account
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Block Designs

▶ A block is a set of experimental units that are homogeneous
in some sense. Hopefully, units in the same block will have
similar responses (if applied with the same treatment.)

▶ Block designs: randomize the units within each block to the
treatments.
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Randomized Complete Block Designs (RCBD)
g treatments to compare, b blocks of units available, each block
contains k = rg units.
▶ Within each block, the k = rg units are randomized to the g

treatments, r units each.
▶ “Complete” means each of the g treatments appears the same

number of times (r) in every block.
▶ Mostly, block size k = # of treatments g , i.e., r = 1.
▶ Matched-pair design is one kind of RCBD with block size

k = 2.

Block 1 Block 2 · · · Block b
Treatment 1 y11 y12 · · · y1b
Treatment 2 y21 y22 · · · y2b

...
...

... · · ·
...

Treatment g yg1 yg2 · · · ygb

Normally, data are shown arranged by block and treatment.
Cannot tell from the data what was/was not randomized.
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Things That Can Be Blocked On

▶ Block when you can identify a source of variation (e.g., age,
gender, medical history, etc)

▶ Block on machine/operator/batch (e.g., milk produced in a
day)

▶ Block spatially
▶ Block on time
▶ Block on . . .
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Advantages of Blocking

▶ Blocking is the second basic principle of experimental design
after randomization.

“Block what you can, randomize everything else.”
▶ If units are highly variable, grouping them into more similar

blocks can lead to a large reduction in noise (more power to
detect difference in treatment effects).

▶ The choice of blocks is crucial
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Example 2: Auditor Training
An accounting firm tested 3 training methods in statistical
sampling for auditing,

1. study at home with programmed training materials,
2. training sessions at local offices conducted by local staff, and
3. training sessions in Chicago conducted by national staff.
▶ 30 auditors grouped into 10 blocks of 3, according to time

elapsed since college graduation (new graduates in block 1,
those graduated most distantly in block 10)

▶ Auditors in each block were randomly assigned to the 3
training methods

▶ Each auditor is tested and scored at the end of the training

Training Block
Method 1 2 3 4 5 6 7 8 9 10

1 73 76 75 74 76 73 68 64 65 62
2 81 78 76 77 71 75 72 74 73 69
3 92 89 87 90 88 86 88 82 81 78
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Models for RCBDs
yij = µ + αi + βj + εij

(trt) (block)

in which

▶ yij = response of the unit receiving treatment i in block j
▶ µ = the grand mean
▶ αi = the treatment effects
▶ βj = the block effects
▶ εij = measurement errors, i.i.d. ∼ N(0, σ2)

Q: In an RCBD model, are we more interested in αi ’s or βj ’s?

Just like models for factorial data, the model above is
over-parameterized. Need to impose constraints on parameters,
like the zero-sum constraints∑g

i=1
αi = 0 and

∑b
j=1

βj = 0.
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Parameter Estimates for RCBD Models

The model for a RCBD

yij = µ + αi + βj + εij , εij ’s are i.i.d. N(0, σ2).

has the same format as the additive model for a balanced 2-way
factorial design,
⇒ identical formulas for the parameter estimates

µ̂ = ȳ••

α̂i = ȳi• − ȳ•• for i = 1, . . . , g
β̂j = ȳ•j − ȳ•• for j = 1, . . . , b

Questions: Why not include treatment-block interactions?
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Sum of Squares and Degrees of Freedom
The sum of squares and degrees of freedom for RCBD are just like
those for additive models:

SST = SStrt + SSblock + SSE

where

SST =
∑g

i=1

∑b
j=1

(yij − ȳ••)2

SStrt =
∑g

i=1

∑b
j=1

(ȳi• − ȳ••)2 = b
∑g

i=1
(ȳi• − ȳ••)2

SSblock =
∑g

i=1

∑b
j=1

(ȳ•j − ȳ••)2 = g
∑b

j=1
(ȳ•j − ȳ••)2

SSE =
∑g

i=1

∑b
j=1

(yij − ȳi• − ȳ•j + ȳ••)2.

Total Treatment Block Error
dfT = bg − 1 dftrt = g − 1 dfblock = b − 1 dfE = (g − 1)(b − 1)
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Expected Values for the Mean Squares
Just like CRD, the mean squares for RCBD is the sum of squares
divided by the corresponding d.f.

MStrt = SStrt
g − 1 , MSblock = SSblock

b − 1 , MSE = SSE
(g − 1)(b − 1) .

Under the model for RCBD,

yij = µ + αi + βj + εij εij ’s are i.i.d. N(0, σ2),

with the zero-sum constraints
∑g

i=1 αi =
∑b

j=1 βj = 0, one can
show that

E(MStrt) = σ2 + b
g − 1

∑g

i=1
α2

i

E(MSblock) = σ2 + g
b − 1

∑b

j=1
β2

j

E(MSE) = σ2

MSE is again an unbiased estimator for σ2.
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ANOVA F -Test for Treatment Effect

A test of equal treatment effects

H0 : α1 = α2 = · · · = αg v.s. Ha : not all αi ’s are equal

is equivalent to a test of whether all αi ’s are zero

H0 : α1 = α2 = · · · = αg = 0 v.s. Ha : not all αi ’s are zero

as the constraint
∑g

i=1 αi = 0. The test statistic is

Ftrt = MStrt
MSE ∼ Fg−1, (g−1)(b−1) under H0.

The ANOVA table is given in the next page.
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ANOVA Table for RCBD

Source d.f. SS MS F
Block b − 1 SSblock MSblock (Fblock = MSblock

MSE )

Treatment g − 1 SStrt MStrt Ftrt = MStrt
MSE

Error (b − 1)(g − 1) SSE MSE
Total bg − 1 SST

The F statistic Fblock for testing the block effect is not of interest,
and hence is usually omitted.
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ANOVA Tables for CRD and RCBD
If we ignore block effect, and analyze RCBD as a CRD, the
ANOVA table becomes

Source d.f. SS MS F
Treatment g − 1 SStrt MStrt Ftrt = MStrt

MSECRD

Error bg − g SSECRD MSECRD

Total bg − 1 SST

The ANOVA tables for CRD and RCBD have identical SStrt , but
the variability due to block is now in the error term

SSECRD = SSERCBD + SSblock .

If SSblock is large, including block effect can substantially reduce
the size of noise, easier to detect difference in treatments.
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Example: Air Freshener Sales Data
freshener$store = factor(freshener$store)
anova(lm(sales ~ store + trtmt, data=freshener))
Analysis of Variance Table

Response: sales
Df Sum Sq Mean Sq F value Pr(>F)

store 7 2478.9 354.1 11.536 0.00000595
trtmt 3 329.4 109.8 3.577 0.0312
Residuals 21 644.6 30.7

Ignoring block effects, treatment effects become insignificant.

anova(lm(sales ~ trtmt, data=freshener))
Analysis of Variance Table

Response: sales
Df Sum Sq Mean Sq F value Pr(>F)

trtmt 3 329.4 109.8 0.984 0.414
Residuals 28 3123.5 111.5
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Example: Auditor Training
auditor = read.table(

"http://www.stat.uchicago.edu/~yibi/s222/AuditorTraining", h=T)
auditor$block = as.factor(auditor$block)
auditor$treatment = as.factor(auditor$treatment)
anova(lm(y ~ block + treatment, data=auditor))
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

block 9 433.4 48.2 7.716 0.000132
treatment 2 1295.0 647.5 103.754 0.000000000132
Residuals 18 112.3 6.2

Ignoring block effects, treatment effects become less significant.
anova(lm(y ~ treatment, data=auditor))
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

treatment 2 1295.0 647.5 32.04 0.0000000744
Residuals 27 545.7 20.2 20 / 65



Always Check Model Assumptions
lm1 = lm(sales ~ store + trtmt, data=freshener)
plot(lm1$fitted, lm1$res, xlab="Fitted Values", ylab="Residuals")
abline(h=0)
qqnorm(rstudent(lm1),ylab="Studentized Residuals")
qqline(rstudent(lm1))
library(MASS); boxcox(lm1)
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For the RCBD model of the Air Freshener Sales data,
▶ Residual-vs-fitted value plot and normal QQ plot look fine.
▶ Box-Cox says it might be better to take square-root of the

response (λ = 1/2), the original response is not too much
worse as λ = 1 is nearly at the upper end of the 95% CI for λ
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Latin Square Deaigns
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Latin Square Designs — Blocking Two Variations Simultaneously
Sometimes there are two sources of variations in the experimental
units we want to eliminate by blocking.
Example: To compare the effects of 5 fertilizers A, B, C, D, E, an
experiment is done in a farm that has a north-south variation in
sunlight and east-west variation in soil humidity. One can block on
the row and column position of plots using the design below.

(dry) ↔ (humid)
West ←→ East

Column
Row 1 2 3 4 5

(less sunlight) North I A B C D Exy II C D E A B
III E A B C D
IV B C D E A

(more sunlight) South V D E A B C

Each treatment occurs once in each row and in each column.
This is called a Latin square.
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Example — Automobile Emissions

Variables

▶ Additives: A, B, C, D (chemicals aimed at reducing pollution)
▶ Drivers: I, II, III, IV
▶ Cars: 1, 2, 3, 4
▶ Response: Emission reduction index measured for each test

drive

The experiment

▶ Additives as treatments (i = 1, 2, 3, 4)
▶ Drivers as a block variable (row block j = 1, 2, 3, 4)
▶ Cars as another block variable (column block k = 1, 2, 3, 4)
▶ The combination (driver, car) as experimental units
▶ Latin square of order 4 as the design of the experiment
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Data and Design for Automobile Emissions Study
Cars

Drivers 1 2 3 4 driver average
I A B D C

19 24 23 26 23
II D C A B

23 24 19 30 24
III B D C A

15 14 15 16 15
IV C A B D

19 18 19 16 18
average grand mean
per car 19 20 19 22 20

Treatment means

A: 18, B: 22, C: 21, D: 19
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Automobile Emissions Data
driver car trt reduct

1 1 1 A 19
2 1 2 B 24
3 1 3 D 23
4 1 4 C 26
5 2 1 D 23
6 2 2 C 24
7 2 3 A 19
8 2 4 B 30
9 3 1 B 15
10 3 2 D 14
11 3 3 C 15
12 3 4 A 16
13 4 1 C 19
14 4 2 A 18
15 4 3 B 19
16 4 4 D 16
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Are there driver effects? Car effects?
Which block effect is stronger?
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Model For a Latin Square Design
yijk = µ + αi + βj + γk + εijk

(trt) (row) (column)

where∑
i
αi =

∑
j
βj =

∑
k

γk = 0, εijk ∼ i .i .d . N(0, σ2)

We have g2 experimental units. For given j and k we only have
one value i(j , k) corresponding to Treatment i .

The design is balanced, so we have the usual estimates:

µ̂ = ȳ•••, α̂i = ȳi•• − ȳ•••

β̂j = ȳ•j• − ȳ•••

γ̂k = ȳ••k − ȳ•••

Statistical analysis can be done using familiar R commands.
27 / 65



How Do Latin-Square Designs Work?
Q: What is the mean for ȳA••?

For the automobile emission example,

ȳA•• = 1
4(yA11 + yA32 + yA43 + yA24).

Based on the model, we know

E(yijk) = µ + αi + βj + γk
(trt) (car) (driver)

car
driver 1 2 3 4

I A B D C
II D C A B
III B D C A
IV C A B D

Thus

E[ȳA••] = 1
4


µ + αA + β1 + γ1

+ µ + αA + β3 + γ2
+ µ + αA + β4 + γ3
+ µ + αA + β2 + γ4


= 1

4
(
4µ + 4αA +

∑4
j=1

βj︸ ︷︷ ︸
=0

+
∑4

k=1
γk︸ ︷︷ ︸

=0

)
= µ + αA
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ANOVA Table for a Single Latin Square
Source d.f. SS MS F -value

Row-Block g − 1 SSrow SSrow /(g − 1) MSrow /MSE
Column-Block g − 1 SScol SScol/(g − 1) MScol/MSE

Treatment g − 1 SStrt SStrt/(g − 1) MStrt/MSE
Error (g−2)(g−1) SSE SSE/[(g−2)(g−1)]
Total g2 − 1 SST

SSrow =
∑

ijk
β̂2

j = g
∑

j
β̂2

j = g
∑

j
(ȳ•j• − ȳ•••)2,

SScol =
∑

ijk
γ̂2

k = g
∑

k
γ̂2

k = g
∑

k
(ȳ••k − ȳ•••)2,

SStrt =
∑

ijk
α̂2

i = g
∑

i
α̂2

i = g
∑

i
(ȳi•• − ȳ•••)2,

SSE =
∑

ijk
(yijk − ȳi•• − ȳ•j• − ȳ••k + 2ȳ•••)2

= SST − SSrow − SScol − SStrt ,

SST =
∑

ijk
(yijk − ȳ•••)2
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ANOVA Table for Automobile Emissions Data

emis = read.table(
"http://www.stat.uchicago.edu/~yibi/s222/emission.txt", h=T)

lm1 = lm(reduct ~ as.factor(driver)+as.factor(car)+as.factor(trt),
data=emis)

anova(lm1)
Analysis of Variance Table

Response: reduct
Df Sum Sq Mean Sq F value Pr(>F)

as.factor(driver) 3 216 72.00 13.5 0.00447
as.factor(car) 3 24 8.00 1.5 0.30717
as.factor(trt) 3 40 13.33 2.5 0.15649
Residuals 6 32 5.33
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Crossover Design — A Special Latin-Square Design

When a sequence of treatments is given to a subject over several
time periods,

▶ need to block on subjects,
because each subject tends to respond differently, and

▶ need to block on time period,
because there may consistent differences over time due to
growth, aging, disease progression, or other factors.

Such a design is called a crossover design, which is a common
application of the Latin Square designs.
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Example: Bioequivalence of Drug Delivery (p.326 in Oehlert’s)

▶ Objectives — Investigate whether different drug delivery
systems have similar biological effects.

▶ Response variable — Average blood concentration of the drug
during certain time interval after the drug has been
administered.

▶ Treatments — 3 different drug delivery systems:
A – solution, B – tablet, C – capsule

▶ Blocking on both subjects and time period
▶ Data & design:

subject
period 1 2 3

1 1799A 2075C 1396B
2 1846C 1156B 868A
3 2147B 1777A 2291C
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Advantages of Latin Squares

▶ For the same number of experimental units as a randomized
complete block design (RCBD) with g treatments and g
blocks, we can simultaneously block for a second variable.

▶ Provide an elegant and efficient use of limited resources for a
small experiment.

Disadvantages of Latin Squares

▶ Cannot identify block-treatment interactions.
▶ There may be few d .f . left to estimate σ once both block and

treatment effects are estimated.
E.g., in a 3× 3 square, block and treatment effects taken up
3× 2 d .f ., allowing 1 d .f . for the grand mean leaves 2 d .f .
for estimating σ2, and this includes all the treatments.

▶ One can (and should) replicate Latin square.
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Replicated Latin Square Designs

In the Bioequivalence of Drug Delivery Example, with a single
3× 3 Latin square, there are only 2 degrees of freedom left for
estimating the error. One can increase the d.f. for errors by
replicating more Latin squares.

▶ Can extend the study from 3 subjects to 12 subjects
▶ The 12 subjects are divided into 4 groups of 3 each, and a

Latin square design is arranged for each group
▶ Data are shown on the next page and the data file is at

http://users.stat.umn.edu/~gary/book/fcdae.data/exmpl13.10
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Data and Design for Extended Bioequivalence Study
square 1 square 2

subject
period 1 2 3 4 5 6

1 1799A 2075C 1396B 3100B 1451C 3174A
2 1846C 1156B 868A 3065A 1217B 1714C
3 2147B 1777A 2291C 4077C 1288A 2919B

square 3 square 4
subject

period 7 8 9 10 11 12
1 1430C 1186A 1135B 873C 2061A 1053B
2 836A 642B 1305C 1426A 2433B 1534C
3 1063B 1183C 984A 1540B 1337C 1583A

▶ Each (subject, treatment) combination appears exactly once
▶ Each (period, treatment) combination appears exactly 4 times
▶ Note the 4 Latin-squares have a common row block (period).

In this case, we say the row block is reused.
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Model for Replicated Latin Square Design(row block reused)
When Latin squares are replicated (each one separately
randomized), the appropriate linear model will depend on which
blocks (if any) are reused.
In the Bioequivalence study, the row variable, period, is reused. An
appropriate model would be

yijk = µ + αi + βj + γk + εijk
(trt) (period) (subject)

with the constraints∑3
i=1

αi =
∑3

j=1
βj =

∑12
k=1

γk = 0.

The parameter estimates are again

µ̂ = ȳ•••, α̂i = ȳi•• − ȳ•••

β̂j = ȳ•j• − ȳ•••

γ̂k = ȳ••k − ȳ•••
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How Do Replicated Latin-Square Designs Row-Block Reused Work? (1)
For the Drug Delivery Study, we can show that E[ȳB••] = µ + αB .

Subject 1 2 3 4 5 6 7 8 9 10 11 12
1 A C B B C A C A B C A B

period 2 C B A A B C A B C A B C
3 B A C C A B B C A B C A

ȳB•• = 1
12 (yB31 + yB22 + yB13 + yB14 + yB25 + yB36

+ yB37 + yB28 + yB19 + yB3,10 + yB2,11 + yB1,12).
Since E(yijk) = µ + αi + βj + γk

(trt) (period) (subject)

we know

E[ȳB••]= 1
12


µ + αB + β3 + γ1

+ µ + αB + β2 + γ2

+
...

...
...

...
+ µ + αB + β1 + γ12

= 1
12 (12µ+12αB +4

3∑
j=1

βj︸ ︷︷ ︸
=0

+
12∑

k=1
γk︸ ︷︷ ︸

=0

)

= µ + αB

It works because each treatment shows up in each row 4 times and each
column once. Each βj comes up 4 times and each γk once in the sum.
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ȳB•• = 1
12 (yB31 + yB22 + yB13 + yB14 + yB25 + yB36

+ yB37 + yB28 + yB19 + yB3,10 + yB2,11 + yB1,12).

Since E(yijk) = µ + αi + βj + γk
(trt) (period) (subject)

we know

E[ȳB••]= 1
12


µ + αB + β3 + γ1

+ µ + αB + β2 + γ2

+
...

...
...

...
+ µ + αB + β1 + γ12

= 1
12 (12µ+12αB +4

3∑
j=1

βj︸ ︷︷ ︸
=0

+
12∑

k=1
γk︸ ︷︷ ︸

=0

)

= µ + αB

It works because each treatment shows up in each row 4 times and each
column once. Each βj comes up 4 times and each γk once in the sum.

37 / 65



How Do Replicated Latin-Square Designs Row-Block Reused Work? (1)
For the Drug Delivery Study, we can show that E[ȳB••] = µ + αB .
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E[ȳB••]= 1
12


µ + αB + β3 + γ1

+ µ + αB + β2 + γ2

+
...

...
...

...
+ µ + αB + β1 + γ12

= 1
12 (12µ+12αB +4

3∑
j=1

βj︸ ︷︷ ︸
=0

+
12∑

k=1
γk︸ ︷︷ ︸

=0

)

= µ + αB

It works because each treatment shows up in each row 4 times and each
column once. Each βj comes up 4 times and each γk once in the sum.

37 / 65



How Do Replicated Latin-Square Designs Row-Block Reused Work? (1)
For the Drug Delivery Study, we can show that E[ȳB••] = µ + αB .
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How Do Replicated Latin-Square Designs Row-Block Reused Work? (2)
Similarly, for the period block effect, we can show that E[ȳ•1•] = µ + β1.

Subject 1 2 3 4 5 6 7 8 9 10 11 12
1 A C B B C A C A B C A B

period 2 C B A A B C A B C A B C
3 B A C C A B B C A B C A

ȳ•1• = 1
12 (yA11 + yC12 + yB13 + yB14 + yC15 + yA16

+ yC17 + yA18 + yB19 + yC1,10 + yA1,11 + yB1,12).
Since E(yijk) = µ + αi + βj + γk

(trt) (period) (subject)

we know

E[ȳ•1•]= 1
12


µ + αA + β1 + γ1

+ µ + αC + β1 + γ2

+
...

...
...

...
+ µ + αB + β1 + γ12

= 1
12 (12µ+4

3∑
j=1

αj︸ ︷︷ ︸
=0

+12β1+
12∑

k=1
γk︸ ︷︷ ︸

=0

)

= µ + β1

It works because each treatment shows up in each row 4 times and hence
each αi comes up 4 times in the sum.
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How Do Replicated Latin-Square Designs Row-Block Reused Work? (3)
Similarly, for the subject block effect, we can show that E[ȳ••3] = µ + γ3.

Subject 1 2 3 4 5 6 7 8 9 10 11 12
1 A C B B C A C A B C A B

period 2 C B A A B C A B C A B C
3 B A C C A B B C A B C A

ȳ••3 = 1
3 (yB13 + yA23 + yC33)

Since
E(yijk) = µ + αi + βj + γk

(trt) (period) (subject)

we know

E[ȳ••3]= 1
3

 µ + αB + β1 + γ3
+ µ + αA + β2 + γ3
+ µ + αC + β3 + γ3

 = 1
3 (3µ +

3∑
i=1

αi︸ ︷︷ ︸
=0

+
3∑

j=1
βj︸ ︷︷ ︸

=0

+3γ3)

= µ + γ3

It works because each treatment shows up in each column exactly once
and hence each αi comes up once in the sum.
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ANOVA Table for Latin Square m Replicates, Row Block Reused
Number of Latin Squares = m

Source d.f. SS MS F -value
Row-Block g − 1 SSrow SSrow /(g − 1) MSrow /MSE

Column-Block mg − 1 SScol SScol/(mg − 1) MScol/MSE
Treatment g − 1 SStrt SStrt/(g − 1) MStrt/MSE

Error (mg−2)(g−1) SSE SSE/[(mg−2)(g−1)]
Total mg2 − 1 SST

where SSrow =
∑

ijk
(ȳ•j• − ȳ•••)2 = mg

∑g

j=1
(ȳ•j• − ȳ•••)2,

SScol =
∑

ijk
(ȳ••k − ȳ•••)2 = g

∑mg

k=1
(ȳ••k − ȳ•••)2,

SStrt =
∑

ijk
(ȳi•• − ȳ•••)2 = mg

∑g

i=1
(ȳi•• − ȳ•••)2,

SST =
∑

ijk
(yijk − ȳ•••)2

SSE = SST − SSrow − SScol − SStrt

Don’t try to memorize the formula for dferror . Just keep in mind that
dferror = dftotal − dfrow − dfcol − dftrt
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bioeqv = read.table(
"http://users.stat.umn.edu/~gary/book/fcdae.data/exmpl13.10", h=T)

anova(lm(area ~ as.factor(subject)+as.factor(period)+
as.factor(trt), data=bioeqv))

Analysis of Variance Table

Response: area
Df Sum Sq Mean Sq F value Pr(>F)

as.factor(subject) 11 16385060 1489551 7.255 0.0000747
as.factor(period) 2 737751 368875 1.797 0.192
as.factor(trt) 2 81458 40729 0.198 0.822
Residuals 20 4106500 205325

There is no evidence that the 3 drug delivery systems have
different biological effects.
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Air Freshener Sales Study Uses Replicated Latin Squares
Week Store

1 2 3 4 5 6 7 8
1 B 31 A 23 C 12 D 3 A 10 C 30 B 23 D 14
2 A 19 D 16 B 14 C 4 B 21 D 25 C 17 A 14
3 D 15 C 30 A 12 B 6 C 12 A 47 D 5 B 3
4 C 16 B 27 D 5 A 11 D 12 B 38 A 13 C 6

▶ The study also blocked on week in addition to store to
account for the possible week effect (season, holiday, etc)

▶ 2 replicates of 4× 4 Latin squares with row block (week)
reused

anova(lm(sales ~ store + as.factor(week) + trtmt, data=freshener))
Analysis of Variance Table

Response: sales
Df Sum Sq Mean Sq F value Pr(>F)

store 7 2478.9 354.1 10.310 0.0000348
as.factor(week) 3 26.4 8.8 0.256 0.8561
trtmt 3 329.4 109.8 3.197 0.0484
Residuals 18 618.2 34.3
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Latin Square w/ Replicates, Neither Row nor Column Reused

Automobile Emissions Example Revisited

Suppose there were 8 cars and 8 drivers available.

We can form 2 Latin Squares.

Cars
Drivers 1 2 3 4

I A B D C
II D C A B
III B D C A
IV C A B D

Cars
Drivers 5 6 7 8

V A B C D
VI C D A B
VII D C B A
VIII B A D C

Note the two squares have different rows (drivers) and different
columns (cars). That is, neither rows nor columns are reused.

43 / 65



Models for Replicated Latin Squares, not reusing rows or columns
Cannot use the conventional model below if neither row nor
column is reused

yijk = µ + αi + βj + γk + εijk
(trt) (driver) (car)

with constraints
∑4

i=1 αi =
∑8

j=1 βj =
∑8

k=1 γk = 0 since in this
case, even though E[ȳi••] = µ + αi but

E[ȳ•j•] ̸= µ + βj , E[ȳ••k ] ̸= µ + γk .

Observe that ȳ•2• = (yD21 + yC22 + yA23 + yB24)/4

E[ȳ•2•] = 1
4


µ + αD + β2 + γ1

+ µ + αC + β2 + γ2
+ µ + αA + β2 + γ3
+ µ + αB + β2 + γ4


= 1

4
(
4µ +

∑4
i=1

αi︸ ︷︷ ︸
=0

+4β2 +
∑4

k=1
γk︸ ︷︷ ︸

̸=0

)
̸= µ + β2
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Models for Replicated Latin Squares, Not Reusing Rows or Columns
A better model for m replicated Latin squares not reusing rows or
columns is

yijkℓ = µ + αi + βj(ℓ) + γk(ℓ) + δℓ + εijkℓ,

(trt) (driver) (car) (square)

i = 1, . . . , g ,
ℓ = 1, . . . , m,
j = 1, . . . , g ,
k = 1, . . . , g .

where yijkℓ = the observation in the jth row and kth column of the
ℓth square receiving ith treatment, with the constraints

g∑
i=1

αi =
m∑

ℓ=1
δℓ = 0, and

g∑
j=1

βj(ℓ) =
g∑

k=1
γk(ℓ) = 0, for ℓ = 1, . . . , m.

The parameter estimates are

µ̂ = ȳ••••, α̂i = ȳi••• − ȳ••••, β̂j(ℓ) = ȳ•j•ℓ − ȳ•••ℓ,

δ̂ℓ = ȳ•••ℓ − ȳ••••, γ̂k(ℓ) = ȳ••kℓ − ȳ•••ℓ
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ANOVA Table for Latin Square not reusing rows or columns
Number of Latin Squares = m

Source d.f. SS MS F -value
Square m − 1 SSsqr SSsqr /(m − 1) MSsqr /MSE

Row-Block m(g − 1) SSrow SSrow /[m(g − 1)] MSrow /MSE
Column-Block m(g − 1) SScol SScol/[m(g − 1)] MScol/MSE

Treatment g − 1 SStrt SStrt/(g − 1) MStrt/MSE
Error (mg +m−3)(g−1) SSE SSE/dfE
Total mg2 − 1 SST

where dferror = dftotal − dfsqr − dfrow − dfcol − dftrt

= mg2 − 1 − (m − 1) − 2m(g − 1) = (mg + m − 3)(g − 1)

SSsqr =
∑

ijkℓ
(ȳ•••ℓ − ȳ••••)2 = g2

∑m

ℓ=1
(ȳ•••ℓ − ȳ••••)2,

SSrow =
∑

ijkℓ
(ȳ•j•ℓ − ȳ•••ℓ)2 = g

∑
jℓ

(ȳ•j•ℓ − ȳ•••ℓ)2,

SScol =
∑

ijkℓ
(ȳ••kℓ − ȳ•••ℓ)2 = g

∑
jℓ

(ȳ••kℓ − ȳ•••ℓ)2,

SStrt =
∑

ijk
(ȳi••• − ȳ••••)2 = mg

∑g

i=1
(ȳi••• − ȳ••••)2,

SST =
∑

ijk
(yijkℓ − ȳ••••)2

SSE = SST − SSsqr − SSrow − SScol − SStrt 46 / 65



Skeleton ANOVA for Latin Square Designs with Replicates

Number of Latin Squares = m
row and col. row not column neither
both reused reused not reused reused

Source d.f. d.f. d.f. d.f.
Square m − 1

Row-Block g − 1 mg − 1 g − 1 m(g − 1)
Column-Block g − 1 g − 1 mg − 1 m(g − 1)

Treatment g − 1 g − 1 g − 1 g − 1
Error mg2 − 1− (sum of the above)
total mg2 − 1 mg2 − 1 mg2 − 1 mg2 − 1
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How to Create Latin Squares?

See Appendix C.1 (p.607-609) in Oehlert’s textbook

http://users.stat.umn.edu/~gary/Book.html

for a list of Latin Squares of various sizes from 2× 2 up to 7× 7.
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Randomization in a Latin Square Design

Randomization the allocation of treatments is necessary in the
design of experiment.

How to randomly assign experimental units to treatments while
maintaining the Latin-Square structure?

1. First pick a Latin Square of desired size at random from
Appendix C.1 in Oehert’s textbook

2. Randomly permute the rows of the square
3. Randomly permute the columns of the square

▶ When rows or columns are permuted, Latin squares remain to
be Latin Squares

4. Randomly assign treatments to the letters.
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Contrasts and Multiple Comparisons
for Complete Block Designs
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Pairwise Comparisons in Complete Block Designs
For complete block designs (RCBD, and Latin-squares replicated or
not), one can always do pairwise comparison of treatment effects
αi1 − αi2 by comparing the “treatment means”

ȳi1• − ȳi2• for RCBD, ȳi1•• − ȳi2•• for Latin Squares.

The SE’s are both in the form

SE =
√

MSE
(1

r + 1
r

)
Here r is the total # of replicates for a treatment in the entire
data, ignoring blocks, e.g., r = mg in a g × g Latin-square design
with m replicates.

The t-statistic has a t distribution, and d.f. = (d.f. for MSE)

t = diff of 2 trt means
SE ∼ tdf of MSE

using which ONE can construct C.I. or do t-test on αi1 − αi2 .
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Contrasts in Complete Block Designs
A contrast C =

∑g
i=1 ciαi of treatment effects in any RCBD or

Latin-square (replicated or not) designs can be estimated by

Ĉ =
g∑

i=1
ci(sample mean for trt i)

Here the “sample mean for trt i” means ȳi• or ȳi••. The SE is

SE(Ĉ) =
√

MSE×
∑g

i=1
c2

i

/
r

where r is the total # of replicates for a treatment in all blocks,
e.g., r = mg in a g × g Latin-square design with m replicates.

▶ The (1− α)100% C.I. for C : Ĉ ± tα/2,df of MSE × SE(Ĉ).
▶ Test statistic for testing H0 : C =

∑g
i=1 ciαi = 0:

t0 = Ĉ
SE(Ĉ)

∼ tdf of MSE
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Multiple Comparisons in Complete Block Designs

All the multiple comparison procedures apply to all Complete
Block Designs. Just change the degree of freedom from N − g to
the d.f. of MSE

Critical Value to
Method Family of Tests Keep FWER < α

Fisher’s LSD a single pairwise tα/2,df of MSE
comparison

Tukey all pairwise qα(g , df of MSE)/
√

2
comparisons

Bonferroni preplanned tdf of MSE,α/(2m), where
contrasts m = # of preplanned contrasts

Scheffe all contrasts
√

(g − 1)Fα,g−1,df of MSE
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Example: Air Freshener Sales — Tukey’s HSD
To conduct pairwise comparisons between the 4 treatments, the
SE is

SE =
√

MSE
(1

r + 1
r

)
=

√
34.3

(1
8 + 1

8

)
≈ 2.9283

as there are r = 8 because there is 1 obsvertation in each of the 8
blocks and MSE = 34.3 is obtained from ANOVA table.

Tukey’s critical value at FWER = 5% is 2.8263 (dfE = 18 from
ANOVA table)

qtukey(0.95, 4, 18)/sqrt(2)
[1] 2.82629

Tukey’s HSD is hence

(critical value)× SE = 2.928× 2.8263 ≈ 8.276.
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library(mosaic)
sort(mean(sales ~ trtmt, data = freshener))

D C A B
11.875 15.875 18.625 20.375

Here is the underline diagram based on HSD = 8.276

D C A B
11.875 15.875 18.625 20.375
--------------------

--------------------
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Tukey’s Method in emmeans Library
freshener$week = as.factor(freshener$week)
freshener$store = as.factor(freshener$store)
freshener$trtmt = as.factor(freshener$trtmt)
library(emmeans)
lm1 = lm(sales ~ store + week + trtmt, data=freshener)
lm1em = emmeans(lm1, "trtmt")
pairs(lm1em, infer=c(T,T), level=0.95, adjust="tukey")
contrast estimate SE df lower.CL upper.CL t.ratio p.value
A - B -1.75 2.93 18 -10.032 6.53 -0.597 0.9316
A - C 2.75 2.93 18 -5.532 11.03 0.938 0.7849
A - D 6.75 2.93 18 -1.532 15.03 2.303 0.1343
B - C 4.50 2.93 18 -3.782 12.78 1.536 0.4381
B - D 8.50 2.93 18 0.218 16.78 2.901 0.0431
C - D 4.00 2.93 18 -4.282 12.28 1.365 0.5359

Results are averaged over the levels of: store, week
Confidence level used: 0.95
Conf-level adjustment: tukey method for comparing a family of 4 estimates
P value adjustment: tukey method for comparing a family of 4 estimates
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Example: Air Freshener Sales — a Contrast
A data analyst looked at the data and noticed Treatment D with
no extra display had the lowest mean compared to the other 3
treatments that had an extra display, he thus decided to test the
contrast

C = αA + αB + αC
3 − αD.

▶ Should use Scheffe as the contrast is suggested by data
snooping

▶ Estimate of C is

Ĉ =
∑

i
ci ȳi•• = 18.625 + 20.375 + 15.875

3 − 11.875 ≈ 6.417

mean(sales ~ trtmt, data = freshener)
A B C D

18.625 20.375 15.875 11.875
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The SE for the contrast is

SE =
√

MSE
((1/3)2

r + (1/3)2

r + (1/3)2

r + 1
r

)

=
√

34.3
((1/3)2

8 + (1/3)2

8 + (1/3)2

8 + 1
8

)
≈ 2.39 .

The t-statistic for testing whether C = 0 is

t = Ĉ
SE ≈

6.417
2.39 ≈ 2.68

Scheffe’s critical value for FWER at 5% is 3.08.

sqrt((4-1)*qf(0.05,4-1,18, lower.tail=F))
[1] 3.07892

The contrast is NOT significantly different from 0 as t-stat = 2.68
is below below Scheffe’s critical value 3.08 for FWER at 5%.
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Caution About Blocking
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Blocking Must be Done at the Time of Randomization

▶ One can’t group units into blocks when analyzing data to
make treatments more significant after the experiment is
done.

▶ For Air Freshener Sales data, as the week block effect is not
significant (p-value = 0.8), can one ignore week and analyze
the data as from a RCBD rather than a Latin Square Design?
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Cannot Make Causal Conclusions About Block Effects

▶ We can change the treatment of an experimental unit, but
cannot change the block an experimental unit belongs.
Blocking variables are a property of the experimental units,
not something we can manipulate.
▶ e.g., in the Air Freshener Sales example, we can change the

trtmt but not the store of an observation
▶ Since we cannot experimentally manipulate the blocking

variable, block effects are “observational”, We cannot make
causal inference to a blocking variable as to a treatment
factor.
▶ e.g., cannot conclude that store changes sales
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Power and Sample Size Calculation
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Power and Sample Size Calculation
When Ha is true, treatments have different effects, the ANOVA
F -statistic also has a non-central F -distribution

F = MStrt
MSE ∼

{
Fg−1, dfE under H0

Fg−1, dfE ,δ2 under Ha

where the non-centrality parameter δ2 is

δ2 =
∑g

i=1 rα2
i

σ2 .

where r = # of observations per treatment, ignoring blocks.

Note:

▶ only df changes from N − g to dfE = df of MSE of the model
▶ ncp δ2 is calculated using αi ’s under the zero-sum constraint∑

i αi = 0.
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Combination of Factorial and Block Designs
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Combination of Factorial and Block Designs

The treatments in any block designs can also have factorial
structure. The SS and df for treatments can be broken down
according like what we have done for factorial data.

Example In a 4× 4 Latin square design (no replicates), the g = 4
treatments has a 2× 2 factorial structure.

Source d.f.
Row g − 1 = 3

Column g − 1 = 3
Treatment g − 1 = 3

Error (g − 2)(g − 1) = 6
Total g2 − 1 = 15

⇒

Source d.f.
Row g − 1 = 3

Column g − 1 = 3
A a − 1 = 1
B b − 1 = 1

AB (a − 1)(b − 1) = 1

Error (g − 2)(g − 1) = 6
Total g2 − 1 = 15
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