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Contrasts
Recall in a one-way model

yij = µi + εij ,

a contrast is a linear combination of treatment mean µi ’s

C =
g∑

i=1
ciµi such that

g∑
i=1

ci = 0

Similarly in a factorial model, say a 3-way model,

yijkℓ = µijk + εijkℓ,

a contrast is a linear combination of µijk ’s

C =
∑
ijk

cijkµijk such that
∑
ijk

cijk = 0
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Example: Popcorn Microwave Data (Section 7.4, Review)

We’ll demonstrate using the Popcorn Microwave Data in Section
7.4 and Slides L1314.pdf

Brand Power Time (k)
(i) (j) 1 (4 min) 2 (4.5 min) 3 (5 min)
1 1 (500 W) 73.8, 65.5 70.3, 91.0 72.7, 81.9
1 2 (625 W) 70.8, 75.3 78.7, 88.7 74.1, 72.1
2 1 (500 W) 73.7, 65.8 93.4, 76.3 45.3, 47.6
2 2 (625 W) 79.3, 86.5 92.2, 84.7 66.3, 45.7
3 1 (500 W) 62.5, 65.0 50.1, 81.5 51.4, 67.7
3 2 (625 W) 82.1, 74.5 71.5, 80.0 64.0, 77.0

popcorn = read.table(
"http://www.stat.uchicago.edu/~yibi/s222/popcorn.txt", h=T)
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Contrasts of Interest (1)

Fitting a 3-way model

yijkℓ = µijk + εij , where i = brand, j = power, k = time

of the Popcorn Data, we might be interested in

1. Which combination of brand, power, and time will produce
the highest popping rate?

▶ pairwise comparisons µi1j1k1 − µi2j2k2 of all i1, i2, j1, j2, k1, k2

2. Which brand performs best
▶ overall, averaging over levels of power & time?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . µ̄i1•• − µ̄i2••

▶ for power = 625W (j = 2) and time = 4.5 min (k = 2)?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . µi122 − µi222

▶ for power = 625W (j = 2), averaging over levels of time?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . µ̄i12• − µ̄i22•
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Contrasts of Interest (2)

3. Which power:time combination works the best, averaging
over the 3 brands?

▶ pairwise comparisons µ̄•j1k1 − µ̄•j2k2 of all j1, j2, k1, k2

4. Whether the time effects change over power
▶ for brand 1?

. . . . . . . . . . . . . . . . . . . . . . .µi2k1 − µi2k2 − (µi1k1 − µi1k2) for i = 1

▶ averaging over the 3 brands?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . µ̄•2k1 − µ̄•2k2 − (µ̄•1k1 − µ̄•1k2)

5. Whether the time effects change over brand
▶ for power = 625W?

. . . . . . . . . . . . . . . . . . . . . . µi1jk1 − µi1jk2 − (µi2jk1 − µi2jk2) for j = 2

▶ averaging over levels of power?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . µ̄i1•k1 − µ̄i1•k2 − (µ̄i2•k1 − µ̄i2•k2)
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Estimation and Standard Error of a Contrast
For example, for 3-way data, a natural estimator for the contrast
C =

∑
ijk cijkµijk is

Ĉ =
∑

ijk
cijk µ̂ijk =

∑
ijk

cijky ijk•

By the independence of y ijk•’s, we know

V
(∑

ijk
cijky ijk•

)
=
∑

ijk
V(cijky ijk•)

=
∑

ijk
c2

ijk V(y ijk•) =
∑

ijk
c2

ijk
σ2

nijk
.

Here nijk is the number of replicates in treatment (i , j , k). The
estimator Ĉ has standard deviation and standard error

SD(Ĉ) = σ

√√√√∑
ijk

c2
ijk

nijk
, SE(Ĉ) =

√
MSE

√√√√∑
ijk

c2
ijk

nijk
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Inference for a Single Contrast (No Multiple Comparisons)

A (1 − α)100% confidence interval for a single contrast C is

Ĉ ± tdfE ,α/2 × SE(Ĉ)

For testing H0: C = 0, the test statistic is

t = Ĉ
SE(Ĉ)

∼ tdfE

where dfE represents the degrees of freedom for SSE.
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Multiple Comparisons for Factorial Data

Just like one-way data, we usually conduct multiple tests and
construct multiple CIs in the analysis of factorial data. Adjustment
of multiple comparisons is necessary.

The formulae for the Bonferroni, Scheffe, and Tukey methods can
all be used similarly as was done in Chap.4. We will demonstrate
the methods in the examples below.
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popcorn$brand = as.factor(popcorn$brand)
popcorn$power = as.factor(popcorn$power)
popcorn$time = as.factor(popcorn$time)
lm1 = lm(y ~ brand*power*time, data=popcorn)
anova(lm1)
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

brand 2 331.101 165.550 1.88856 0.1800727
power 1 455.111 455.111 5.19181 0.0351175
time 2 1554.576 777.288 8.86713 0.0020878
brand:power 2 196.041 98.020 1.11819 0.3485423
brand:time 4 1433.858 358.464 4.08928 0.0157156
power:time 2 47.709 23.854 0.27213 0.7648363
brand:power:time 4 47.334 11.834 0.13500 0.9673241
Residuals 18 1577.870 87.659

We need MSE = 87.659 with df = 18 to calculate the SE’s.
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Which combination of brand, power, and time will
produce the highest popping rate?

To answer this question, we can just conduct pairwise comparisons
between all 3 × 2 × 3 = 18 treatments. using Tukey’s HSD,
controlling FWER at α,

HSD = qg ,dfE ,α√
2

×
√

MSE
(1

r + 1
r

)
.

Here g = 18 is the # of treatments, dfE = 18 is the df of SSE. At
FWER = 0.01, Tukey’s critical value is obtained below to be 4.846.
qtukey(1-0.01, 18, 18)/sqrt(2)
[1] 4.8462

As MSE = 87.659 (from the ANOVA table) and there are n = 2
replicates per treatment, Tukey’s HSD is

4.846 ×
√

87.659
(1

2 + 1
2

)
≈ 45.37.
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library(mosaic)
sort(mean(y ~ brand+power+time, data=popcorn))
2.1.3 2.2.3 3.1.3 3.1.1 3.1.2 1.1.1 2.1.1 3.2.3 1.2.1 1.2.3
46.45 56.00 59.55 63.75 65.80 69.65 69.75 70.50 73.05 73.10
3.2.2 1.1.3 3.2.1 1.1.2 2.2.1 1.2.2 2.1.2 2.2.2
75.75 77.30 78.30 80.65 82.90 83.70 84.85 88.45

As maximum and minimum of the 18 group means differ by
88.45 − 46.45 = 42 < HSD, no two groups are significantly
different from each other, controlling FWER at 0.01, which is not
surprising as the P-value for the overall treatment effect is 0.021.

anova(lm(y ~ brand:power:time, data=popcorn))
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

brand:power:time 17 4065.73 239.1605 2.72829 0.020577
Residuals 18 1577.87 87.6594
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Main-Effect Contrasts
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Main-Effect Contrasts
When the coefficients cijk depend only on a single index, like
cijk = ci depend only on index i for all i , j , k, then

C =
∑

ijk
cijkµijk =

∑
ijk

ciµijk =
∑

i
ci
∑

jk
µijk =

∑
i
ciµi••

Recall µijk = µ + αi + βj + γk + αβij + αγik + βγjk + αβγijk .
Summing over indexes j and k, all other terms vanish except µ and
αi because of the zero-sum constraints,

µi•• = bcµ + bcαi + cβ• + bγ• + cαβi• + bαγi• + βγ•• + αβγi••

= bc(µ + αi).

Such a contrast only depends on main effects for factor A.

C =
∑

i
ciµi•• = bc

∑
i
ci︸ ︷︷ ︸

=0

µ + bc
∑

i
ciαi = bc

∑
i
ciαi
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To know which brand performs best overall, averaging over levels
of power & time, the contrast µ̄i1•• − µ̄i2•• = αi1 − αi2 is such a
main effect contrast with

cijk =


1

bc if i = i1
− 1

bc if i = i2
0 if i ̸= i1 or i2

The SE for this contrast is SE(Ĉ) =
√

MSE
√∑

ijk
c2

ijk
nijk

where

∑
ijk

c2
ijk

nijk
=
∑

jk

(1/bc)2 + (−1/bc)2

n = bc (1/bc)2 + (−1/bc)2

n = 1
nbc + 1

nbc .

Hence the SE for this contrast

SE(̂̄µi1•• − ̂̄µi2••) = SE(ȳi1••• − ȳi2•••) =
√

MSE
( 1

nbc + 1
nbc

)
is just like the SE for pairwise comparisons of brands each with
nbc replicates.
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Which brand Works the Best Overall,averaging over power & time

Pairwise comparisons between all 3 brands: µ̄1••, µ̄2••, µ̄3•• using
Tukey’s HSD, controlling FWER at α,

HSD = qg ,dfE ,α√
2

×
√

MSE
(1

r + 1
r

)
.

Here g = 3 is the # of brands compared, dfE = 18 is the df of
SSE. Tukey’s critical value at FWER = 0.01 is 3.3258 below.

qtukey(1-0.01, 3, 18)/sqrt(2)
[1] 3.32579

As MSE = 87.659 (from the ANOVA table) and there are
r = nbc = 2 × 2 × 3 = 12 replicates per brand, Tukey’s HSD is

3.326 ×
√

87.659
( 1

12 + 1
12

)
≈ 12.71.
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library(mosaic)
sort(mean(y ~ brand, data=popcorn))

3 2 1
68.9417 71.4000 76.2417

No two brands differ by more than HSD = 12.71 in mean at
FWER = 0.01.

Not surprising since the P-value for the brand main effect is 0.18
in the ANOVA table.
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library(emmeans)
lm1 = lm(y ~ brand*power*time, data=popcorn)
lm1embrand = emmeans(lm1, ~brand)
summary(contrast(lm1embrand, method="pairwise", adjust="tukey"),

infer=c(T,T), level=0.99)
contrast estimate SE df lower.CL upper.CL t.ratio p.value
1 - 2 4.84 3.82 18 -7.87 17.6 1.267 0.4312
1 - 3 7.30 3.82 18 -5.41 20.0 1.910 0.1646
2 - 3 2.46 3.82 18 -10.25 15.2 0.643 0.7985

Results are averaged over the levels of: power, time
Confidence level used: 0.99
Conf-level adjustment: tukey method for comparing a family of 3 estimates
P value adjustment: tukey method for comparing a family of 3 estimates
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Which time Works the Best Overall,averaging over brand & power?

lm1emtime = emmeans(lm1, ~time)
summary(contrast(lm1emtime, method="pairwise", adjust="tukey"),

infer=c(T,T), level=0.99)
contrast estimate SE df lower.CL upper.CL t.ratio p.value
1 - 2 -6.97 3.82 18 -19.68 5.75 -1.823 0.1906
1 - 3 9.08 3.82 18 -3.63 21.80 2.376 0.0705
2 - 3 16.05 3.82 18 3.34 28.76 4.199 0.0015

Results are averaged over the levels of: brand, power
Confidence level used: 0.99
Conf-level adjustment: tukey method for comparing a family of 3 estimates
P value adjustment: tukey method for comparing a family of 3 estimates

Popping time = 2 (4.5 min) is significantly better than popping
time = 3 (5 min) at FWER = 0.01.

Other pairs are not significantly different.
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Which power:time Combination Works the Best, averaging over brands?
Could do pairwise comparisons µ̄•j1k1 − µ̄•j2k2 of all j1, j2, k1, k2
using Tukey’s HSD, controlling FWER at α,

HSD = qg ,dfE ,α√
2

×
√

MSE
(1

r + 1
r

)
.

Here g = 2 × 3 = 6 is the # of power-time combinations, dfE
= 18 is the df of SSE. At FWER = 0.01, Tukey’s critical value is
obtained below to be 3.9618

qtukey(1-0.01, 6, 18)/sqrt(2)
[1] 3.96177

As MSE = 87.659, and there are r = na = 2 × 3 = 6 replicates per
power × time combination, Tukey’s HSD is

3.9618 ×
√

87.659
(1

6 + 1
6

)
≈ 21.415.
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library(mosaic)
sort(mean(y ~ power+time, data=popcorn))

1.3 2.3 1.1 1.2 2.1 2.2
61.1000 66.5333 67.7167 77.1000 78.0833 82.6333

Only (1,3)=(500W, 5 min) and (2,2) = (625W, 4.5 min) differ by
more than HSD = 21.45 in mean at FWER = 0.01.
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lm1empt = emmeans(lm1, ~power:time)
summary(contrast(lm1empt, method="pairwise", adjust="tukey"),

infer=c(T,T), level=0.99)
contrast estimate SE df lower.CL upper.CL t.ratio p.value
1 1 - 2 1 -10.367 5.41 18 -31.782 11.0 -1.918 0.4235
1 1 - 1 2 -9.383 5.41 18 -30.799 12.0 -1.736 0.5274
1 1 - 2 2 -14.917 5.41 18 -36.332 6.5 -2.760 0.1111
1 1 - 1 3 6.617 5.41 18 -14.799 28.0 1.224 0.8197
1 1 - 2 3 1.183 5.41 18 -20.232 22.6 0.219 0.9999
2 1 - 1 2 0.983 5.41 18 -20.432 22.4 0.182 1.0000
2 1 - 2 2 -4.550 5.41 18 -25.965 16.9 -0.842 0.9554
2 1 - 1 3 16.983 5.41 18 -4.432 38.4 3.142 0.0537
2 1 - 2 3 11.550 5.41 18 -9.866 33.0 2.137 0.3131
1 2 - 2 2 -5.533 5.41 18 -26.949 15.9 -1.024 0.9039
1 2 - 1 3 16.000 5.41 18 -5.415 37.4 2.960 0.0764
1 2 - 2 3 10.567 5.41 18 -10.849 32.0 1.955 0.4035
2 2 - 1 3 21.533 5.41 18 0.118 42.9 3.984 0.0096
2 2 - 2 3 16.100 5.41 18 -5.316 37.5 2.978 0.0737
1 3 - 2 3 -5.433 5.41 18 -26.849 16.0 -1.005 0.9102

Results are averaged over the levels of: brand
Confidence level used: 0.99
Conf-level adjustment: tukey method for comparing a family of 6 estimates
P value adjustment: tukey method for comparing a family of 6 estimates22 / 49



More on Factor Effects

In Lecture 15, we only showed how to compare levels of a factor
averaging over levels of other factors, like

▶ brand effects average over levels of power and time:
µ̄1••, µ̄2••, µ̄3••

▶ time effects average over levels of brand and power:
µ̄••1, µ̄••2, µ̄••3

Can we compare levels of a factor, but with other factors fixed at a
certain level?

▶ brand effect when power = 625W, 4.5min Popping Time:
µ122, µ222, µ322

▶ brand effect at 4.5min popping time, averaging over power:
µ̄1•2, µ̄2•2, µ̄3•2
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Brand effect When power = 625W, 4.5min Popping Time

▶ pairwise comparisons of the 3 treatments: µ122, µ222, µ322

▶ Use Tukey’s HSD = qg ,dfE ,α√
2

×
√

MSE
(1

r + 1
r

)
▶ g = 3 is the # of treatments compared
▶ dfE = 18 is the df of SSE
▶ Tukey’s critical value at FWER = 0.01 is 3.3258.

qtukey(1-0.01, 3, 18)/sqrt(2)
[1] 3.32579

As there are r = 2 replicates per treatment, Tukey’s HSD is

3.3258 ×
√

87.659
(1

2 + 1
2

)
≈ 31.14.
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sort(mean(y ~ brand, data=subset(popcorn, power == 2 & time == 2)))
3 1 2

75.75 83.70 88.45

No two brands differ by > 1 HSD from each other.
⇒ No brands are significantly different from each other when
poped 4.5mins using a 625W microwave.
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Brand effect at 4.5min Popping Time, averaging over power

▶ pairwise comparisons between µ̄1•2, µ̄2•2, µ̄3•2

▶ Use Tukey’s HSD = qg ,dfE ,α√
2

×
√

MSE
(1

r + 1
r

)
▶ g = 3 is the # of groups compared
▶ dfE = 18 is the df of SSE
▶ r = nb = 2 × 2 = 4 replicates in each group compared
▶ Tukey’s critical value at FWER = 0.01 is 3.3258.

qtukey(1-0.01, 3, 18)/sqrt(2)
[1] 3.32579

Tukey’s HSD is 3.3258 ×
√

87.659
(1

4 + 1
4

)
≈ 22.02.

sort(mean(y ~ brand, data=subset(popcorn, time == 2)))
3 1 2

70.775 82.175 86.650

Still, no brands are significantly different.
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Interaction Contrasts
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Interaction Contrasts
E.g., an AB interaction contrast is a contrast of the form

C =
∑

ij
cij µ̄ij•,

where the coefficients cij satisfy the zero-sum constraints∑
i cij =

∑
j cij = 0 for all i , j .

As µijk = µ + αi + βj + γk + αβij + αγik + βγjk + αβγijk , summing
over index k, all terms involve index k vanish because of the
zero-sum constraints,

µij• = cµ + cαi + cβj + γ• + cαβij + αγi• + βγj• + αβγij•

= c(µ + αi + βj + αβij) ⇒ µ̄ij• = 1
c µij• = µ + αi + βj + αβij

Thus such a contrast compares the AB interactions.

C =
∑

ij
cij µ̄ij• =

∑
ij

cij(µ + αi + βj + αβij)

= c••µ +
∑

i
ci•αi +

∑
j
c•jβj +

∑
ij

cijαβij =
∑

ij
cijαβij .
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Estimate and SE of an Interaction Contrast

The AB interaction

C =
∑

ij
cij µ̄ij• =

∑
ij

cijαβij

can be estimated by

Ĉ =
∑

ij
cij ȳij•• =

∑
ij

cij α̂βij

where α̂βij = ȳij•• − ȳi••• − ȳ•j•• + ȳ••••. The SE is

SE(Ĉ) =

√
MSE ×

∑
ij

c2
ij
r

where r is the number of observations used to calculate ȳij••,
which r = nc for a × b × c designs with n replicates.
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Scheffe’s Adjustment for Interaction Contrasts
For an a × b × c factorial design, to infer about the family of all
AB interaction contrasts of the form

C =
∑

ij
cij µ̄ij• =

∑
ij

cijαβij

▶ 100(1 − α)% Scheffe’s simultaneous C.I. for the contrast C is

Ĉ ±
√

dfABFdfAB ,dfE ,αSE(Ĉ)

▶ For testing H0 : C = 0 v.s. Ha : C ̸= 0, reject H0 when

|t0| = |Ĉ |
SE(Ĉ)

>
√

dfABFdfAB ,dfE ,α

where
▶ dfAB = (a − 1)(b − 1) is the df of AB interactions,
▶ dfE is the df of the SSE.
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Example
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From the brand-time interac-
tion plot on the right, there
seems to be interaction be-
tween brands 1 and 2 and pop-
ping times 2 and 3.

C = µ̄1•2 − µ̄1•3 − µ̄2•2 + µ̄2•3

= αγ12 − αγ13 − αγ22 + αγ23,

can be estimated to be

Ĉ = ȳ1•2• − ȳ1•3• − ȳ2•2• + ȳ2•3•

= 82.175 − 75.2 − 86.65 + 51.225 = −28.45.

mean(y ~ brand+time, data=popcorn)
1.1 2.1 3.1 1.2 2.2 3.2 1.3 2.3 3.3

71.350 76.325 71.025 82.175 86.650 70.775 75.200 51.225 65.025
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The SE for the contrast C = µ̄1•2 − µ̄1•3 − µ̄2•2 + µ̄2•3 is

SE(Ĉ) =

√
MSE ×

∑
ij

c2
ij

nb

=
√

87.659
(12+(−1)2+(−1)2+12

2 × 2

)
≈ 9.363

where the denominator is nb = (2)(2) = 4 as power has 2 levels.

The t-statistic for testing H0: C = µ̄1•2 − µ̄1•3 − µ̄2•2 + µ̄2•3 = 0 is

t = Ĉ
SE(Ĉ)

≈ −28.45
9.363 ≈ −3.04 w/ 18 df.

Not adjusted multiple comparisons, the 2-sided P-value is ≈ 0.007.

2*pt(-3.04,df=18)
[1] 0.00704439

Can we conclude this interaction contrast is significantly different
from 0 as the P-value is below 0.01?
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Scheffe’s Adjustment for Interaction Contrasts

▶ As we decided to test this contrast after looking at the
brand-time interaction plot (data snooping), should use
Scheffe’s adjustment

▶ For the family of AC interactions, Scheffe’s critical value is√
dfACFdfAC ,dfE ,α at FWER = α.
▶ Here dfAC = (a − 1)(c − 1) = (3 − 1)(3 − 1) = 4 as brand and

time both have 3 levels
▶ dfE = 18 is the df of SSE

sqrt((3-1)*(3-1)*qf(0.05, (3-1)*(3-1), 18, lower.tail=FALSE))
[1] 3.42213

At FWER = 0.05, Scheffe’s critical value is ≈ 3.422 above, which
is over the |t − statistic| = 3.04 for the contrast. The contrast is
hence not significant at FWER = 0.05.
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lm1embt = emmeans(lm1, ~brand:time)
summary(contrast(lm1embt, list(C=c(0,0,0,1,-1,0,-1,1,0)),

infer=c(T,T),adjust="scheffe"),scheffe.rank=4)
contrast estimate SE df lower.CL upper.CL t.ratio p.value
C -28.4 9.36 18 -60.5 3.59 -3.039 0.0975

Results are averaged over the levels of: power
Confidence level used: 0.95
Conf-level adjustment: scheffe method with rank 4
P value adjustment: scheffe method with rank 4

Note scheffe.rank=4 since dfAC = (3 − 1)(3 − 1) = 4.

Observe 95% Scheffe’s CI for the contrast is

Ĉ ± (crit. val)SE ≈ −28.45 ± 3.422 × 9.363 ≈ (−60.49, 3.59).

which is exactly the CI (-60.5,3.59) given by the emmeans library.
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Bonferroni’s Method
Suppose we just focused on AC interaction contrasts of the form

C = µ̄i1•k1 − µ̄i1•k2 − µ̄i2•k1 + µ̄i2•k2

that check the interactions of levels (i1, i2) of factor A and levels (k1, k2)
of factor C, rather than contrasts with arbitrary cij ’s,

▶ Effectively there are only
(a

2
)(c

2
)

such contrasts, as there are
(a

2
)

ways to choose 2 levels from the a levels of Factor A, and
(c

2
)

ways
to choose 2 levels from the c levels of Factor C

For such a family of contrasts, we can control the FWER by Bonferroni’s
method
▶ 100(1 − α)% Bonferro’s simultaneous C.I. for the contrast C is

Ĉ ± tdfE ,α/2/mSE(Ĉ)
▶ For testing H0 : C = 0 v.s. Ha : C ̸= 0, reject H0 when

|t0| = |Ĉ |
SE(Ĉ)

> tdfE ,α/2/m

where dfE is the df of the SSE, and m =
(a

2
)(c

2
)
.
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For the Popcorn Data, to see if any of the brand-time interaction
contrast of the form

C = µ̄i1•k1 − µ̄i1•k2 − µ̄i2•k1 + µ̄i2•k2

is significantly different from 0, Bonferroni’s critical value
controlling FWER at 0.05 is 3.149.

qt(0.05/2/9, df=18, lower.tail=FALSE)
[1] 3.14858

Here m =
(a

2
)(c

2
)

=
(3

2
)(3

2
)

= 3 × 3 = 9 because both brand and
time have 3 levels.

For the contrast C = µ̄1•2 − µ̄1•3 − µ̄2•2 + µ̄2•3, it’s t-statistic in
absolute value 3.04 is below 3.149 and hence it’s not significantly
different from 0.
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Scheffe’s Adjustment for All Contrasts
Suppose we checked the all the 2-way and 3-way interaction plots
and noticed the contrast below is most likely to be significant

C = µ̄1•2 − µ̄1•3 − µ̄2•2 + µ̄2•3.

Then effectively, we have considered all the possible contrasts and
hence must use Scheffe’s adjustment for ALL contrasts, where the
critical value at FWER = α is√

(g − 1)Fg−1,dfE ,α

For the Popcorn data, g = abc = (3)(2)(3) = 18 since we have
considered all the possible interactions between the 3 factors, df =
18 is the df of SSE.
At FWER = 0.05, Scheffe’s critical value is about 6.161.
sqrt((18-1)*qf(0.05, 18-1, 18, lower.tail=FALSE))
[1] 6.16062

The contrast is NOT significant at FWER = 0.01 since
|t-statistic| = 3.04 is below Scheffe’s critical value 6.161.
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Summary of Multiple Comparisons for Intraction Contrasts
▶ For the family of all brand-time interaction contrasts

C =
∑

ik
cik µ̄i•k with

∑
i
cik =

∑
k

cij = 0, for all i , k,

Scheffe’s critical value at FWER = α = 0.05 is√
dfACFdfAC ,dfE ,α = 3.42, where dfAC = (a − 1)(c − 1).

▶ For the family of all brand-time interaction contrasts of the
form C = µ̄i1•k1 − µ̄i1•k2 − µ̄i2•k1 + µ̄i2•k2 , Bonferroni’s critical
value at FWER = α = 0.05 is

tdfE ,α/2/m = 3.149, where m =
(

a
2

)(
c
2

)
=
(

3
2

)(
3
2

)
= 3 × 3 = 9

▶ For the family of ALL possible contrasts of the g = 18
treatments, Scheffe’s critical value at FWER = α = 0.05 is√

(g − 1)Fg−1,dfE ,α = 6.161.
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Summary of Multiple Comparisons for Intraction Contrasts

From the 3 critical values on the previous page, we can see
the larger the family of tests, the greater the critical value

It’s important to outline contrasts of interest (pre-planned
contrasts) before looking at data.

If a contrast is not pre-planned, the critical value for it to be
significant can be much bigger.
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Controlling the FWER for the Entire Analysis
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FWER for the Entire Analysis of the Popcorn Data
So far, we have conducted the following tests for the Popcorn data.

1. pairwise comparisons of all 18 treatments: µi1j1k1 − µi2j2k2 of
all i1, i2, j1, j2, k1, k2

2. pairwise comparisons of all 3 brands, averaging over levels of
power & time: µ̄i1•• − µ̄i2••

3. pairwise comparisons of the 3 brands when power= 625W,
time = 4.5min: µ122, µ222, µ322

4. pairwise comparisons of the 3 brands when time = 4.5min,
averaging over power: µ̄1•2, µ̄2•2, µ̄3•2

5. pairwise comparisons of the 3 popping times, averaging over
levels of brand & power: µ̄••1, µ̄••2, µ̄••3

6. pairwise comparisons of the 6 combinations of power & time,
averaging over the 3 brands: µ̄•j1k1 − µ̄•j2k2 for all j1, j2, k1, k2

7. interaction contrasts of brand & time

The first six families are tested at FWER = 0.01, and the 7th at
FWER = 0.05. By Bonferroni’s inequality, the overall FWER for all
7 families is at most

0.01 + 0.01 + 0.01 + 0.01 + 0.01 + 0.01 + 0.05 = 0.11.
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Controlling the FWER for the Entire Analysis

In general, prior to looking at the data, one should outline of
contrasts of interest. For factorial data, these may include

▶ pairwise comparisons of main effects for each factor
▶ pairwise comparisons of combinations of two or more factors
▶ interaction contrasts of two factors
▶ (interaction contrasts of two factors)

For each family outlined, we may control the FWER for the family
using Tukey’s, Scheffe’s or Bonferroni’s methods, depending on the
type.

Then the FWER for the entire analysis is no more than the sum of
FWER for each family by Bonferroni’s inequality.
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Example: Controlling the FWER for Two-Way Data

For two-way data, we might be interested in

▶ comparison of all treatments (AB combinations),
▶ comparison of main effects of A, and
▶ comparison of main effects of B.

We may set the FWER for the 3 sets of inferences to be α1, α2,
and α3.

Then, by Bonferroni’s inequality, the overall FWER is at most
α1 + α2 + α3.
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Section 6.5.6
Model Building
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Section 6.5.6 Model Building

In some experiments, the primary objective is to find a model that
gives an adequate representation for data, called model building.

For full k-way factorial data, it is legitimate to

▶ begin with the full model with all main effects and 2-way,
3-way, . . . and k-way interactions,

▶ test the significance of the main effects and interactions, and
▶ adopt the smallest hierarchical model that includes all the

significant terms as a reasonable model to represent the same
type of experimental data in future experiments.
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Note that it is NOT legitimate to adopt the simplified model and
to use the corresponding ANOVA table, to test further hypotheses
or calculate confidence intervals using the same set of data.

▶ If this is done, the model is changed based on the data, and
the quoted significance levels and confidence levels associated
with further inferences will not be correct.

▶ The data used for Model building should be completely
different from the data used for further analysis based on the
selected model.
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Example: Popcorn Data
The analysis conducted for the Popcorn data in L15-16 are all based on
the assumption that the full 3-way model is correct.

Df Sum Sq Mean Sq F value Pr(>F)
brand 2 331 166 1.89 0.1801
power 1 455 455 5.19 0.0351
time 2 1555 777 8.87 0.0021
brand:power 2 196 98 1.12 0.3485
brand:time 4 1434 358 4.09 0.0157
power:time 2 48 24 0.27 0.7648
brand:power:time 4 47 12 0.13 0.9673
Residuals 18 1578 88

As several main effects and interactions have large P-values, can we
based our analysis of contrasts on the simplified model below?
lm2 = lm(y ~ brand+power+time+brand*time, data=popcorn)

Df Sum Sq Mean Sq F value Pr(>F)
brand 2 331 166 2.30 0.11999
power 1 455 455 6.33 0.01837
time 2 1555 777 10.81 0.00038
brand:time 4 1434 358 4.99 0.00405
Residuals 26 1869 72 47 / 49



Example: Popcorn Data

▶ It might be justifiable if the new model is applied on new data
from experiments of the same type
▶ Still risky to drop the insignificant terms since the main effects

or interactions might be insignificant because of the small
sample size. Insignificance doesn’t prove they don’t exist.

▶ The answer is No if applying the new model on the original
data
▶ The terms that are omitted from the model are those with

small SS (Sum of Squares).
▶ The df and SS of those omitted terms are pooled into the df

and SS of errors in the simplified model. Hence the MSE of
the new model could underestimate σ2, and is no longer an
unbiased estimate for σ2, affect the validity of all the analysis
that used the model.
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If one has strong belief (based on past studies etc) that some
interactions don’t exist, it’s okay to analyze data based on some
simpler model rather than the full k-way model.

▶ Such models are used for
▶ “single-replicate” data
▶ confounded block-factorial design (chapter 13)
▶ fractional factorial design (chapter 15)

▶ The model must be determined before looking at the data, or
even before the experiment is conducted

▶ dfE is the df of SSE for the model used
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