STAT 222 Lecture 15-16
 Contrasts \& Multiple Comparisons for Factorial Data

Yibi Huang

Coverage

- Section 6.3 Contrasts
- Section 6.4.3 Multiple Comparisons
- Section 6.5.6 Model Building
- Section 7.4 A Real Experiment—Popcorn-Microwave Experiment

Contrasts

Recall in a one-way model

$$
y_{i j}=\mu_{i}+\varepsilon_{i j}
$$

a contrast is a linear combination of treatment mean μ_{i} 's

$$
C=\sum_{i=1}^{g} c_{i} \mu_{i} \quad \text { such that } \quad \sum_{i=1}^{g} c_{i}=0
$$

Similarly in a factorial model, say a 3-way model,

$$
y_{i j k \ell}=\mu_{i j k}+\varepsilon_{i j k \ell}
$$

a contrast is a linear combination of $\mu_{i j k}$'s

$$
C=\sum_{i j k} c_{i j k} \mu_{i j k} \quad \text { such that } \quad \sum_{i j k} c_{i j k}=0
$$

Example: Popcorn Microwave Data (Section 7.4, Review)

We'll demonstrate using the Popcorn Microwave Data in Section 7.4 and Slides L1314.pdf

Brand	Power	Time (k)		
(i)	(j)	$1(4 \mathrm{~min})$	$2(4.5 \mathrm{~min})$	$3(5 \mathrm{~min})$
1	$1(500 \mathrm{~W})$	$73.8,65.5$	$70.3,91.0$	$72.7,81.9$
1	$2(625 \mathrm{~W})$	$70.8,75.3$	$78.7,88.7$	$74.1,72.1$
2	$1(500 \mathrm{~W})$	$73.7,65.8$	$93.4,76.3$	$45.3,47.6$
2	$2(625 \mathrm{~W})$	$79.3,86.5$	$92.2,84.7$	$66.3,45.7$
3	$1(500 \mathrm{~W})$	$62.5,65.0$	$50.1,81.5$	$51.4,67.7$
3	$2(625 \mathrm{~W})$	$82.1,74.5$	$71.5,80.0$	$64.0,77.0$

popcorn $=$ read.table(
"http://www.stat.uchicago.edu/~yibi/s222/popcorn.txt", h=T)

Contrasts of Interest (1)

Fitting a 3-way model

$$
y_{i j k \ell}=\mu_{i j k}+\varepsilon_{i j}, \quad \text { where } i=\text { brand }, j=\text { power }, k=\text { time }
$$

of the Popcorn Data, we might be interested in

1. Which combination of brand, power, and time will produce the highest popping rate?
2. Which brand performs best

- overall, averaging over levels of power \& time?
- for power $=625 \mathrm{~W}(j=2)$ and time $=4.5 \mathrm{~min}(k=2)$?
- for power $=625 \mathrm{~W}(j=2)$, averaging over levels of time?

Contrasts of Interest (1)

Fitting a 3-way model

$$
y_{i j k \ell}=\mu_{i j k}+\varepsilon_{i j}, \quad \text { where } i=\text { brand }, j=\text { power }, k=\text { time }
$$

of the Popcorn Data, we might be interested in

1. Which combination of brand, power, and time will produce the highest popping rate?
\checkmark pairwise comparisons $\mu_{i_{1} j_{1} k_{1}}-\mu_{i_{2} j_{2} k_{2}}$ of all $i_{1}, i_{2}, j_{1}, j_{2}, k_{1}, k_{2}$
2. Which brand performs best

- overall, averaging over levels of power \& time?
\rightarrow for power $=625 \mathrm{~W}(j=2)$ and time $=4.5 \mathrm{~min}(k=2) ?$
- for power $=625 \mathrm{~W}(j=2)$, averaging over levels of time?

Contrasts of Interest (1)

Fitting a 3-way model

$$
y_{i j k \ell}=\mu_{i j k}+\varepsilon_{i j}, \quad \text { where } i=\text { brand }, j=\text { power }, k=\text { time }
$$

of the Popcorn Data, we might be interested in

1. Which combination of brand, power, and time will produce the highest popping rate?

- pairwise comparisons $\mu_{i_{1} j_{1} k_{1}}-\mu_{i_{2} j_{2} k_{2}}$ of all $i_{1}, i_{2}, j_{1}, j_{2}, k_{1}, k_{2}$

2. Which brand performs best

- overall, averaging over levels of power \& time?

$$
. \bar{\mu}_{i_{1} \bullet \bullet}-\bar{\mu}_{i_{2} \bullet \bullet}
$$

- for power $=625 \mathrm{~W}(j=2)$ and time $=4.5 \mathrm{~min}(k=2)$?
- for power $=625 \mathrm{~W}(j=2)$, averaging over levels of time?

Contrasts of Interest (1)

Fitting a 3-way model

$$
y_{i j k \ell}=\mu_{i j k}+\varepsilon_{i j}, \quad \text { where } i=\text { brand }, j=\text { power }, k=\text { time }
$$

of the Popcorn Data, we might be interested in

1. Which combination of brand, power, and time will produce the highest popping rate?

- pairwise comparisons $\mu_{i_{1} j_{1} k_{1}}-\mu_{i_{2} j_{2} k_{2}}$ of all $i_{1}, i_{2}, j_{1}, j_{2}, k_{1}, k_{2}$

2. Which brand performs best

- overall, averaging over levels of power \& time?

$$
\bar{\mu}_{i_{1} \bullet \bullet}-\bar{\mu}_{i_{2} \bullet \bullet}
$$

\rightarrow for power $=625 \mathrm{~W}(j=2)$ and time $=4.5 \mathrm{~min}(k=2) ?$

- for power $=625 \mathrm{~W}(j=2)$, averaging over levels of time?

Contrasts of Interest (1)

Fitting a 3-way model

$$
y_{i j k \ell}=\mu_{i j k}+\varepsilon_{i j}, \quad \text { where } i=\text { brand }, j=\text { power }, k=\text { time }
$$

of the Popcorn Data, we might be interested in

1. Which combination of brand, power, and time will produce the highest popping rate?
\checkmark pairwise comparisons $\mu_{i_{1} j_{1} k_{1}}-\mu_{i_{2} j_{2} k_{2}}$ of all $i_{1}, i_{2}, j_{1}, j_{2}, k_{1}, k_{2}$
2. Which brand performs best

- overall, averaging over levels of power \& time?

$$
\bar{\mu}_{i_{1} \bullet \bullet}-\bar{\mu}_{i_{2} \bullet \bullet}
$$

- for power $=625 \mathrm{~W}(j=2)$ and time $=4.5 \mathrm{~min}(k=2)$?
- for power $=625 \mathrm{~W}(j=2)$, averaging over levels of time?

$$
\bar{\mu}_{i_{1} \bullet \bullet}-\bar{\mu}_{i_{2} 2 \bullet}
$$

Contrasts of Interest (2)

3. Which power:time combination works the best, averaging over the 3 brands?
4. Whether the time effects change over power

- for brand 1 ?
- averaging over the 3 brands?

5. Whether the time effects change over brand

- for power $=625 \mathrm{~W}$?
- averaging over levels of power?

Contrasts of Interest (2)

3. Which power:time combination works the best, averaging over the 3 brands?

- pairwise comparisons $\bar{\mu}_{\bullet j_{1} k_{1}}-\bar{\mu}_{\bullet j_{2} k_{2}}$ of all $j_{1}, j_{2}, k_{1}, k_{2}$

4. Whether the time effects change over power

- for brand 1 ?
- averaging over the 3 brands?

5. Whether the time effects change over brand

- for power $=625 \mathrm{~W}$?
- averaging over levels of power?

Contrasts of Interest (2)

3. Which power:time combination works the best, averaging over the 3 brands?

- pairwise comparisons $\bar{\mu}_{\bullet j_{1} k_{1}}-\bar{\mu}_{\bullet j_{2} k_{2}}$ of all $j_{1}, j_{2}, k_{1}, k_{2}$

4. Whether the time effects change over power

- for brand 1 ?
$\ldots \ldots \ldots \ldots \ldots \ldots . \mu_{i 2 k_{1}}-\mu_{i 2 k_{2}}-\left(\mu_{i 1 k_{1}}-\mu_{i 1 k_{2}}\right)$ for $i=1$
- averaging over the 3 brands?

5. Whether the time effects change over brand

- for power $=625 \mathrm{~W}$?
- averaging over levels of power?

Contrasts of Interest (2)

3. Which power:time combination works the best, averaging over the 3 brands?

- pairwise comparisons $\bar{\mu}_{\bullet j_{1} k_{1}}-\bar{\mu}_{\bullet j_{2} k_{2}}$ of all $j_{1}, j_{2}, k_{1}, k_{2}$

4. Whether the time effects change over power

- for brand 1 ?
$\ldots \ldots \ldots \ldots \ldots \ldots \mu_{i 2 k_{1}}-\mu_{i 2 k_{2}}-\left(\mu_{i 1 k_{1}}-\mu_{i 1 k_{2}}\right)$ for $i=1$
- averaging over the 3 brands?

$$
\bar{\mu}_{\bullet 2 k_{1}}-\bar{\mu}_{\bullet 2 k_{2}}-\left(\bar{\mu}_{\bullet 1 k_{1}}-\bar{\mu}_{\bullet 1 k_{2}}\right)
$$

5. Whether the time effects change over brand
\rightarrow for power $=625 \mathrm{~W}$?

- averaging over levels of power?

Contrasts of Interest (2)

3. Which power:time combination works the best, averaging over the 3 brands?

- pairwise comparisons $\bar{\mu}_{\bullet j_{1} k_{1}}-\bar{\mu}_{\bullet j_{2} k_{2}}$ of all $j_{1}, j_{2}, k_{1}, k_{2}$

4. Whether the time effects change over power

- for brand 1?
$\ldots \ldots \ldots \ldots \ldots \ldots . \mu_{i 2 k_{1}}-\mu_{i 2 k_{2}}-\left(\mu_{i 1 k_{1}}-\mu_{i 1 k_{2}}\right)$ for $i=1$
- averaging over the 3 brands?

$$
\bar{\mu}_{\bullet 2 k_{1}}-\bar{\mu}_{\bullet 2 k_{2}}-\left(\bar{\mu}_{\bullet 1 k_{1}}-\bar{\mu}_{\bullet 1 k_{2}}\right)
$$

5. Whether the time effects change over brand

- for power $=625 \mathrm{~W}$?
$\ldots \ldots \ldots \ldots \ldots \ldots \mu_{i_{1} j k_{1}}-\mu_{i_{1} j k_{2}}-\left(\mu_{i_{2} j k_{1}}-\mu_{i_{2} j k_{2}}\right)$ for $j=2$
- averaging over levels of power?

Contrasts of Interest (2)

3. Which power:time combination works the best, averaging over the 3 brands?

- pairwise comparisons $\bar{\mu}_{\bullet j_{1} k_{1}}-\bar{\mu}_{\bullet j_{2} k_{2}}$ of all $j_{1}, j_{2}, k_{1}, k_{2}$

4. Whether the time effects change over power

- for brand 1?
$\ldots \ldots \ldots \ldots \ldots \ldots . \mu_{i 2 k_{1}}-\mu_{i 2 k_{2}}-\left(\mu_{i 1 k_{1}}-\mu_{i 1 k_{2}}\right)$ for $i=1$
- averaging over the 3 brands?

$$
\bar{\mu}_{\bullet 2 k_{1}}-\bar{\mu}_{\bullet 2 k_{2}}-\left(\bar{\mu}_{\bullet 1 k_{1}}-\bar{\mu}_{\bullet 1 k_{2}}\right)
$$

5. Whether the time effects change over brand

- for power $=625 \mathrm{~W}$?

$$
\mu_{i j k_{1}}-\mu_{i, j k_{2}}-\left(\mu_{i j k_{1}}-\mu_{i, j k_{2}}\right) \text { for } j=2
$$

- averaging over levels of power?

$$
\bar{\mu}_{i_{1} \bullet k_{1}}-\bar{\mu}_{i_{1} \bullet k_{2}}-\left(\bar{\mu}_{i_{2} \bullet k_{1}}-\bar{\mu}_{i_{2} \bullet k_{2}}\right)
$$

Estimation and Standard Error of a Contrast

For example, for 3-way data, a natural estimator for the contrast $C=\sum_{i j k} c_{i j k} \mu_{i j k}$ is

$$
\widehat{C}=\sum_{i j k} c_{i j k} \widehat{\mu}_{i j k}=\sum_{i j k} c_{i j k} \bar{y}_{i j k}
$$

By the independence of $\bar{y}_{i j k}$ ॰'s, we know

$$
\begin{aligned}
\mathbb{V}\left(\sum_{i j k} c_{i j k} \bar{y}_{i j k \bullet}\right) & =\sum_{i j k} \mathbb{V}\left(c_{i j k} \bar{y}_{i j k \bullet}\right) \\
& =\sum_{i j k} c_{i j k}^{2} \mathbb{V}\left(\bar{y}_{i j k \bullet}\right)=\sum_{i j k} c_{i j k}^{2} \frac{\sigma^{2}}{n_{i j k}} .
\end{aligned}
$$

Here $n_{i j k}$ is the number of replicates in treatment (i, j, k). The estimator \widehat{C} has standard deviation and standard error

$$
\operatorname{SD}(\widehat{C})=\sigma \sqrt{\sum_{i j k} \frac{c_{i j k}^{2}}{n_{i j k}}}, \quad \operatorname{SE}(\widehat{C})=\sqrt{\mathrm{MSE}} \sqrt{\sum_{i j k} \frac{c_{i j k}^{2}}{n_{i j k}}}
$$

Inference for a Single Contrast (No Multiple Comparisons)

A $(1-\alpha) 100 \%$ confidence interval for a single contrast C is

$$
\widehat{C} \pm t_{d f E, \alpha / 2} \times \operatorname{SE}(\widehat{C})
$$

For testing $\mathrm{H}_{0}: C=0$, the test statistic is

$$
t=\frac{\widehat{C}}{\operatorname{SE}(\widehat{C})} \sim t_{d f E}
$$

where dfE represents the degrees of freedom for SSE.

Multiple Comparisons for Factorial Data

Just like one-way data, we usually conduct multiple tests and construct multiple Cls in the analysis of factorial data. Adjustment of multiple comparisons is necessary.
The formulae for the Bonferroni, Scheffe, and Tukey methods can all be used similarly as was done in Chap.4. We will demonstrate the methods in the examples below.

```
popcorn$brand = as.factor(popcorn$brand)
popcorn$power = as.factor(popcorn$power)
popcorn$time = as.factor(popcorn$time)
lm1 = lm(y ~ brand*power*time, data=popcorn)
anova(lm1)
Analysis of Variance Table
```

Response: y

Df	Sum Sq Mean Sq F value	$\operatorname{Pr}(>F)$		
2	331.101	165.550	1.88856	0.1800727
1	455.111	455.111	5.19181	0.0351175
2	1554.576	777.288	8.86713	0.0020878
2	196.041	98.020	1.11819	0.3485423
4	1433.858	358.464	4.08928	0.0157156
2	47.709	23.854	0.27213	0.7648363
4	47.334	11.834	0.13500	0.9673241
18	1577.870	87.659		

We need MSE $=87.659$ with $\mathrm{df}=18$ to calculate the SE's.

Which combination of brand, power, and time will produce the highest popping rate?

To answer this question, we can just conduct pairwise comparisons between all $3 \times 2 \times 3=18$ treatments. using Tukey's HSD, controlling FWER at α,

$$
\mathrm{HSD}=\frac{q_{g, d f E, \alpha}}{\sqrt{2}} \times \sqrt{\operatorname{MSE}\left(\frac{1}{r}+\frac{1}{r}\right)} .
$$

Here $g=18$ is the $\#$ of treatments, $\mathrm{dfE}=18$ is the df of SSE. At FWER $=0.01$, Tukey's critical value is obtained below to be 4.846 .

```
qtukey(1-0.01, 18, 18)/sqrt(2)
```

[1] 4.8462

As MSE $=87.659$ (from the ANOVA table) and there are $n=2$ replicates per treatment, Tukey's HSD is

$$
4.846 \times \sqrt{87.659\left(\frac{1}{2}+\frac{1}{2}\right)} \approx 45.37
$$

```
library(mosaic)
sort(mean(y ~ brand+power+time, data=popcorn))
2.1.3 2.2.3 3.1.3 3.1.1 3.1.2 1.1.1 2.1.1 3.2.3 1.2.1 1.2.3
46.45 56.00 59.55 63.75 65.80 69.65 69.75 70.50 73.05 73.10
3.2.2 1.1.3 3.2.1 1.1.2 2.2.1 1.2.2 2.1.2 2.2.2
75.75 77.30 78.30 80.65 82.90 83.70 84.85 88.45
```

As maximum and minimum of the 18 group means differ by $88.45-46.45=42<$ HSD, no two groups are significantly different from each other, controlling FWER at 0.01 , which is not surprising as the P -value for the overall treatment effect is 0.021 .

```
anova(lm(y ~ brand:power:time, data=popcorn))
Analysis of Variance Table
```

Response: y

| | Df | Sum Sq | Mean Sq F value | $\operatorname{Pr}(>F)$ | |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| brand:power:time | 17 | 4065.73 | 239.1605 | 2.72829 | 0.020577 |
| Residuals | 18 | 1577.87 | 87.6594 | | |

Main-Effect Contrasts

Main-Effect Contrasts

When the coefficients $c_{i j k}$ depend only on a single index, like $c_{i j k}=c_{i}$ depend only on index i for all i, j, k, then

$$
C=\sum_{i j k} c_{i j k} \mu_{i j k}=\sum_{i j k} c_{i} \mu_{i j k}=\sum_{i} c_{i} \sum_{j k} \mu_{i j k}=\sum_{i} c_{i} \mu_{i \bullet \bullet}
$$

Recall $\mu_{i j k}=\mu+\alpha_{i}+\beta_{j}+\gamma_{k}+\alpha \beta_{i j}+\alpha \gamma_{i k}+\beta \gamma_{j k}+\alpha \beta \gamma_{i j k}$.
Summing over indexes j and k, all other terms vanish except μ and α_{i} because of the zero-sum constraints,

$$
\begin{aligned}
\mu_{i \bullet \bullet} & =b c \mu+b c \alpha_{i}+c \beta_{\bullet}+b \gamma_{\bullet}+c \alpha \beta_{i \bullet}+b \alpha \gamma_{i \bullet}+\beta \gamma_{\bullet \bullet}+\alpha \beta \gamma_{i \bullet \bullet} \\
& =b c\left(\mu+\alpha_{i}\right)
\end{aligned}
$$

Such a contrast only depends on main effects for factor A.

$$
C=\sum_{i} c_{i} \mu_{i \bullet \bullet}=b c \underbrace{\sum_{i} c_{i}}_{=0} \mu+b c \sum_{i} c_{i} \alpha_{i}=b c \sum_{i} c_{i} \alpha_{i}
$$

To know which brand performs best overall, averaging over levels of power \& time, the contrast $\bar{\mu}_{i_{1} \bullet \bullet}-\bar{\mu}_{i_{2} \bullet \bullet}=\alpha_{i_{1}}-\alpha_{i_{2}}$ is such a main effect contrast with

$$
c_{i j k}= \begin{cases}\frac{1}{b c} & \text { if } i=i_{1} \\ -\frac{1}{b c} & \text { if } i=i_{2} \\ 0 & \text { if } i \neq i_{1} \text { or } i_{2}\end{cases}
$$

The SE for this contrast is $\operatorname{SE}(\widehat{C})=\sqrt{\operatorname{MSE}} \sqrt{\sum_{i j k} \frac{c_{i j k}^{2}}{n_{i j k}}}$ where $\sum_{i j k} \frac{c_{i j k}^{2}}{n_{i j k}}=\sum_{j k} \frac{(1 / b c)^{2}+(-1 / b c)^{2}}{n}=b c \frac{(1 / b c)^{2}+(-1 / b c)^{2}}{n}=\frac{1}{n b c}+\frac{1}{n b c}$. Hence the SE for this contrast

$$
\operatorname{SE}\left(\hat{\bar{\mu}}_{i_{1} \bullet \bullet}-\hat{\bar{\mu}}_{i_{2} \bullet \bullet}\right)=\operatorname{SE}\left(\bar{y}_{i_{1} \bullet \bullet}-\bar{y}_{i_{2} \bullet \bullet \bullet}\right)=\sqrt{\operatorname{MSE}\left(\frac{1}{n b c}+\frac{1}{n b c}\right)}
$$

is just like the SE for pairwise comparisons of brands each with $n b c$ replicates.

Which brand Works the Best Overall, averaging over power \& time

Pairwise comparisons between all 3 brands: $\bar{\mu}_{1 \bullet \bullet}, \bar{\mu}_{2 \bullet \bullet}, \bar{\mu}_{3 \bullet \bullet}$ using Tukey's HSD, controlling FWER at α,

$$
\operatorname{HSD}=\frac{q_{g, d f E, \alpha}}{\sqrt{2}} \times \sqrt{\operatorname{MSE}\left(\frac{1}{r}+\frac{1}{r}\right)} .
$$

Here $g=3$ is the \# of brands compared, $\mathrm{dfE}=18$ is the df of SSE. Tukey's critical value at $\operatorname{FWER}=0.01$ is 3.3258 below.
qtukey(1-0.01, 3, 18)/sqrt(2)
[1] 3.32579

As MSE $=87.659$ (from the ANOVA table) and there are $r=n b c=2 \times 2 \times 3=12$ replicates per brand, Tukey's HSD is

$$
3.326 \times \sqrt{87.659\left(\frac{1}{12}+\frac{1}{12}\right)} \approx 12.71
$$

library (mosaic)
sort(mean(y ~ brand, data=popcorn))
$3 \quad 2 \quad 1$
68.941771 .400076 .2417

No two brands differ by more than HSD $=12.71$ in mean at FWER $=0.01$.

Not surprising since the P -value for the brand main effect is 0.18 in the ANOVA table.

```
library(emmeans)
lm1 = lm(y ~ brand*power*time, data=popcorn)
lm1embrand = emmeans(lm1, ~brand)
summary(contrast(lm1embrand, method="pairwise", adjust="tukey"),
    infer=c(T,T), level=0.99)
    contrast estimate SE df lower.CL upper.CL t.ratio p.value
    1 - 2 4 4.84 3.82 18 -7.87 17.6 1.267 0.4312
    1-3 llllllll
    2-3 2.46 3.82 18 -10.25 15 15.2 0.643 0.7985
```

Results are averaged over the levels of: power, time
Confidence level used: 0.99
Conf-level adjustment: tukey method for comparing a family of 3 estimat
P value adjustment: tukey method for comparing a family of 3 estimates

Which time Works the Best Overall, averaging over brand \& power?

```
lm1emtime = emmeans(lm1, ~time)
summary(contrast(lm1emtime, method="pairwise", adjust="tukey"),
    infer=c(T,T), level=0.99)
contrast estimate SE df lower.CL upper.CL t.ratio p.value
1 - 2 -6.97 3.82 18 -19.68 5.75 -1.823 0.1906
1-3 9.08 3.82 18 -3.63 21.80 2.376 0.0705
2 - 3 16.05 3.82 18 3.34 28.76 4.199 0.0015
```

Results are averaged over the levels of: brand, power Confidence level used: 0.99
Conf-level adjustment: tukey method for comparing a family of 3 estimat P value adjustment: tukey method for comparing a family of 3 estimates

Popping time $=2(4.5 \mathrm{~min})$ is significantly better than popping time $=3(5 \mathrm{~min})$ at $\mathrm{FWER}=0.01$.

Other pairs are not significantly different.

Which power:time Combination Works the Best, averaging over brands?

Could do pairwise comparisons $\bar{\mu}_{\bullet j_{1} k_{1}}-\bar{\mu}_{\bullet j_{2} k_{2}}$ of all $j_{1}, j_{2}, k_{1}, k_{2}$ using Tukey's HSD, controlling FWER at α,

$$
\mathrm{HSD}=\frac{q_{g, d f E, \alpha}}{\sqrt{2}} \times \sqrt{\operatorname{MSE}\left(\frac{1}{r}+\frac{1}{r}\right)} .
$$

Here $g=2 \times 3=6$ is the \# of power-time combinations, dfE $=18$ is the df of SSE. At FWER $=0.01$, Tukey's critical value is obtained below to be 3.9618
qtukey(1-0.01, 6, 18)/sqrt(2)
[1] 3.96177

As MSE $=87.659$, and there are $r=n a=2 \times 3=6$ replicates per power \times time combination, Tukey's HSD is

$$
3.9618 \times \sqrt{87.659\left(\frac{1}{6}+\frac{1}{6}\right)} \approx 21.415
$$

```
library(mosaic)
sort(mean(y ~ power+time, data=popcorn))
    1.3 2.3 1.1 1.2 2.1 
61.1000 66.5333 67.7167 77.1000 78.0833 82.6333
```

Only $(1,3)=(500 \mathrm{~W}, 5 \mathrm{~min})$ and $(2,2)=(625 \mathrm{~W}, 4.5 \mathrm{~min})$ differ by more than $\mathrm{HSD}=21.45$ in mean at $\mathrm{FWER}=0.01$.

Results are averaged over the levels of: brand
Confidence level used: 0.99
Conf-level adjustment: tukey method for comparing a family of 6 estimat P value adjustment: tukey method for comparing a family of 6 estimategs

More on Factor Effects

In Lecture 15, we only showed how to compare levels of a factor averaging over levels of other factors, like

- brand effects average over levels of power and time: $\bar{\mu}_{1 \bullet \bullet}, \bar{\mu}_{2 \bullet \bullet}, \bar{\mu}_{3 \bullet \bullet}$
- time effects average over levels of brand and power:
$\bar{\mu}_{\bullet \bullet 1}, \bar{\mu}_{\bullet \bullet 2}, \bar{\mu}_{\bullet \bullet 3}$
Can we compare levels of a factor, but with other factors fixed at a certain level?
- brand effect when power $=625 \mathrm{~W}, 4.5 \mathrm{~min}$ Popping Time:
$\mu_{122}, \mu_{222}, \mu_{322}$
- brand effect at 4.5 min popping time, averaging over power: $\bar{\mu}_{1 \bullet 2}, \bar{\mu}_{2 \bullet 2}, \bar{\mu}_{3 \bullet 2}$

Brand effect When power $=625 \mathrm{~W}, 4.5 \mathrm{~min}$ Popping Time

- pairwise comparisons of the 3 treatments: $\mu_{122}, \mu_{222}, \mu_{322}$
- Use Tukey's HSD $=\frac{q_{g, d f E, \alpha}}{\sqrt{2}} \times \sqrt{\operatorname{MSE}\left(\frac{1}{r}+\frac{1}{r}\right)}$
- $g=3$ is the \# of treatments compared
- dfE = 18 is the df of SSE
- Tukey's critical value at $\operatorname{FWER}=0.01$ is 3.3258 .

```
qtukey(1-0.01, 3, 18)/sqrt(2)
[1] 3.32579
```

As there are $r=2$ replicates per treatment, Tukey's HSD is

$$
3.3258 \times \sqrt{87.659\left(\frac{1}{2}+\frac{1}{2}\right)} \approx 31.14
$$

```
sort(mean(y ~ brand, data=subset(popcorn, power == 2 & time == 2)))
    3 1 2
```

75.7583 .7088 .45

No two brands differ by >1 HSD from each other. \Rightarrow No brands are significantly different from each other when poped 4.5 mins using a 625 W microwave.

Brand effect at 4.5 min Popping Time, averaging over power

- pairwise comparisons between $\bar{\mu}_{1 \bullet 2}, \bar{\mu}_{2 \bullet 2}, \bar{\mu}_{3 \bullet 2}$
- Use Tukey's HSD $=\frac{q_{g, d f E, \alpha}}{\sqrt{2}} \times \sqrt{\operatorname{MSE}\left(\frac{1}{r}+\frac{1}{r}\right)}$
- $g=3$ is the \# of groups compared
- $\mathrm{dfE}=18$ is the df of SSE
- $r=n b=2 \times 2=4$ replicates in each group compared
- Tukey's critical value at $\mathrm{FWER}=0.01$ is 3.3258 .

```
qtukey(1-0.01, 3, 18)/sqrt(2)
[1] 3.32579
```

Tukey's HSD is $3.3258 \times \sqrt{87.659\left(\frac{1}{4}+\frac{1}{4}\right)} \approx 22.02$.

70.77582 .17586 .650

Still, no brands are significantly different.

Interaction Contrasts

Interaction Contrasts

E.g., an $A B$ interaction contrast is a contrast of the form

$$
C=\sum_{i j} c_{i j} \bar{\mu}_{i j \bullet}
$$

where the coefficients $c_{i j}$ satisfy the zero-sum constraints $\sum_{i} c_{i j}=\sum_{j} c_{i j}=0$ for all i, j.
As $\mu_{i j k}=\mu+\alpha_{i}+\beta_{j}+\gamma_{k}+\alpha \beta_{i j}+\alpha \gamma_{i k}+\beta \gamma_{j k}+\alpha \beta \gamma_{i j k}$, summing over index k, all terms involve index k vanish because of the zero-sum constraints,

$$
\begin{aligned}
\mu_{i j \bullet} & =c \mu+c \alpha_{i}+c \beta_{j}+\gamma_{\bullet}+c \alpha \beta_{i j}+\alpha \gamma_{i \bullet}+\beta \gamma_{j \bullet}+\alpha \beta \gamma_{i j \bullet} \\
& =c\left(\mu+\alpha_{i}+\beta_{j}+\alpha \beta_{i j}\right) \Rightarrow \bar{\mu}_{i j \bullet}=\frac{1}{c} \mu_{i j \bullet}=\mu+\alpha_{i}+\beta_{j}+\alpha \beta_{i j}
\end{aligned}
$$

Thus such a contrast compares the $A B$ interactions.

$$
\begin{aligned}
C & =\sum_{i j} c_{i j} \bar{\mu}_{i j \bullet}=\sum_{i j} c_{i j}\left(\mu+\alpha_{i}+\beta_{j}+\alpha \beta_{i j}\right) \\
& =c_{\bullet \bullet} \mu+\sum_{i} c_{i \bullet} \alpha_{i}+\sum_{j} c_{\bullet j} \beta_{j}+\sum_{i j} c_{i j} \alpha \beta_{i j}=\sum_{i j} c_{i j} \alpha \beta_{i j}
\end{aligned}
$$

Estimate and SE of an Interaction Contrast

The $A B$ interaction

$$
C=\sum_{i j} c_{i j} \bar{\mu}_{i j \bullet}=\sum_{i j} c_{i j} \alpha \beta_{i j}
$$

can be estimated by

$$
\widehat{C}=\sum_{i j} c_{i j} \bar{y}_{i j \bullet \bullet}=\sum_{i j} c_{i j} \widehat{\alpha \beta}_{i j}
$$

where $\widehat{\alpha \beta}_{i j}=\bar{y}_{i j \bullet \bullet}-\bar{y}_{i \bullet \bullet \bullet}-\bar{y}_{\bullet j \bullet \bullet}+\bar{y}_{\bullet \bullet \bullet \bullet}$. The SE is

$$
\mathrm{SE}(\widehat{C})=\sqrt{\mathrm{MSE} \times \sum_{i j} \frac{c_{i j}^{2}}{r}}
$$

where r is the number of observations used to calculate $\bar{y}_{i j \bullet \bullet}$, which $r=n c$ for $a \times b \times c$ designs with n replicates.

Scheffe's Adjustment for Interaction Contrasts

For an $a \times b \times c$ factorial design, to infer about the family of all $A B$ interaction contrasts of the form

$$
C=\sum_{i j} c_{i j} \bar{\mu}_{i j \bullet}=\sum_{i j} c_{i j} \alpha \beta_{i j}
$$

- $100(1-\alpha) \%$ Scheffe's simultaneous C.I. for the contrast C is

$$
\widehat{C} \pm \sqrt{d f_{A B} F_{d f_{A B}, d f E, \alpha}} \mathrm{SE}(\widehat{C})
$$

- For testing $\mathrm{H}_{0}: C=0$ v.s. $\mathrm{H}_{a}: C \neq 0$, reject H_{0} when

$$
\left|t_{0}\right|=\frac{|\widehat{C}|}{\operatorname{SE}(\widehat{C})}>\sqrt{d f_{A B} F_{d f_{A B}, d f E, \alpha}}
$$

where
$-d f_{A B}=(a-1)(b-1)$ is the df of $A B$ interactions,

- dfE is the df of the SSE.

Example

From the brand-time interaction plot on the right, there seems to be interaction between brands 1 and 2 and popping times 2 and 3 .

$$
\begin{aligned}
C & =\bar{\mu}_{1 \bullet 2}-\bar{\mu}_{1 \bullet 3}-\bar{\mu}_{2 \bullet 2}+\bar{\mu}_{2 \bullet 3} \\
& =\alpha \gamma_{12}-\alpha \gamma_{13}-\alpha \gamma_{22}+\alpha \gamma_{23},
\end{aligned}
$$

can be estimated to be

$$
\begin{aligned}
\widehat{C} & =\bar{y}_{1 \bullet 2 \bullet}-\bar{y}_{1 \bullet 3 \bullet}-\bar{y}_{2 \bullet 2 \bullet}+\bar{y}_{2 \bullet 3 \bullet} \\
& =82.175-75.2-86.65+51.225=-28.45 .
\end{aligned}
$$

mean(y ~ brand+time, data=popcorn)
$\begin{array}{lllllllll}1.1 & 2.1 & 3.1 & 1.2 & 2.2 & 3.2 & 1.3 & 2.3 & 3.3\end{array}$
71.35076 .32571 .02582 .17586 .65070 .77575 .20051 .22565 .025

The SE for the contrast $C=\bar{\mu}_{1 \bullet 2}-\bar{\mu}_{1 \bullet 3}-\bar{\mu}_{2 \bullet 2}+\bar{\mu}_{2 \bullet 3}$ is

$$
\begin{aligned}
\operatorname{SE}(\widehat{C}) & =\sqrt{\operatorname{MSE} \times \sum_{i j} \frac{c_{i j}^{2}}{n b}} \\
& =\sqrt{87.659\left(\frac{1^{2}+(-1)^{2}+(-1)^{2}+1^{2}}{2 \times 2}\right)} \approx 9.363
\end{aligned}
$$

where the denominator is $n b=(2)(2)=4$ as power has 2 levels.
The t-statistic for testing $\mathrm{H}_{0}: C=\bar{\mu}_{1 \bullet 2}-\bar{\mu}_{1 \bullet 3}-\bar{\mu}_{2 \bullet 2}+\bar{\mu}_{2 \bullet 3}=0$ is

$$
t=\frac{\widehat{C}}{\operatorname{SE}(\widehat{C})} \approx \frac{-28.45}{9.363} \approx-3.04 \mathrm{w} / 18 \mathrm{df}
$$

Not adjusted multiple comparisons, the 2-sided P -value is ≈ 0.007.
$2 * p t(-3.04, \mathrm{df}=18)$
[1] 0.00704439
Can we conclude this interaction contrast is significantly different from 0 as the P -value is below 0.01 ?

Scheffe's Adjustment for Interaction Contrasts

- As we decided to test this contrast after looking at the brand-time interaction plot (data snooping), should use Scheffe's adjustment
- For the family of AC interactions, Scheffe's critical value is $\sqrt{d f_{A C} F_{d f_{A C}, d f E, \alpha}}$ at FWER $=\alpha$.
- Here $d f_{A C}=(a-1)(c-1)=(3-1)(3-1)=4$ as brand and time both have 3 levels
- $\mathrm{dfE}=18$ is the df of SSE
sqrt((3-1)*(3-1)*qf(0.05, (3-1)*(3-1), 18, lower.tail=FALSE))
[1] 3.42213

At FWER $=0.05$, Scheffe's critical value is ≈ 3.422 above, which is over the $\mid t$-statistic $\mid=3.04$ for the contrast. The contrast is hence not significant at $\mathrm{FWER}=0.05$.

```
lm1embt = emmeans(lm1, ~brand:time)
summary(contrast(lm1embt, list(C=c(0,0,0,1,-1,0,-1,1,0)),
    infer=c(T,T),adjust="scheffe"),scheffe.rank=4)
contrast estimate SE df lower.CL upper.CL t.ratio p.value
C -28.4 9.36 18 -60.5 3.59 -3.039 0.0975
```

Results are averaged over the levels of: power
Confidence level used: 0.95
Conf-level adjustment: scheffe method with rank 4
P value adjustment: scheffe method with rank 4

Note scheffe.rank=4 since $d f_{A C}=(3-1)(3-1)=4$.
Observe 95\% Scheffe's CI for the contrast is

$$
\widehat{C} \pm(\text { crit. val }) \text { SE } \approx-28.45 \pm 3.422 \times 9.363 \approx(-60.49,3.59)
$$

which is exactly the $\mathrm{Cl}(-60.5,3.59)$ given by the emmeans library.

Bonferroni's Method

Suppose we just focused on AC interaction contrasts of the form

$$
C=\bar{\mu}_{i_{1} \bullet k_{1}}-\bar{\mu}_{i_{1} \bullet k_{2}}-\bar{\mu}_{i_{2} \bullet k_{1}}+\bar{\mu}_{i_{2} \bullet k_{2}}
$$

that check the interactions of levels $\left(i_{1}, i_{2}\right)$ of factor A and levels (k_{1}, k_{2}) of factor C , rather than contrasts with arbitrary $c_{i j}$'s,

- Effectively there are only $\binom{a}{2}\binom{c}{2}$ such contrasts, as there are $\binom{a}{2}$ ways to choose 2 levels from the a levels of Factor A, and ($\left.\begin{array}{l}c \\ 2\end{array}\right)$ ways to choose 2 levels from the c levels of Factor C

For such a family of contrasts, we can control the FWER by Bonferroni's method

- $100(1-\alpha) \%$ Bonferro's simultaneous C.I. for the contrast C is

$$
\widehat{C} \pm t_{d f E, \alpha / 2 / m} \mathrm{SE}(\widehat{C})
$$

- For testing $\mathrm{H}_{0}: C=0$ v.s. $\mathrm{H}_{a}: C \neq 0$, reject H_{0} when

$$
\left|t_{0}\right|=\frac{|\widehat{C}|}{\operatorname{SE}(\widehat{C})}>t_{d f E, \alpha / 2 / m}
$$

where dfE is the df of the SSE, and $m=\binom{a}{2}\binom{c}{2}$.

For the Popcorn Data, to see if any of the brand-time interaction contrast of the form

$$
C=\bar{\mu}_{i_{1} \bullet k_{1}}-\bar{\mu}_{i_{1} \bullet k_{2}}-\bar{\mu}_{i_{2} \bullet k_{1}}+\bar{\mu}_{i_{2} \bullet k_{2}}
$$

is significantly different from 0, Bonferroni's critical value controlling FWER at 0.05 is 3.149 .
qt(0.05/2/9, df=18, lower.tail=FALSE)
[1] 3.14858

Here $m=\binom{a}{2}\binom{c}{2}=\binom{3}{2}\binom{3}{2}=3 \times 3=9$ because both brand and time have 3 levels.

For the contrast $C=\bar{\mu}_{1 \bullet 2}-\bar{\mu}_{1 \bullet 3}-\bar{\mu}_{2 \bullet 2}+\bar{\mu}_{2 \bullet 3}$, it's t-statistic in absolute value 3.04 is below 3.149 and hence it's not significantly different from 0 .

Scheffe's Adjustment for All Contrasts

Suppose we checked the all the 2-way and 3-way interaction plots and noticed the contrast below is most likely to be significant

$$
C=\bar{\mu}_{1 \bullet 2}-\bar{\mu}_{1 \bullet 3}-\bar{\mu}_{2 \bullet 2}+\bar{\mu}_{2 \bullet 3} .
$$

Then effectively, we have considered all the possible contrasts and hence must use Scheffe's adjustment for ALL contrasts, where the critical value at $\mathrm{FWER}=\alpha$ is

$$
\sqrt{(g-1) F_{g-1, d f E, \alpha}}
$$

For the Popcorn data, $g=a b c=(3)(2)(3)=18$ since we have considered all the possible interactions between the 3 factors, $\mathrm{df}=$ 18 is the df of SSE.

At FWER $=0.05$, Scheffe's critical value is about 6.161.

```
sqrt((18-1)*qf(0.05, 18-1, 18, lower.tail=FALSE))
```

[1] 6.16062
The contrast is NOT significant at $\operatorname{FWER}=0.01$ since $\mid t$-statistic $\mid=3.04$ is below Scheffe's critical value 6.161.

Summary of Multiple Comparisons for Intraction Contrasts

- For the family of all brand-time interaction contrasts

$$
C=\sum_{i k} c_{i k} \bar{\mu}_{i \bullet k} \text { with } \sum_{i} c_{i k}=\sum_{k} c_{i j}=0, \text { for all } i, k,
$$

Scheffe's critical value at FWER $=\alpha=0.05$ is

$$
\sqrt{d f_{A C} F_{d f_{A C}, d f E, \alpha}}=3.42, \quad \text { where } d f_{A C}=(a-1)(c-1) .
$$

- For the family of all brand-time interaction contrasts of the form $C=\bar{\mu}_{i_{1} \bullet k_{1}}-\bar{\mu}_{i_{1} \bullet k_{2}}-\bar{\mu}_{i_{2} \bullet k_{1}}+\bar{\mu}_{i_{2} \bullet k_{2}}$, Bonferroni's critical value at FWER $=\alpha=0.05$ is
$t_{d f E, \alpha / 2 / m}=3.149, \quad$ where $m=\binom{a}{2}\binom{c}{2}=\binom{3}{2}\binom{3}{2}=3 \times 3=9$
- For the family of ALL possible contrasts of the $g=18$ treatments, Scheffe's critical value at FWER $=\alpha=0.05$ is

$$
\sqrt{(g-1) F_{g-1, d f E, \alpha}}=6.161
$$

Summary of Multiple Comparisons for Intraction Contrasts

From the 3 critical values on the previous page, we can see the larger the family of tests, the greater the critical value

It's important to outline contrasts of interest (pre-planned contrasts) before looking at data.

If a contrast is not pre-planned, the critical value for it to be significant can be much bigger.

Controlling the FWER for the Entire Analysis

FWER for the Entire Analysis of the Popcorn Data

So far, we have conducted the following tests for the Popcorn data.

1. pairwise comparisons of all 18 treatments: $\mu_{i_{1} j_{1} k_{1}}-\mu_{i_{2} j_{2} k_{2}}$ of all $i_{1}, i_{2}, j_{1}, j_{2}, k_{1}, k_{2}$
2. pairwise comparisons of all 3 brands, averaging over levels of power \& time: $\bar{\mu}_{i_{1} \bullet \bullet}-\bar{\mu}_{i_{2} \bullet \bullet}$
3. pairwise comparisons of the 3 brands when power $=625 \mathrm{~W}$, time $=4.5 \mathrm{~min}: \mu_{122}, \mu_{222}, \mu_{322}$
4. pairwise comparisons of the 3 brands when time $=4.5 \mathrm{~min}$, averaging over power: $\bar{\mu}_{1 \bullet 2}, \bar{\mu}_{2 \bullet 2}, \bar{\mu}_{3 \bullet 2}$
5. pairwise comparisons of the 3 popping times, averaging over levels of brand \& power: $\bar{\mu}_{\bullet \bullet 1}, \bar{\mu}_{\bullet \bullet 2}, \bar{\mu}_{\bullet \bullet 3}$
6. pairwise comparisons of the 6 combinations of power \& time, averaging over the 3 brands: $\bar{\mu}_{\bullet j_{1} k_{1}}-\bar{\mu}_{\bullet j_{2} k_{2}}$ for all $j_{1}, j_{2}, k_{1}, k_{2}$
7. interaction contrasts of brand \& time

The first six families are tested at FWER $=0.01$, and the 7 th at FWER $=0.05$. By Bonferroni's inequality, the overall FWER for all 7 families is at most

FWER for the Entire Analysis of the Popcorn Data

So far, we have conducted the following tests for the Popcorn data.

1. pairwise comparisons of all 18 treatments: $\mu_{i_{1} j_{1} k_{1}}-\mu_{i_{2} j_{2} k_{2}}$ of all $i_{1}, i_{2}, j_{1}, j_{2}, k_{1}, k_{2}$
2. pairwise comparisons of all 3 brands, averaging over levels of power \& time: $\bar{\mu}_{i_{1} \bullet \bullet}-\bar{\mu}_{i_{2} \bullet \bullet}$
3. pairwise comparisons of the 3 brands when power $=625 \mathrm{~W}$, time $=4.5 \mathrm{~min}: \mu_{122}, \mu_{222}, \mu_{322}$
4. pairwise comparisons of the 3 brands when time $=4.5 \mathrm{~min}$, averaging over power: $\bar{\mu}_{1 \bullet 2}, \bar{\mu}_{2 \bullet 2}, \bar{\mu}_{3 \bullet 2}$
5. pairwise comparisons of the 3 popping times, averaging over levels of brand \& power: $\bar{\mu}_{\bullet \bullet 1}, \bar{\mu}_{\bullet \bullet 2}, \bar{\mu}_{\bullet \bullet 3}$
6. pairwise comparisons of the 6 combinations of power \& time, averaging over the 3 brands: $\bar{\mu}_{\bullet j_{1} k_{1}}-\bar{\mu}_{\bullet j_{2} k_{2}}$ for all $j_{1}, j_{2}, k_{1}, k_{2}$
7. interaction contrasts of brand \& time

The first six families are tested at FWER $=0.01$, and the 7 th at FWER $=0.05$. By Bonferroni's inequality, the overall FWER for all 7 families is at most $0.01+0.01+0.01+0.01+0.01+0.01+0.05=0.11$.

Controlling the FWER for the Entire Analysis

In general, prior to looking at the data, one should outline of contrasts of interest. For factorial data, these may include

- pairwise comparisons of main effects for each factor
- pairwise comparisons of combinations of two or more factors
- interaction contrasts of two factors
- (interaction contrasts of two factors)

For each family outlined, we may control the FWER for the family using Tukey's, Scheffe's or Bonferroni's methods, depending on the type.

Then the FWER for the entire analysis is no more than the sum of FWER for each family by Bonferroni's inequality.

Example: Controlling the FWER for Two-Way Data

For two-way data, we might be interested in

- comparison of all treatments (AB combinations),
- comparison of main effects of A, and
- comparison of main effects of B.

We may set the FWER for the 3 sets of inferences to be α_{1}, α_{2}, and α_{3}.

Then, by Bonferroni's inequality, the overall FWER is at most $\alpha_{1}+\alpha_{2}+\alpha_{3}$.

Section 6.5.6
 Model Building

Section 6.5.6 Model Building

In some experiments, the primary objective is to find a model that gives an adequate representation for data, called model building.

For full k-way factorial data, it is legitimate to

- begin with the full model with all main effects and 2-way, 3-way, ... and k-way interactions,
- test the significance of the main effects and interactions, and
- adopt the smallest hierarchical model that includes all the significant terms as a reasonable model to represent the same type of experimental data in future experiments.

Note that it is NOT legitimate to adopt the simplified model and to use the corresponding ANOVA table, to test further hypotheses or calculate confidence intervals using the same set of data.

- If this is done, the model is changed based on the data, and the quoted significance levels and confidence levels associated with further inferences will not be correct.
- The data used for Model building should be completely different from the data used for further analysis based on the selected model.

Example: Popcorn Data

The analysis conducted for the Popcorn data in L15-16 are all based on the assumption that the full 3 -way model is correct.

	Df	Sum Sq Mean Sq	Falue	$\operatorname{Pr}(>F)$	
brand	2	331	166	1.89	0.1801
power	1	455	455	5.19	0.0351
time	2	1555	777	8.87	0.0021
brand:power	2	196	98	1.12	0.3485
brand:time	4	1434	358	4.09	0.0157
power:time	2	48	24	0.27	0.7648
brand:power:time	4	47	12	0.13	0.9673
Residuals	18	1578	88		

As several main effects and interactions have large P-values, can we based our analysis of contrasts on the simplified model below?
$\operatorname{lm} 2=\operatorname{lm}(\mathrm{y} \sim$ brand+power+time+brand*time, data=popcorn)

	Df	Sum Sq	Mean Sq F	value	$\operatorname{Pr}(>F)$
brand	2	331	166	2.30	0.11999
power	1	455	455	6.33	0.01837
time	2	1555	777	10.81	0.00038
brand:time	4	1434	358	4.99	0.00405
Residuals	26	1869	72		

Example: Popcorn Data

- It might be justifiable if the new model is applied on new data from experiments of the same type
- Still risky to drop the insignificant terms since the main effects or interactions might be insignificant because of the small sample size. Insignificance doesn't prove they don't exist.
- The answer is No if applying the new model on the original data
- The terms that are omitted from the model are those with small SS (Sum of Squares).
- The df and SS of those omitted terms are pooled into the df and SS of errors in the simplified model. Hence the MSE of the new model could underestimate σ^{2}, and is no longer an unbiased estimate for σ^{2}, affect the validity of all the analysis that used the model.

If one has strong belief (based on past studies etc) that some interactions don't exist, it's okay to analyze data based on some simpler model rather than the full k-way model.

- Such models are used for
- "single-replicate" data
- confounded block-factorial design (chapter 13)
- fractional factorial design (chapter 15)
- The model must be determined before looking at the data, or even before the experiment is conducted
- dfE is the df of SSE for the model used

