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Outline

▶ General Factorial Designs
▶ Definition of 3-way and k-way interactions
▶ 3-way interaction plots
▶ Parameter estimates
▶ Sum of Squares, dfs, and the ANOVA table

▶ Hierarchy
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3-Way and k-Way Interactions
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3-Way Interaction Contrast
Based on the means model yijkℓ = µijk + εijkℓ of a 3-way design, a
3-way interaction contrast between level (i1, i2) for factor A, level
(j1, j2) for factor B, and level (k1, k2) for factor C is defined to be
µi1j1k1 − µi2j1k1 − µi1j2k1 − µi1j1k2 + µi2j2k1 + µi2j1k2 + µi1j2k2 − µi2j2k2

Observe that any two µijk ’s in the contrast have
opposite
identical signs if they differ by an odd

even number of indexes.

The 3-way interaction contrast above has 3 interpretations:
µi1j1k1 − µi2j1k1 − µi1j2k1 − µi1j1k2 + µi2j2k1 + µi2j1k2 + µi1j2k2 − µi2j2k2

= (µi1j1k1 −µi2j1k1 −µi1j2k1 + µi2j2k1︸ ︷︷ ︸
AB interaction contrast when C = k1

) − (µi1j1k2 −µi2j1k2 −µi1j2k2 + µi2j2k2︸ ︷︷ ︸
AB interaction contrast when C = k2

)

= (µi1j1k1 −µi1j2k1 −µi1j1k2 + µi1j2k2︸ ︷︷ ︸
BC interaction contrast when A = i1

) − (µi2j1k1 −µi2j2k1 −µi2j1k2 + µi2j2k2︸ ︷︷ ︸
BC interaction contrast when A = i2

)

= (µi1j1k1 −µi2j1k1 −µi1j1k2 + µi2j1k2︸ ︷︷ ︸
AC interaction contrast when B = j1

) − (µi1j2k1 −µi2j2k1 −µi1j2k2 + µi2j2k2︸ ︷︷ ︸
AC interaction contrast when B = j2

)
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3-Way Interaction Plots
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Three-Way Interactions
We say factors A, B, and C have three-way interactions if
▶ an AB interaction contrast changes with the levels of C, or
▶ a BC interaction contrast changes with the levels of A, or
▶ an AC interaction contrast changes with the levels of B.

E.g.,
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Example 2: Three-Way Interactions
AB have interactions AB have interactions
when C is fixed at 1 when C is fixed at 2
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depends on the level k of factor C. Hence there exist ABC 3-way
interactions.
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It can be hard to tell graphically whether ABC interaction is
present when AB interactions exist at both levels of C .
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Higher Order Interactions
▶ An ABCD 4-way interaction contrast is

▶ the difference of some ABC 3-way interaction contrast at two
different levels of D

▶ the difference of some ABD 3-way interaction contrast at two
different levels of C

▶ the difference of some ACD 3-way interaction contrast at two
different levels of B

▶ the difference of some BCD 3-way interaction contrast at two
different levels of A

▶ We say ABCD have 4-way interactions if any of the ABCD
4-way interaction contrast is non-zero or if any 3-way
interaction contrast between any 3 of the 4 factors changes
with the levels of a 4th factor.
▶ e.g., if some ACD 3-way interaction contrast changes with the

levels of factor B, then there exist ABCD 4-way interaction
▶ We say k factors have k-way interactions means the

(k − 1)-way interaction of any (k − 1) of the k factors changes
with the levels of a kth factor.
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General Factorial Models
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General Factorial Models
The model and analysis of multi-way factorial data are
generalization of those for two-way factorial data. E.g., consider a
4-way factorial design with factors A, B, C, and D.

means model : yijkℓm = µijkℓ + εijkℓm for

i = 1, . . . , a, j = 1, . . . , b,
k = 1, . . . , c, ℓ = 1, . . . , d ,
m = 1, . . . , n.

effects model: yijkℓm = µ︸︷︷︸
grand mean

+ αi + βj + γk + δℓ︸ ︷︷ ︸
main effects

+ αβij + αγik + αδiℓ + βγjk + βδjℓ + γδkℓ︸ ︷︷ ︸
2-way interactions

+ αβγijk + αβδijℓ + αγδikℓ + βγδjkℓ︸ ︷︷ ︸
3-way interactions

+ αβγδijkℓ︸ ︷︷ ︸
4-way interaction

+ εijkℓm︸ ︷︷ ︸
error
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Zero-Sum Constraints for General Factorial Models

yijkℓm = µ + αi + βj + γk + δℓ

+ αβij + αγik + αδiℓ + βγjk + βδjℓ + γδkℓ

+ αβγijk + αβδijℓ + αγδikℓ + βγδjkℓ

+ αβγδijkℓ + εijkℓm

All the effects have zero-sum constraints that they add to 0 when
summing over any subscript, e.g.,

▶
∑

i αi =
∑

j βj =
∑

k γk =
∑

ℓ δℓ = 0
▶

∑
i αγik =

∑
k αγik = 0, for all i , k,

so do other 2-way interactions
▶

∑
i αγδikℓ =

∑
k αγδikℓ =

∑
ℓ αγδikℓ = 0, for all i , k, ℓ,

so do other 3-way interactions
▶

∑
i αβγδijkℓ =

∑
j αβγδijkℓ =

∑
k αβγδijkℓ =

∑
ℓ αβγδijkℓ =0,

for all i , j , k, ℓ.
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Parameter Estimates
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Parameter Estimates
For a 4-way model, the parameter estimates under the zero-sum
constraints are

grand mean µ̂ = ȳ•••••

main effects α̂i = ȳi•••• − ȳ•••••, β̂j = ȳ•j••• − ȳ•••••,

γ̂k = ȳ••k•• − ȳ•••••, δ̂ℓ = ȳ•••ℓ• − ȳ•••••

2-way α̂βij = ȳij••• − ȳi•••• − ȳ•j••• + ȳ•••••

β̂γjk = ȳ•jk•• − ȳ•j••• − ȳ••k•• + ȳ•••••
...

3-way α̂βδijℓ = ȳij•ℓ• − ȳij••• − ȳi••ℓ• − ȳ•j•ℓ•

+ȳi•••• + ȳ•j••• + ȳ•••ℓ• − ȳ•••••

α̂γδikℓ = · · ·
4-way α̂βγδijkℓ = (16 terms, see the next page)
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α̂βγδijkℓ = ȳijkℓ•

− ȳijk•• − ȳij•ℓ• − ȳi•kℓ• − ȳ•jkℓ•

+ ȳij••• + ȳi•k•• + ȳi••ℓ• + ȳ•jk•• + ȳ•j•ℓ• + ȳ••kℓ•

− ȳi•••• − ȳ•j••• − ȳ••k•• − ȳ•••ℓ•

+ ȳ•••••

= (terms that average over 1 index)
− (terms that average over 2 indexes)
+ (terms that average over 3 indexes)
− (terms that average over 4 indexes)
+ (terms that average over 5 indexes)
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Sum of Squares
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Sum of Squares
SST can be decomposed into SS of main effects and interactions of all
orders, e.g., in an a × b × c × d design with n replicates:

SST = SSA + SSB + SSC + SSD

+ SSAB + SSAC + SSAD + SSBC + SSBD + SSCD

+ SSABC + SSACD + SSABD + SSBCD

+ SSABCD

+ SSE
where SST =

∑
ijkℓm(yijkℓm − ȳ•••••)2, SSE =

∑
ijkℓm(yijkℓm − ȳijkℓ•)2,

and the SS for all other terms are the sum of squares of corresponding
parameter estimates under the zero sum constraints, e.g.,

SSC =
∑

ijkℓm
(γ̂k)2 = abdn

∑
k
(γ̂k)2

SSBC =
∑

ijkℓm
(β̂γjk)2 = adn

∑
jk

(β̂γjk)2

SSACD =
∑

ijkℓm
(α̂γδikℓ)2 = bn

∑
ikℓ

(α̂γδikℓ)2

SSABCD =
∑

ijkℓm
(α̂βγδijkℓ)2 = n

∑
ijkℓ

(α̂βγδijkℓ)2
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Degrees of Freedom

Say factors A, B, C, and D have respectively a, b, c, and d levels,
and there are n replicates.

▶ d.f. of a main effect = number of levels −1.
e.g., dfA = a − 1, dfC = c − 1.

▶ d.f. of an interaction = product of d.f.’s for the main effects
of the involved factors, e.g.,
▶ dfAD = (a − 1)(d − 1),
▶ dfBCD = (b − 1)(c − 1)(d − 1),
▶ dfABCD = (a − 1)(b − 1)(c − 1)(d − 1).

▶ d.f. of SST = total # of observation −1 = abcdn − 1
▶ d.f. of SSE = total # of observation − total # of treatments

= abcdn − abcd = abcd(n − 1)
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Example: Popcorn Microwave Data (Section 7.4)
▶ A 3 × 2 × 3 factorial design with 3 factors:

▶ brand: 3 brands of popcorn, labelled 1, 2, 3
▶ power: power of the microwave oven (1 = 500W, 2 = 625W)
▶ time: popping time (1 = 4 mins, 2 = 4.5 mins, 3 = 5 mins)

▶ 2 replicates per treatment
▶ Response: % of kernels popped successfully in a package
▶ Must read Section 7.4 for study design details

Brand Power Time (k)
(i) (j) 1 (4 min) 2 (4.5 min) 3 (5 min)
1 1 (500 W) 73.8, 65.5 70.3, 91.0 72.7, 81.9
1 2 (625 W) 70.8, 75.3 78.7, 88.7 74.1, 72.1
2 1 (500 W) 73.7, 65.8 93.4, 76.3 45.3, 47.6
2 2 (625 W) 79.3, 86.5 92.2, 84.7 66.3, 45.7
3 1 (500 W) 62.5, 65.0 50.1, 81.5 51.4, 67.7
3 2 (625 W) 82.1, 74.5 71.5, 80.0 64.0, 77.0
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Loading data:

popcorn = read.table(
"http://www.stat.uchicago.edu/~yibi/s222/popcorn.txt", h=T)

Need to convert the 3 variables to factors before fit the model.

popcorn$brand = as.factor(popcorn$brand)
popcorn$power = as.factor(popcorn$power)
popcorn$time = as.factor(popcorn$time)

Model:

lm1 = lm(y ~ brand*power*time, data=popcorn)

Always check model assumptions FIRST!

20 / 44



Checking Model Assumptions — Popcorn Data
library(ggplot2)
ggplot(popcorn, aes(x=fitted(lm1), y=lm1$res))+geom_point()+

labs(x="Fitted Values", y="Residuals")
qqnorm(lm1$res)
qqline(lm1$res)
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▶ Size of residuals doesn’t seem to increase or decrease w/
fitted values

▶ Residuals appear normally distributed
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Box-Cox — Popcorn Data

library(MASS)
boxcox(lm1)
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▶ Only two, not 3, vertical dotted lines in the Box-Cox plot.
Why?

▶ The 3rd line is outside of the plot (not between −2 and 2)
▶ The line around λ = 1.5 is the optimal λ since it’s at the

maximum of the curve. The line around λ = 0 thus must be
the lower bound of the 95% CI and the upper bound is over 2.

▶ 95% CI for λ includes 1, ⇒ no transformation is required.
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3-Way Interaction Plots — Popcorn Data
with(subset(popcorn,brand==1),

interaction.plot(time,power,y,type="b", main="brand 1"))
with(subset(popcorn,brand==2),

interaction.plot(time,power,y,type="b", main="brand 2"))
with(subset(popcorn,brand==3),

interaction.plot(time,power,y,type="b", main="brand 3"))
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▶ Are there signs of time:power interactions?
▶ Does popping time has a greater effect for brand 1 or 2?

The 3 plots are on different y-axes.
Better put them on the same y-axis before comparison
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with(subset(popcorn,brand==1),
interaction.plot(time,power,y,type="b",main="brand 1",ylim=c(45,90)))

with(subset(popcorn,brand==2),
interaction.plot(time,power,y,type="b",main="brand 2",ylim=c(45,90)))

with(subset(popcorn,brand==3),
interaction.plot(time,power,y,type="b",main="brand 3",ylim=c(45,90)))
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▶ Greater time effect for Brand 2 (steeper lines) than Brands 1
& 3
▶ higher popping % if popped 4.5 mins than 5 mins for Brand 2
▶ signs of brand:time interactions

▶ If not placed on the same y-scale, Brand 1 seem to have
greater time effect, which is not true
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Popcorn Data: Are There 3-Way Interactions?
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Placed on the same y-axis, the 2 lines appear closer to parallel, for
all 3 brands.

▶ little power:time interactions for each brand
▶ Lines in an interaction plot may not be exactly parallel due to

noise even if there is no interaction.

We can hence conclude there is little brand:power:time
interactions as power:time interactions change little with brand
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One can merge all three plots into one.

with(popcorn, interaction.plot(brand:time, power, y,
type="b"))

1

1 1
1

1

1

1 1
1

50
70

90

brand:time

m
ea

n 
of

  y

2

2

2

2
2

2

2 2
2

1:1 1:2 1:3 2:1 2:2 2:3 3:1 3:2 3:3

   power

2
1

2
1

26 / 44



2-Way Interaction Plots — Popcorn Data

If one just check the two-way interaction plot between time and
brand, the information of power would be ignored. The 3 lines
below the lines the 3 brands averaged over the two levels of power.

with(popcorn,interaction.plot(time, brand, y, type="b"))
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Some evidence of brand:time interactions.
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2-Way Interaction Plots — Popcorn Data

with(popcorn,interaction.plot(time, power, y, type="b", ylim=c(60,85)))
with(popcorn,interaction.plot(brand, power, y, type="b", ylim=c(60,85)))
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▶ Do the time main effects appear significant?
▶ How about the power main effect ?
▶ brand main effect ?
▶ time:power interaction?
▶ brand:power interaction?
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Parameter Estimates — Popcorn Data
ȳijk• (i = brand, j = power, k = time)
library(mosaic) # must load "mosaic" library to use the commands below
mean(y ~ brand+power+time, data=popcorn)
1.1.1 2.1.1 3.1.1 1.2.1 2.2.1 3.2.1 1.1.2 2.1.2 3.1.2 1.2.2
69.65 69.75 63.75 73.05 82.90 78.30 80.65 84.85 65.80 83.70
2.2.2 3.2.2 1.1.3 2.1.3 3.1.3 1.2.3 2.2.3 3.2.3
88.45 75.75 77.30 46.45 59.55 73.10 56.00 70.50

ȳij••:
mean(y ~ brand+power, data=popcorn)

1.1 2.1 3.1 1.2 2.2 3.2
75.87 67.02 63.03 76.62 75.78 74.85

ȳi•k•
mean(y ~ brand+time, data=popcorn)

1.1 2.1 3.1 1.2 2.2 3.2 1.3 2.3 3.3
71.35 76.33 71.03 82.17 86.65 70.78 75.20 51.23 65.03

ȳ•jk•
mean(y ~ power+time, data=popcorn)

1.1 2.1 1.2 2.2 1.3 2.3
67.72 78.08 77.10 82.63 61.10 66.53
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ȳi•••:
mean(y ~ brand, data=popcorn)

1 2 3
76.24 71.40 68.94

ȳ•j••

mean(y ~ power, data=popcorn)
1 2

68.64 75.75

ȳ••k•

mean(y ~ time, data=popcorn)
1 2 3

72.90 79.87 63.82

ȳ•••• (grand mean)
mean(y ~ 1, data=popcorn)

1
72.19
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Parameter Estimates
For the full model with all 2-way and 3-way interactions

yijkℓ = µ + αi + βj + γk + αβij + βγjk + αγij + αβγijk + εijkℓ,

estimates for main effects under the zero-sum constraints are
α̂i = ȳi••• − ȳ••••:
mean(y ~ brand, data=popcorn)-mean(y ~ 1, data=popcorn)

1 2 3
4.0472 -0.7944 -3.2528

β̂j = ȳ•j•• − ȳ••••

mean(y ~ power, data=popcorn)-mean(y ~ 1, data=popcorn)
1 2

-3.556 3.556

γ̂k = ȳ••k• − ȳ••••

mean(y ~ time, data=popcorn)-mean(y ~ 1, data=popcorn)
1 2 3

0.7056 7.6722 -8.3778
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mean(y ~ power+time, data=popcorn)
1.1 2.1 1.2 2.2 1.3 2.3

67.72 78.08 77.10 82.63 61.10 66.53
mean(y ~ power, data=popcorn)

1 2
68.64 75.75
mean(y ~ time, data=popcorn)

1 2 3
72.90 79.87 63.82

β̂γ11 = ȳ•11• − ȳ•1•• − ȳ••1• + ȳ••••

≈ 67.72 − 68.64 − 72.9 + 72.19 = −1.63

β̂γ12 = ȳ•12• − ȳ•1•• − ȳ••2• + ȳ••••

≈ 77.10 − 68.64 − 79.87 + 72.19 = 0.78

Other β̂γij ’s can be obtained by the zero-sum constraints

β̂γ13 = −(β̂γ11 + β̂γ12) ≈ −1.63 + 0.78 = −0.85

β̂γ21 = −β̂γ11 ≈ 1.63, β̂γ22 = −β̂γ12 ≈ −0.78, β̂γ23 = −β̂γ13 ≈ 0.85
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α̂βγ121 = ȳ121• − ȳ12•• − ȳ•21• − ȳ1•1• + ȳ1••• + ȳ•2•• + ȳ••1• − ȳ••••

≈ 73.05 − 76.62 − 78.08 − 71.35 + 76.24 + 75.75 + 72.9 − 72.19
= −0.30

Other parameters can be estimated similarly.
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Double-checking our calculation of parameter estimates in R:

contrasts(popcorn$brand) = contr.sum(3)
contrasts(popcorn$power) = contr.sum(2)
contrasts(popcorn$time) = contr.sum(3)

# must re-fit model to update coefficients
lm1 = lm(y ~ brand*power*time, data=popcorn)
lm1$coef

(Intercept) brand1 brand2
72.1944 4.0472 -0.7944
power1 time1 time2

-3.5556 0.7056 7.6722
brand1:power1 brand2:power1 brand1:time1

3.1806 -0.8278 -5.5972
brand2:time1 brand1:time2 brand2:time2

4.2194 -1.7389 7.5778
power1:time1 power1:time2 brand1:power1:time1

-1.6278 0.7889 0.3028
brand2:power1:time1 brand1:power1:time2 brand2:power1:time2

-0.5639 -1.9389 1.7944
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Model Formula in R
The R command for fitting the full 3-way model

yijkℓ = µ + αi + βj + γk + αβij + βγjk + αγij + αβγijk + εijkℓ

is

lm(y ~ brand+power+time+brand:power+power:time+
brand:time + brand:power:time, data=popcorn)

A simpler syntax is

lm(y ~ brand*power*time, data=popcorn)

The term brand∗power∗time and brand:power:time both mean
the 3-way interaction terms αβγijk , but

▶ brand∗power∗time will automatically include all relevant
main effects and lower order interactions in the model.

▶ brand:power:time will not include the lower order terms
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Sum of Squares — Popcorn Data

SSB =
∑

ijkℓ
(β̂j)2 = acn

∑
j
(β̂j)2

≈ (3)(3)(2)(3.5562 + (−3.556)2) ≈ 455.11

SSC =
∑

ijkℓ
(γ̂k)2 = abn

∑
k
(γ̂k)2

≈ (3)(2)(2)(0.70562 + 7.67222 + (−8.3778)2) ≈ 1554.58

SSBC =
∑

ijkℓ
(β̂γjk)2 = an

∑
jk

(β̂γjk)2

≈ (3)(2)((−1.63)2 + 0.782 + (−0.85)2 + 1.632 + (−0.78)2 + 0.852)
≈ 47.85

and so on
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ANOVA Table — Popcorn Data
lm1 = lm(y ~ brand*power*time, data=popcorn)
anova(lm1)
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

brand 2 331.101 165.550 1.88856 0.1800727
power 1 455.111 455.111 5.19181 0.0351175
time 2 1554.576 777.288 8.86713 0.0020878
brand:power 2 196.041 98.020 1.11819 0.3485423
brand:time 4 1433.858 358.464 4.08928 0.0157156
power:time 2 47.709 23.854 0.27213 0.7648363
brand:power:time 4 47.334 11.834 0.13500 0.9673241
Residuals 18 1577.870 87.659

Only power and time main effects, and the brand:time
interactions are significant.
Can I fit a model like yijkℓ = µ + βj + γk + αγik + εijkℓ?

lm2 = lm(y ~ power + time + brand:time, data=popcorn)
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Hierarchy
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Hierarchy

A model is hierarchical if any term in the model implies the
presence of all the composite lower-order terms.

▶ yijkℓ = µ + αi + βj + βγjk + εijkℓ is not hierarchical because
including the term βγjk must includes both βj and γk .

▶ yijk = µ + αi + βj + αβij + εijk is hierarchical.
▶ A hierarchical model with a term αβγijk must also include:

▶ the relevant main effects: αi + βj + γk
▶ and the included two-way effects: αβij + αγik + βγjk .
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Hierarchy

Unless having a specific reason, we should stick to hierarchical
models.

▶ This is because a k-way interaction in defined upon
(k − 1)-way interactions. It is strange to consider a ABC
interaction while claiming A and B have no 2-way interaction.

▶ E.g., when we say there are no AB interactions, we also imply
that there are no higher order interactions that involve AB
interactions, like ABD interactions, or ABCD interactions.
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Why Maintaining Hierarchy?
Let’s consider a model for a 2 × 2 factorial design.

yijk = µij + εijk

= µ + αi + βj + αβij + εijk

If α1 = α2 = 0, but αβ11 ̸= 0, can Factor A have any effect on the
response? Consider the example below.

B = 1 B = 2 Mean
A = 1 µ11 = 3 µ12 = 2 µ1• = 2.5
A = 2 µ21 = 5 µ22 = 0 µ2• = 2.5
Mean µ•1 = 4 µ•2 = 1 µ•• = 2.5
Under the zero-sum constraint,

αi = µ̄i• − µ̄•• = 2.5 − 2.5 = 0

for i = 1, 2.
Clearly αβij ̸= 0 as the lines are not
parallel.
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Back to the Popcorn Data
Here is a hierarchical model that leaves out all insignificant terms.

lm3 = lm(y ~ brand + power + time + brand:time, data=popcorn)
anova(lm3)
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

brand 2 331 166 2.30 0.11999
power 1 455 455 6.33 0.01837
time 2 1555 777 10.81 0.00038
brand:time 4 1434 358 4.99 0.00405
Residuals 26 1869 72

Cannot leave out the insignificant brand main effects since it
involves in the significant the two-way interaction brand:time

The SS’s and d.f.’s of the left-out terms are pooled into the SSE
and the df of error while the SS’s and d.f’s of the remaining stay
unchanged.
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More On Model Formula in R (1)
Instead of writing terms explicitly in the model formula

lm3 = lm(y ~ brand + power + time + brand:time, data=popcorn)

Here is a simpler expression for the same model. R will
automatically create the smallest hierarchical model that include
brand:time interactions.

lm3a = lm(y ~ power + brand*time, data=popcorn)
anova(lm3a)
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

power 1 455.111 455.111 6.33129 0.01837031
brand 2 331.101 165.550 2.30306 0.11999055
time 2 1554.576 777.288 10.81326 0.00038249
brand:time 4 1433.858 358.464 4.98679 0.00405232
Residuals 26 1868.954 71.883
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More On Model Formula in R (2)

To fit a model with all two-way interactions but no 3-way
interaction, one can explicitly write down every term

lm(y ~ A + B + C + A:B + B:C + A:C)

Another way to obtain everything up to the 2-way interactions

lm(y ~ (A + B + C)ˆ2)

Or one can “leave out” the 3-way interactions

lm(y ~ A*B*C - A:B:C, data=popcorn)
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