STAT 222 Lecture 13-14
 Chapter 7 General Factorial Designs

Yibi Huang

Outline

- General Factorial Designs
- Definition of 3-way and k-way interactions
- 3-way interaction plots
- Parameter estimates
- Sum of Squares, dfs, and the ANOVA table
- Hierarchy

3-Way and k-Way Interactions

3-Way Interaction Contrast

Based on the means model $y_{i j k \ell}=\mu_{i j k}+\varepsilon_{i j k \ell}$ of a 3-way design, a 3 -way interaction contrast between level (i_{1}, i_{2}) for factor A, level $\left(j_{1}, j_{2}\right)$ for factor B , and level $\left(k_{1}, k_{2}\right)$ for factor C is defined to be
$\mu_{i_{1} j_{1} k_{1}}-\mu_{i_{2} j_{1} k_{1}}-\mu_{i_{1} j_{2} k_{1}}-\mu_{i_{1} j_{1} k_{2}}+\mu_{i_{2} j_{2} k_{1}}+\mu_{i_{2} j_{1} k_{2}}+\mu_{i_{1} j_{2} k_{2}}-\mu_{i_{2} j_{2} k_{2}}$
Observe that any two $\mu_{i j k}$'s in the contrast have opposite
identical signs if they differ by an odd number of indexes.

3-Way Interaction Contrast

Based on the means model $y_{i j k \ell}=\mu_{i j k}+\varepsilon_{i j k \ell}$ of a 3-way design, a 3-way interaction contrast between level (i_{1}, i_{2}) for factor A, level $\left(j_{1}, j_{2}\right)$ for factor B, and level $\left(k_{1}, k_{2}\right)$ for factor C is defined to be
$\mu_{i_{1} j_{1} k_{1}}-\mu_{i_{2} j_{1} k_{1}}-\mu_{i_{1} j_{2} k_{1}}-\mu_{i_{1} j_{1} k_{2}}+\mu_{i_{2} j_{2} k_{1}}+\mu_{i_{2} j_{1} k_{2}}+\mu_{i_{1} j_{2} k_{2}}-\mu_{i_{2} j_{2} k_{2}}$
Observe that any two $\mu_{i j k}$'s in the contrast have

opposite

 identical signs if they differ by an identical ${ }^{\text {even }}$The 3-way interaction contrast above has 3 interpretations:

$$
\left.\begin{array}{rl}
& \mu_{i_{1} j_{1} k_{1}}-\mu_{i_{2} j_{1} k_{1}}-\mu_{i_{1} j_{2} k_{1}}-\mu_{i_{1} j_{1} k_{2}} \\
= & (\underbrace{\mu_{i_{1} j_{1} k_{1}}-\mu_{i_{2} j_{1} k_{1}}-\mu_{i_{1} j_{2} k_{1}}+\mu_{i_{2} j_{2} k_{1}}}_{\text {AB interaction contrast when } C=k_{1}})-(\underbrace{\mu_{i_{2} j_{2} k_{1}}+\mu_{i_{2} j_{1} k_{2}}+\mu_{i_{1} j_{2} k_{2}}-\mu_{i_{2} j_{1} k_{2}}-\mu_{i_{1} j_{2} k_{2} k_{2}}}_{\text {AB interaction contrast when } C=k_{2}}+\mu_{i_{2} j_{2} k_{2}}
\end{array}\right)
$$

3-Way Interaction Plots

Three-Way Interactions

We say factors A, B, and C have three-way interactions if

- an $A B$ interaction contrast changes with the levels of C, or
- a $B C$ interaction contrast changes with the levels of A, or
- an AC interaction contrast changes with the levels of B.
E.g.,

Three-Way Interactions

We say factors A, B, and C have three-way interactions if

- an $A B$ interaction contrast changes with the levels of C, or
- a BC interaction contrast changes with the levels of A , or
- an AC interaction contrast changes with the levels of B.
E.g.,

No $A B$ interactions when C is fixed at 1

C is fixed at 2

$A B$ have interactions when C is fixed at 2

Example 2: Three-Way Interactions

Example 2: Three-Way Interactions

$$
\begin{gathered}
\left(\mu_{111}-\mu_{211}\right)-\left(\mu_{121}-\mu_{221}\right)>0 \\
(\underbrace{\mu_{112}-\mu_{212}}_{=0})-(\underbrace{\mu_{122}-\mu_{222}}_{>0})<0
\end{gathered}
$$

The AB interaction contrast $\left(\mu_{11 k}-\mu_{21 k}\right)-\left(\mu_{12 k}-\mu_{22 k}\right)$ depends on the level k of factor C. Hence there exist ABC 3-way interactions.

It can be hard to tell graphically whether $A B C$ interaction is present when $A B$ interactions exist at both levels of C.

It can be hard to tell graphically whether $A B C$ interaction is present when $A B$ interactions exist at both levels of C.

	$C=1$		$C=2$	
	$B=1$	$B=2$	$B=1$	$B=2$
$A=1$	$\mu_{111}=5$	$\mu_{121}=7$	$\mu_{112}=4$	$\mu_{122}=8$
$A=2$	$\mu_{211}=4$	$\mu_{221}=1$	$\mu_{212}=5$	$\mu_{222}=4$

The $A B$ interactions at the two levels of C are equal and hence there is no $A B C$ interaction.

$$
\begin{align*}
& \left(\mu_{111}-\mu_{211}\right)-\left(\mu_{121}-\mu_{221}\right)=(5-4)-(7-1)=-5 \\
& \left(\mu_{112}-\mu_{212}\right)-\left(\mu_{122}-\mu_{222}\right)=(4-5)-(8-4)=-5
\end{align*}
$$

Higher Order Interactions

- An ABCD 4-way interaction contrast is
- the difference of some ABC 3-way interaction contrast at two different levels of D
- the difference of some ABD 3-way interaction contrast at two different levels of C
- the difference of some ACD 3-way interaction contrast at two different levels of B
- the difference of some BCD 3-way interaction contrast at two different levels of A

Higher Order Interactions

- An ABCD 4-way interaction contrast is
- the difference of some ABC 3-way interaction contrast at two different levels of D
- the difference of some ABD 3-way interaction contrast at two different levels of C
- the difference of some ACD 3-way interaction contrast at two different levels of B
- the difference of some BCD 3-way interaction contrast at two different levels of A
- We say $A B C D$ have 4-way interactions if any of the $A B C D$ 4 -way interaction contrast is non-zero or if any 3-way interaction contrast between any 3 of the 4 factors changes with the levels of a 4th factor.
- e.g., if some ACD 3-way interaction contrast changes with the levels of factor B, then there exist $A B C D$ 4-way interaction
- We say k factors have k-way interactions means the $(k-1)$-way interaction of any $(k-1)$ of the k factors changes with the levels of a k th factor.

General Factorial Models

General Factorial Models

The model and analysis of multi-way factorial data are generalization of those for two-way factorial data. E.g., consider a 4-way factorial design with factors A, B, C, and D.
means model $: y_{i j k \ell m}=\mu_{i j k \ell}+\varepsilon_{i j k \ell m} \quad$ for $\left\{\begin{array}{l}i=1, \ldots, a, j=1, \ldots, b, \\ k=1, \ldots, c, \ell=1, \ldots, d, \\ m=1, \ldots, n\end{array}\right.$
effects model: $y_{i j k \ell m}=$

$$
\begin{aligned}
& \underbrace{\mu}_{\text {grand mean }}+\underbrace{\alpha_{i}+\beta_{j}+\gamma_{k}+\delta_{\ell}}_{\text {main effects }} \\
& +\underbrace{\alpha \beta_{i j}+\alpha \gamma_{i k}+\alpha \delta_{i \ell}+\beta \gamma_{j k}+\beta \delta_{j \ell}+\gamma \delta_{k \ell}}_{\text {2-way interactions }} \\
& +\underbrace{\alpha \beta \gamma_{i j k}+\alpha \beta \delta_{i j \ell}+\alpha \gamma \delta_{i k \ell}+\beta \gamma \delta_{j k \ell}}_{\text {3-way interactions }} \\
& +\underbrace{\alpha \beta \gamma \delta_{i j k \ell}}_{\text {4-way interaction }}+\underbrace{\varepsilon_{i j k \ell m}}_{\text {error }}
\end{aligned}
$$

Zero-Sum Constraints for General Factorial Models

$$
\begin{aligned}
y_{i j k \ell m}= & \mu+\alpha_{i}+\beta_{j}+\gamma_{k}+\delta_{\ell} \\
& +\alpha \beta_{i j}+\alpha \gamma_{i k}+\alpha \delta_{i \ell}+\beta \gamma_{j k}+\beta \delta_{j \ell}+\gamma \delta_{k \ell} \\
& +\alpha \beta \gamma_{i j k}+\alpha \beta \delta_{i j \ell}+\alpha \gamma \delta_{i k \ell}+\beta \gamma \delta_{j k \ell} \\
& +\alpha \beta \gamma \delta_{i j k \ell}+\varepsilon_{i j k \ell m}
\end{aligned}
$$

All the effects have zero-sum constraints that they add to 0 when summing over any subscript, e.g.,

- $\sum_{i} \alpha_{i}=\sum_{j} \beta_{j}=\sum_{k} \gamma_{k}=\sum_{\ell} \delta_{\ell}=0$
- $\sum_{i} \alpha \gamma_{i k}=\sum_{k} \alpha \gamma_{i k}=0$, for all i, k, so do other 2-way interactions
- $\sum_{i} \alpha \gamma \delta_{i k \ell}=\sum_{k} \alpha \gamma \delta_{i k \ell}=\sum_{\ell} \alpha \gamma \delta_{i k \ell}=0$, for all i, k, ℓ, so do other 3-way interactions
- $\sum_{i} \alpha \beta \gamma \delta_{i j k \ell}=\sum_{j} \alpha \beta \gamma \delta_{i j k \ell}=\sum_{k} \alpha \beta \gamma \delta_{i j k \ell}=\sum_{\ell} \alpha \beta \gamma \delta_{i j k \ell}=0$, for all i, j, k, ℓ.

Parameter Estimates

Parameter Estimates

For a 4-way model, the parameter estimates under the zero-sum constraints are

grand mean	$\widehat{\mu}=\bar{y}_{\bullet \bullet \bullet \bullet}$
main effects	$\begin{array}{ll} \widehat{\alpha}_{i}=\bar{y}_{i \bullet \bullet \bullet \bullet}-\bar{y}_{\bullet \bullet \bullet \bullet}, & \widehat{\beta}_{j}=\bar{y}_{\bullet j \bullet \bullet \bullet}-\bar{y}_{\bullet \bullet \bullet \bullet}, \\ \widehat{\gamma}_{k}=\bar{y}_{\bullet \bullet k \bullet \bullet}-\bar{y}_{\bullet \bullet \bullet \bullet \bullet}, & \widehat{\delta}_{\ell}=\bar{y}_{\bullet \bullet \bullet \bullet \bullet}-\bar{y}_{\bullet \bullet \bullet \bullet} \end{array}$
2-way	$\begin{aligned} & \widehat{\alpha \beta}_{i j}=\bar{y}_{i j \bullet \bullet \bullet}-\bar{y}_{i \bullet \bullet \bullet}-\bar{y}_{\bullet j \bullet \bullet \bullet}+\bar{y}_{\bullet \bullet \bullet \bullet \bullet} \\ & \widehat{\beta \gamma}_{j k}=\bar{y}_{\bullet j k \bullet \bullet}-\bar{y}_{\bullet j \bullet \bullet \bullet}-\bar{y}_{\bullet \bullet k \bullet \bullet}+\bar{y}_{\bullet \bullet \bullet \bullet \bullet} \end{aligned}$
3-way	$\begin{aligned} \widehat{\alpha \beta}_{i j \ell}= & \bar{y}_{i j \bullet \ell \bullet}-\bar{y}_{i j \bullet \bullet \bullet}-\bar{y}_{i \bullet \bullet \ell \bullet}-\bar{y}_{\bullet j \bullet \ell \bullet} \\ & +\bar{y}_{\bullet \bullet \bullet \bullet \bullet}+\bar{y}_{\bullet j \bullet \bullet}+\bar{y}_{\bullet \bullet \bullet \bullet \bullet}-\bar{y}_{\bullet \bullet \bullet \bullet} \\ \widehat{\alpha \gamma \delta}_{i k \ell}= & \cdots \end{aligned}$
4-way	$\widehat{\alpha \beta \gamma \delta} \delta_{i j k \ell}=(16$ terms, see the next page $)$

$\widehat{\alpha \beta \gamma \delta}_{i j k \ell}=\bar{y}_{i j k \ell \bullet}$

$$
-\bar{y}_{i j k \bullet \bullet}-\bar{y}_{i j \bullet \ell \bullet}-\bar{y}_{i \bullet k \ell \bullet}-\bar{y}_{\bullet j k \ell \bullet}
$$

$+\bar{y}_{i j \bullet \bullet \bullet}+\bar{y}_{i \bullet k \bullet \bullet}+\bar{y}_{i \bullet \bullet \ell \bullet}+\bar{y}_{\bullet j k \bullet \bullet}+\bar{y}_{\bullet j \bullet \ell \bullet}+\bar{y}_{\bullet \bullet k \ell \bullet}$
$-\bar{y}_{i \bullet \bullet \bullet \bullet}-\bar{y}_{\bullet j \bullet \bullet \bullet}-\bar{y}_{\bullet \bullet k \bullet \bullet}-\bar{y}_{\bullet \bullet \bullet \ell \bullet}$
$+\bar{y}_{\bullet \bullet \bullet \bullet}$
$=($ terms that average over 1 index $)$

- (terms that average over 2 indexes)
+ (terms that average over 3 indexes)
- (terms that average over 4 indexes)
+ (terms that average over 5 indexes)

Sum of Squares

Sum of Squares

SST can be decomposed into SS of main effects and interactions of all orders, e.g., in an $a \times b \times c \times d$ design with n replicates:

$$
\begin{aligned}
S S T= & S S_{A}+S S_{B}+S S_{C}+S S_{D} \\
& +S S_{A B}+S S_{A C}+S S_{A D}+S S_{B C}+S S_{B D}+S S_{C D} \\
& +S S_{A B C}+S S_{A C D}+S S_{A B D}+S S_{B C D} \\
& +S S_{A B C D} \\
& +S S E
\end{aligned}
$$

where SST $=\sum_{i j k \ell m}\left(y_{i j k \ell m}-\bar{y}_{\bullet \ldots \ldots \bullet}\right)^{2}$, SSE $=\sum_{i j k \ell m}\left(y_{i j k \ell m}-\bar{y}_{i j k \ell \bullet}\right)^{2}$, and the SS for all other terms are the sum of squares of corresponding parameter estimates under the zero sum constraints, e.g.,

$$
\begin{aligned}
& S S_{C}=\sum_{i j k \ell m}\left(\widehat{\gamma}_{k}\right)^{2}=a b d n \sum_{k}\left(\widehat{\gamma}_{k}\right)^{2} \\
& S S_{B C}=\sum_{i j k \ell m}\left(\widehat{\beta \gamma}_{j k}\right)^{2}=\operatorname{adn} \sum_{j k}\left(\widehat{\beta \gamma}_{j k}\right)^{2} \\
& S S_{A C D}=\sum_{i j k \ell m}\left(\widehat{\alpha \gamma \delta}_{i k \ell}\right)^{2}=b n \sum_{i k \ell}\left(\widehat{\alpha \gamma \delta}_{i k \ell}\right)^{2} \\
& S S_{A B C D}=\sum_{i j k \ell m}\left(\widehat{\alpha \beta \gamma \delta}_{i j k \ell}\right)^{2}=n \sum_{i j k \ell}\left(\widehat{\alpha \beta \gamma \delta_{i j k \ell}}\right)^{2}
\end{aligned}
$$

Degrees of Freedom

Say factors A, B, C, and D have respectively a, b, c, and d levels, and there are n replicates.

- d.f. of a main effect $=$ number of levels -1 .
e.g., $d f_{A}=a-1, d f_{C}=c-1$.
- d.f. of an interaction $=$ product of d.f.'s for the main effects of the involved factors, e.g.,
- $d f_{A D}=(a-1)(d-1)$,
- $d f_{B C D}=(b-1)(c-1)(d-1)$,
- $d f_{A B C D}=(a-1)(b-1)(c-1)(d-1)$.
- d.f. of SST $=$ total $\#$ of observation $-1=a b c d n-1$
- d.f. of SSE $=$ total \# of observation - total \# of treatments $=a b c d n-a b c d=a b c d(n-1)$

Example: Popcorn Microwave Data (Section 7.4)

- A $3 \times 2 \times 3$ factorial design with 3 factors:
- brand: 3 brands of popcorn, labelled 1, 2, 3
- power: power of the microwave oven $(1=500 \mathrm{~W}, 2=625 \mathrm{~W})$
- time: popping time ($1=4 \mathrm{mins}, 2=4.5 \mathrm{mins}, 3=5 \mathrm{mins})$
- 2 replicates per treatment
- Response: \% of kernels popped successfully in a package
- Must read Section 7.4 for study design details

Brand	Power	Time (k)		
(i)	(j)	$1(4 \mathrm{~min})$	$2(4.5 \mathrm{~min})$	$3(5 \mathrm{~min})$
1	$1(500 \mathrm{~W})$	$73.8,65.5$	$70.3,91.0$	$72.7,81.9$
1	$2(625 \mathrm{~W})$	$70.8,75.3$	$78.7,88.7$	$74.1,72.1$
2	$1(500 \mathrm{~W})$	$73.7,65.8$	$93.4,76.3$	$45.3,47.6$
2	$2(625 \mathrm{~W})$	$79.3,86.5$	$92.2,84.7$	$66.3,45.7$
3	$1(500 \mathrm{~W})$	$62.5,65.0$	$50.1,81.5$	$51.4,67.7$
3	$2(625 \mathrm{~W})$	$82.1,74.5$	$71.5,80.0$	$64.0,77.0$

Loading data:
popcorn = read.table(
"http://www.stat.uchicago.edu/~yibi/s222/popcorn.txt", h=T)

Need to convert the 3 variables to factors before fit the model.
popcorn\$brand = as.factor(popcorn\$brand)
popcorn\$power = as.factor(popcorn\$power)
popcorn\$time = as.factor(popcorn\$time)

Model:
$\operatorname{lm} 1=\operatorname{lm}(\mathrm{y} \sim$ brand*power*time, data=popcorn)

Always check model assumptions FIRST!

Checking Model Assumptions - Popcorn Data

```
library(ggplot2)
ggplot(popcorn, aes(x=fitted(lm1), y=lm1$res))+geom_point()+
    labs(x="Fitted Values", y="Residuals")
qqnorm(lm1$res)
qqline(lm1$res)
```


- Size of residuals doesn't seem to increase or decrease w/ fitted values
- Residuals appear normally distributed

Box-Cox - Popcorn Data

library (MASS) boxcox (lm1)

- Only two, not 3, vertical dotted lines in the Box-Cox plot. Why?

Box-Cox - Popcorn Data

library (MASS) boxcox (lm1)

- Only two, not 3, vertical dotted lines in the Box-Cox plot. Why?
- The 3rd line is outside of the plot (not between -2 and 2)

Box-Cox - Popcorn Data

library (MASS)
boxcox (lm1)

- Only two, not 3, vertical dotted lines in the Box-Cox plot. Why?
- The 3rd line is outside of the plot (not between -2 and 2)
- The line around $\lambda=1.5$ is the optimal λ since it's at the maximum of the curve. The line around $\lambda=0$ thus must be the lower bound of the $95 \% \mathrm{Cl}$ and the upper bound is over 2 .
- $95 \% \mathrm{Cl}$ for λ includes $1, \Rightarrow$ no transformation is required.

3-Way Interaction Plots - Popcorn Data

```
with(subset(popcorn,brand==1),
    interaction.plot(time,power,y,type="b", main="brand 1"))
with(subset(popcorn,brand==2),
    interaction.plot(time,power,y,type="b", main="brand 2"))
with(subset(popcorn,brand==3),
    interaction.plot(time,power,y,type="b", main="brand 3"))
```


- Are there signs of time:power interactions?
- Does popping time has a greater effect for brand 1 or 2 ?

3-Way Interaction Plots - Popcorn Data

```
with(subset(popcorn, brand==1),
    interaction.plot(time,power,y,type="b", main="brand 1"))
with(subset(popcorn,brand==2),
    interaction.plot(time,power,y,type="b", main="brand 2"))
with(subset(popcorn,brand==3),
    interaction.plot(time,power,y,type="b", main="brand 3"))
```


- Are there signs of time: power interactions?
- Does popping time has a greater effect for brand 1 or 2 ?

The 3 plots are on different y-axes.
Better put them on the same y-axis before comparison
with(subset(popcorn, brand==1),
interaction.plot(time, power, y,type="b", main="brand 1",ylim=c (45, 90))) with (subset (popcorn, brand==2),
interaction.plot(time, power, y,type="b", main="brand 2",ylim=c $(45,90))$) with (subset(popcorn, brand==3),
interaction.plot(time, power, y,type="b", main="brand 3",ylim=c $(45,90))$)

- Greater time effect for Brand 2 (steeper lines) than Brands 1 \& 3
- higher popping \% if popped 4.5 mins than 5 mins for Brand 2
- signs of brand:time interactions
- If not placed on the same y-scale, Brand 1 seem to have greater time effect, which is not true

Popcorn Data: Are There 3-Way Interactions?

Placed on the same y-axis, the 2 lines appear closer to parallel, for all 3 brands.

- little power:time interactions for each brand
- Lines in an interaction plot may not be exactly parallel due to noise even if there is no interaction.

We can hence conclude there is little brand:power:time interactions as power:time interactions change little with brand

One can merge all three plots into one.
with(popcorn, interaction.plot(brand:time, power, y, type="b"))

2-Way Interaction Plots - Popcorn Data

If one just check the two-way interaction plot between time and brand, the information of power would be ignored. The 3 lines below the lines the 3 brands averaged over the two levels of power.
with(popcorn,interaction.plot(time, brand, y, type="b"))

Some evidence of brand: time interactions.

2-Way Interaction Plots - Popcorn Data

```
with(popcorn,interaction.plot(time, power, y, type="b", ylim=c(60,85)))
with(popcorn,interaction.plot(brand, power, y, type="b", ylim=c(60,85))
```


- Do the time main effects appear significant?
- How about the power main effect?
- brand main effect?
- time:power interaction?
- brand:power interaction?

Parameter Estimates - Popcorn Data

$\bar{y}_{i j k}(i=$ brand, $j=$ power, $k=$ time $)$
library(mosaic) \# must load "mosaic" library to use the commands belou mean(y ~ brand+power+time, data=popcorn)

```
1.1.1 2.1.1 3.1.1 1.2.1 2.2.1 3.2.1 1.1.2 2.1.2 3.1.2 1.2.2
```

69.6569 .7563 .7573 .0582 .9078 .3080 .6584 .8565 .8083 .70
2.2.2 3.2.2 1.1.3 2.1.3 3.1.3 1.2.3 2.2.3 3.2.3
88.4575 .7577 .3046 .4559 .5573 .1056 .0070 .50
$\bar{y}_{i j \bullet \bullet}$:
mean(y ~ brand+power, data=popcorn)
$\begin{array}{llllll}1.1 & 2.1 & 3.1 & 1.2 & 2.2 & 3.2\end{array}$
75.8767 .0263 .0376 .6275 .7874 .85
$\bar{y}_{i \bullet k}$ •

```
mean(y ~ brand+time, data=popcorn)
```

1.1	2.1	3.1	1.2	2.2	3.2	1.3	2.3	3.3
71.35	76.33	71.03	82.17	86.65	70.78	75.20	51.23	65.03

$\bar{y}_{\bullet j} \cdot$
mean(y ~ power+time, data=popcorn)
$\begin{array}{llllll}1.1 & 2.1 & 1.2 & 2.2 & 1.3 & 2.3\end{array}$
67.7278 .0877 .1082 .6361 .1066 .53
$\bar{y}_{i \bullet \bullet \bullet}:$

```
mean(y ~ brand, data=popcorn)
```

 132
 76.2471 .4068 .94
$\bar{y}_{0} j$.。

```
mean(y ~ power, data=popcorn)
```

 12
 68.6475 .75
$\bar{y}_{\bullet \bullet k}$ •

```
mean(y ~ time, data=popcorn)
1 2 3
72.90 79.87 63.82
```

$\bar{y}_{\bullet \bullet . \bullet}$ (grand mean)

```
mean(y ~ 1, data=popcorn)
    1
```

72.19

Parameter Estimates

For the full model with all 2-way and 3-way interactions

$$
y_{i j k \ell}=\mu+\alpha_{i}+\beta_{j}+\gamma_{k}+\alpha \beta_{i j}+\beta \gamma_{j k}+\alpha \gamma_{i j}+\alpha \beta \gamma_{i j k}+\varepsilon_{i j k \ell},
$$ estimates for main effects under the zero-sum constraints are

```
\mp@subsup{\alpha}{i}{}}=\mp@subsup{\overline{y}}{i\bullet\bullet\bullet }{*
mean(y ~ brand, data=popcorn)-mean(y ~ 1, data=popcorn)
    4.0472-0.7944-3.2528
\widehat{\beta}}=\mp@subsup{\overline{y}}{\bulletj\bullet\bullet\bullet }{|
mean(y ~ power, data=popcorn)-mean(y ~ 1, data=popcorn)
-3.556 3.556
\mp@subsup{\gamma}{k}{}=\mp@subsup{\overline{y}}{\bullet\bulletk\bullet}{}-\mp@subsup{\overline{y}}{\bullet\bullet\bullet\bullet}{}
mean(y ~ time, data=popcorn)-mean(y ~ 1, data=popcorn)
    0.7056 7.6722-8.3778
```

```
mean(y ~ power+time, data=popcorn)
    \(\begin{array}{llllll}1.1 & 2.1 & 1.2 & 2.2 & 1.3 & 2.3\end{array}\)
67.7278 .0877 .1082 .6361 .1066 .53
mean(y ~ power, data=popcorn)
    12
68.6475 .75
mean(y ~ time, data=popcorn)
    132
72.9079 .8763 .82
```

$$
\begin{aligned}
\widehat{\beta \gamma}_{11} & =\bar{y}_{\bullet 11 \bullet}-\bar{y}_{\bullet 1 \bullet \bullet}-\bar{y}_{\bullet \bullet 1 \bullet}+\bar{y}_{\bullet \bullet \bullet \bullet} \\
& \approx 67.72-68.64-72.9+72.19=-1.63 \\
\widehat{\beta \gamma}_{12} & =\bar{y}_{\bullet 12 \bullet}-\bar{y}_{\bullet 1 \bullet \bullet}-\bar{y}_{\bullet \bullet 2 \bullet}+\bar{y}_{\bullet \bullet \bullet \bullet} \\
& \approx 77.10-68.64-79.87+72.19=0.78
\end{aligned}
$$

Other $\widehat{\beta} \gamma_{i j}$'s can be obtained by the zero-sum constraints
$\widehat{\beta \gamma}_{13}=-\left(\widehat{\beta \gamma}_{11}+\widehat{\beta \gamma}_{12}\right) \approx-1.63+0.78=-0.85$
$\widehat{\beta \gamma}_{21}=-\widehat{\beta \gamma} 11 \approx 1.63, \quad \widehat{\beta \gamma}_{22}=-\widehat{\beta \gamma} 12 \approx-0.78, \quad \widehat{\beta \gamma}_{23}=-\widehat{\beta \gamma}_{13} \approx 0.85$

$$
\begin{aligned}
\widehat{\alpha \beta \gamma}_{121} & =\bar{y}_{121 \bullet}-\bar{y}_{12 \bullet \bullet}-\bar{y}_{\bullet 21 \bullet}-\bar{y}_{1 \bullet 1 \bullet}+\bar{y}_{1 \bullet \bullet \bullet}+\bar{y}_{\bullet 2 \bullet \bullet}+\bar{y}_{\bullet \bullet 1 \bullet}-\bar{y}_{\bullet \bullet \bullet \bullet} \\
& \approx 73.05-76.62-78.08-71.35+76.24+75.75+72.9-72.19 \\
& =-0.30
\end{aligned}
$$

Other parameters can be estimated similarly.

Double-checking our calculation of parameter estimates in R:

```
contrasts(popcorn$brand) = contr.sum(3)
contrasts(popcorn$power) = contr.sum(2)
contrasts(popcorn$time) = contr.sum(3)
# must re-fit model to update coefficients
lm1 = lm(y ~ brand*power*time, data=popcorn)
lm1$coef
\begin{tabular}{rrr} 
(Intercept) & brand1 & brand2 \\
72.1944 & 4.0472 & -0.7944 \\
power1 & time1 & time2 \\
-3.5556 & 0.7056 & 7.6722 \\
brand1:power1 & brand2: power1 & brand1:time1 \\
3.1806 & -0.8278 & -5.5972 \\
brand2:time1 & brand1:time2 & brand2:time2 \\
4.2194 & -1.7389 & 7.5778 \\
power1:time1 & power1:time2 brand1:power1:time1 \\
-1.6278 & 0.7889 & 0.3028
\end{tabular}
brand2:power1:time1 brand1:power1:time2 brand2:power1:time2
    -0.5639
    -1.9389
    1.7944
```


Model Formula in R

The R command for fitting the full 3-way model

$$
y_{i j k \ell}=\mu+\alpha_{i}+\beta_{j}+\gamma_{k}+\alpha \beta_{i j}+\beta \gamma_{j k}+\alpha \gamma_{i j}+\alpha \beta \gamma_{i j k}+\varepsilon_{i j k \ell}
$$

is
$\begin{aligned} \operatorname{lm}(\mathrm{y} \sim & \text { brand+power+time+brand:power+power:time+ } \\ & \text { brand:time + brand:power:time, data=popcorn) }\end{aligned}$
A simpler syntax is
lm(y ~ brand*power*time, data=popcorn)
The term brand*power*time and brand:power:time both mean the 3 -way interaction terms $\alpha \beta \gamma_{i j k}$, but

- brand*power*time will automatically include all relevant main effects and lower order interactions in the model.
- brand: power:time will not include the lower order terms

Sum of Squares - Popcorn Data

$$
\begin{aligned}
S S_{B} & =\sum_{i j k \ell}\left(\widehat{\beta}_{j}\right)^{2}=\operatorname{acn} \sum_{j}\left(\widehat{\beta}_{j}\right)^{2} \\
& \approx(3)(3)(2)\left(3.556^{2}+(-3.556)^{2}\right) \approx 455.11 \\
S S_{C} & =\sum_{i j k \ell}\left(\widehat{\gamma}_{k}\right)^{2}=a b n \sum_{k}\left(\widehat{\gamma}_{k}\right)^{2} \\
& \approx(3)(2)(2)\left(0.7056^{2}+7.6722^{2}+(-8.3778)^{2}\right) \approx 1554.58 \\
S S_{B C} & =\sum_{i j k \ell}\left(\widehat{\beta \gamma}_{j k}\right)^{2}=a n \sum_{j k}\left(\widehat{\beta \gamma}_{j k}\right)^{2} \\
& \approx(3)(2)\left((-1.63)^{2}+0.78^{2}+(-0.85)^{2}+1.63^{2}+(-0.78)^{2}+0.85^{2}\right) \\
& \approx 47.85
\end{aligned}
$$

and so on

ANOVA Table - Popcorn Data

```
lm1 = lm(y ~ brand*power*time, data=popcorn)
anova(lm1)
Analysis of Variance Table
```

Response: y

	Df	Sum Sq Mean Sq F value	$\operatorname{Pr}(>F)$		
brand	2	331.101	165.550	1.88856	0.1800727
power	1	455.111	455.111	5.19181	0.0351175
time	2	1554.576	777.288	8.86713	0.0020878
brand:power	2	196.041	98.020	1.11819	0.3485423
brand:time	4	1433.858	358.464	4.08928	0.0157156
power:time	2	47.709	23.854	0.27213	0.7648363
brand:power:time	4	47.334	11.834	0.13500	0.9673241
Residuals	18	1577.870	87.659		

Only power and time main effects, and the brand:time interactions are significant.

Can I fit a model like $y_{i j k \ell}=\mu+\beta_{j}+\gamma_{k}+\alpha \gamma_{i k}+\varepsilon_{i j k \ell}$?
$\operatorname{lm} 2=\operatorname{lm}(y) \sim$ power + time + brand:time, data=popcorn)

Hierarchy

Hierarchy

A model is hierarchical if any term in the model implies the presence of all the composite lower-order terms.

- $y_{i j k \ell}=\mu+\alpha_{i}+\beta_{j}+\beta \gamma_{j k}+\varepsilon_{i j k \ell}$ is not hierarchical because including the term $\beta \gamma_{j k}$ must includes both β_{j} and γ_{k}.
- $y_{i j k}=\mu+\alpha_{i}+\beta_{j}+\alpha \beta_{i j}+\varepsilon_{i j k}$ is hierarchical.
- A hierarchical model with a term $\alpha \beta \gamma_{i j k}$ must also include:
- the relevant main effects: $\alpha_{i}+\beta_{j}+\gamma_{k}$
- and the included two-way effects: $\alpha \beta_{i j}+\alpha \gamma_{i k}+\beta \gamma_{j k}$.

Hierarchy

Unless having a specific reason, we should stick to hierarchical models.

- This is because a k-way interaction in defined upon ($k-1$)-way interactions. It is strange to consider a $A B C$ interaction while claiming A and B have no 2-way interaction.
- E.g., when we say there are no $A B$ interactions, we also imply that there are no higher order interactions that involve $A B$ interactions, like $A B D$ interactions, or $A B C D$ interactions.

Why Maintaining Hierarchy?

Let's consider a model for a 2×2 factorial design.

$$
\begin{aligned}
y_{i j k} & =\mu_{i j}+\varepsilon_{i j k} \\
& =\mu+\alpha_{i}+\beta_{j}+\alpha \beta_{i j}+\varepsilon_{i j k}
\end{aligned}
$$

If $\alpha_{1}=\alpha_{2}=0$, but $\alpha \beta_{11} \neq 0$, can Factor A have any effect on the response? Consider the example below.

	$B=1$	$B=2$	Mean
$A=1$	$\mu_{11}=3$	$\mu_{12}=2$	$\mu_{1 \bullet}=2.5$
$A=2$	$\mu_{21}=5$	$\mu_{22}=0$	$\mu_{2 \bullet}=2.5$
Mean	$\mu_{\bullet 1}=4$	$\mu_{\bullet 2}=1$	$\mu_{\bullet \bullet}=2.5$
Under the zero-sum constraint,			

$$
\alpha_{i}=\bar{\mu}_{i \bullet}-\bar{\mu}_{\bullet \bullet}=2.5-2.5=0
$$

for $i=1,2$.
Clearly $\alpha \beta_{i j} \neq 0$ as the lines are not parallel.

Back to the Popcorn Data

Here is a hierarchical model that leaves out all insignificant terms.

```
lm3 = lm(y ~ brand + power + time + brand:time, data=popcorn)
anova(lm3)
Analysis of Variance Table
Response: y
    Df Sum Sq Mean Sq F value Pr(>F)
brand 2 331 166 2.30 0.11999
power 1 455 455 6.33 0.01837
time 2 1555 777 10.81 0.00038
brand:time 4 1434 358 4.99 0.00405
Residuals 26 1869 72
```

Cannot leave out the insignificant brand main effects since it involves in the significant the two-way interaction brand:time

The SS's and d.f.'s of the left-out terms are pooled into the SSE and the df of error while the SS's and d.f's of the remaining stay unchanged.

More On Model Formula in R (1)

Instead of writing terms explicitly in the model formula
$\operatorname{lm} 3=\operatorname{lm}(y \sim$ brand + power + time + brand:time, data=popcorn)

Here is a simpler expression for the same model. R will automatically create the smallest hierarchical model that include brand:time interactions.

```
lm3a = lm(y ~ power + brand*time, data=popcorn)
anova(lm3a)
Analysis of Variance Table
```

Response: y

Df	Sum Sq Mean Sq	F value	$\operatorname{Pr}(>F)$	
1	455.111	455.111	6.33129	0.01837031
2	331.101	165.550	2.30306	0.11999055
2	1554.576	777.288	10.81326	0.00038249
4	1433.858	358.464	4.98679	0.00405232
26	1868.954	71.883		

More On Model Formula in R (2)

To fit a model with all two-way interactions but no 3-way interaction, one can explicitly write down every term
$\operatorname{lm}(y \sim A+B+C+A: B+B: C+A: C)$

Another way to obtain everything up to the 2-way interactions
$\operatorname{lm}(y \sim(A+B+C) \wedge 2)$

Or one can "leave out" the 3-way interactions
$\operatorname{lm}(\mathrm{y} \sim \mathrm{A} * \mathrm{~B} * \mathrm{C}-\mathrm{A}: \mathrm{B}: \mathrm{C}$, data=popcorn)

