STAT 222 Lecture 11-12
Chapter 6 Two-Way Factorial Designs

Yibi Huang
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Example: Sprouting Barley (p.166 in Oehlert)
Brewer's malt is produced from germinating barley, so brewers like
to know under what conditions they should germinate their barley.
The following is part of an experiment on barley germination.

» 30 lots of barley seeds, 100 seeds per lot, are randomly divided
into 10 groups of 3 lots

» Each group receives a treatment according to
» water amount used in germination — 4 ml or 8 ml
P age of seeds in weeks after harvest — 1, 3, 6, 9, or 12

P> Response: # of seeds germinated

Age of Seeds (weeks)
water | 1 | 3|6 |9 |12
11| 7 9 13|20
aml) || 9| 16|19 |35 |37

6 |17 |35 |28 |45
8] 1| 5| 1|11
8(m) || 3| 7| 91015
3139 9|2
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Basic Terminology

The sprouting barley experiment has 10 treatments. The 10
treatments has a factorial structure.

> A factor is an experimentally adjustable variable,
e.g. water amount used in germination,
age of seeds in weeks after harvest, ...

» Factors have Jevels, e.g.
water amount is a factor with 2 levels (4 ml or 8 ml)
age of seeds is a factor with 5 levels (1, 3, 6, 9, 12 weeks)

» A treatment is a combination of factors.

In the barley experiment, the treatments are the 2 x 5
combinations of the possible levels of the two factors

(4ml, 1 wk) (4ml, 3 wks) (4ml, 6 wks) (4ml, 9 wks) (4ml, 12 wks)
(8ml, 1 wk) (8ml, 3 wks) (8ml, 6 wks) (8ml, 9 wks) (8ml, 12 wks)
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Full k-Way Factorial Design

» Consider k factors with respectively Ly, Lp,..., L levels, a
full k-way factorial design include all the L1 x Ly x -+ X Ly
combination of the k factors as treatments.

> A factorial design is said to be balanced if all the treatment
groups have the same number of replicates. Otherwise, the
design is unbalanced.

» Question: How many units are there in a 3 x 2 design with 4
replicates?

» Balanced designs have many advantages, but not always
necessary — sometimes if a unit fails (ex, a test tube gets
dropped) we might end up with unbalanced results even if the
original design was balanced
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Data for a Two-Way a x b Design with n Replicates

’ H B-level 1 ‘ B-level 2 ‘ ‘ B-level b ‘
yi11 Y121 Yib1
Alevel 1 }/1.12 }/1.22 Y1-b2
Yiin Y12n Yibn
Y211 Y221 Yob1
Alevel 2 Y2.12 Y2.22 Y2.b2
Y21in Y22n Y2bn
Yal11 Ya21 Yab1
Alevel a )/a-12 Ya.22 )/a-b2
Yaln Ya2n Yabn

5/57



Means Model for a Two-Way Factorial Design

For a a x b two-way factorial experiment with n replicates

1,...,a,
1,...,b,
e

i
means model : yji = pj +ej for
k=1 n.

» yjik = the kth replicate in the treatment formed from the ith
level of factor A and jth level of factor B

> ci's are i.i.d. N(0, o2)

» 11 = the mean response in the treatment formed from the ith
level of factor A and jth level of factor B

» The means model regards the 2-way factorial design as a
completely randomized design (CRD) with a x b treatments,
ignoring the factorial structure of the treatments.
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Two-Way Interaction Contrast

The two-way interaction contrast between level (i1, i2) of factor A
and level (j1,j2) of factor B is defined as

C = Rivjy = Mivp — Higjy + Higjo
which has two interpretations.

C = Wiy — Hirpy — Hivji T Hinjo

- (Mhh _'th) - (th._'ﬂ&b)
—_——— —_———
effect of changing B from ji to j» effect of changing B from j; to j»
when A is fixed at iy when A is fixed at ip
= (Pivy = Hisjs) - (Lijy — Binjo)
—_— | ———

effect of changing A from i1 to i effect of changing A from i1 to i»
when B is fixed at j; when B is fixed at jo
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Two-Way Interaction

We say factor A and factor B have no interaction if and only if the
two-way interaction contrast between any two levels of A and any
two levels of B is 0, i.e.,

Wivyy = Hijo = Migjy T Bipjy = 0 for all i, iz, 1, Jo,
which has two interpretations:

» effect of A on Y doesn’'t change with the levels of B, and
> effect of B on Y doesn’'t change with the levels of A

Conversely, two factors A and B are said to have two-way
interactions if the effect of A on Y changes with the levels of B, or
the effect of B on Y changes with the levels of A.
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Interaction Plots

Plotting cell means (1) against levels of one factor (A or B), with

different lines for the other factor (B or A)

Ow—-—w B=1 Hs1 0 m Ha1
> ~A- B=2 >
5 ¥ 5 ¥
c c
3 QL S
s o — 21 s o —
5 5
E o~ 11 . E N . .
=] A M32 > m M32
Q. PR Q. —
£ — At i g <™ A=3 T Moz
T--abz2 A A=2 A K22
—— A=1
o — o —
I I I I I
1 2 3 1 2
Factor A Factor B
A is on the x-axis B is on the x-axis
B is the trace factor A is the trace factor

The two interaction plots convey the same information.
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Parallel Lines Indicate No Interaction (1)

Population Mean of Y

Population Mean of Y

Cm Ha

Factor A

Factor B
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Parallel Lines Indicate No Interaction (2)

[Te) Ha1
B effect | -
> > when
k] B Y A=3
j c
& 8
o -
= = B effect
c c
S o when
ke 8 N7 A=2
2 2
o S = A=3
o o —
-A- A=2
o of+ A=1
T T T T T
1 2 3 1 2
Factor A Factor B

Effect of B on Y doesn’t change with levels of A
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Parallel Lines Indicate No Interaction (3)

Population Mean of Y

Population Mean of Y

Factor A

Factor B

Effect of A on Y doesn't change with levels of B
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What does the interaction plot below tell us? (1)

Population Mean of Y

Factor A

» No AB interaction
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What does the interaction plot below tell us? (1)

Population Mean of Y

T T T
1 2 3

Factor A

» No AB interaction
» B has no effect on Y since there is no gap between lines
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What does the interaction plot below tell us? (1)

Population Mean of Y

Factor A

» No AB interaction
» B has no effect on Y since there is no gap between lines
> A has some effect on Y since the lines are not horizontal
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What does the interaction plot below tell us? (2)

Population Mean of Y

2

5

4

3

Factor B

14 /57



What does the interaction plot below tell us? (2)

3 4 5
| | |
> >
1 1
N w
> .
> "

Population Mean of Y

2
|
>
1
A

Factor B

» No AB interaction
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What does the interaction plot below tell us? (2)

0 — A=3m - - oo ._.__
> u
©
g -
7}
=
c
S ™ A=2A-- A
S
=
o
£ ~— A=le——

Factor B

» No AB interaction
» B has no effect on Y since the lines are horizontal
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What does the interaction plot below tell us? (2)

0 — A=3m - - oo ._.__
> u
©
g -
7}
=
c
S ™ A=2A-- A
S
=
o
£ ~— A=le——

Factor B

> No AB interaction
» B has no effect on Y since the lines are horizontal
» A has some effect on Y since there are gaps between lines
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Interaction Plots for the Sprouting Barley Study

In reality, the population means y; are not observable. Interaction
plots are made using sample means y;;, rather than population

means jij;.
Age of Seeds (weeks)

Vi 1 [3]6]09]12

11 7 9]13]20

water 4(ml) || 9 | 16 | 19 | 35 | 37

6 | 17 | 35| 28 | 45

8 1 5 1|11

water 8(ml) || 3| 7| 9|10 | 15

3131 9] 9|25

Age of Seeds (weeks)
1 3 6 9 12
8.67 13.33 21.00 25.33 34.00
4.67 3.67 7.67 6.67 17.00

sample means
)7ijo
water 4(ml)
water 8(ml)
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Interaction Plots in R

barley = read.table(
"http://www.stat.uchicago.edu/~yibi/s222/SproutingBarley.txt",h=T)

with(barley, interaction.plot(week,water,y, oD
"Age of Seed (week)"))
with(barley, interaction.plot(water,week,y, DD
"Water Amount (ml)"))
o &
1 water
> 10_| 1 k4 > o_
N .- N
S 1 8 5
8 g 2 & o
e I U E
1 _ |
Lo —| 2‘§2//2 2 10—
1 3 6 9 12 4 8
Age of Seed (week) Water Amount (ml)

Lines in the interaction plots might not be exactly parallel even if
the two factors have no interaction since y;, # pjj.

The less parallel the lines, the stronger the evidence of interactions.
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“Parallel” Or Not Is Affected by The Y-Scale

Please note that the y-scale might affect your perception of
whether the lines are “parallel” or not.

:_ A:3.\‘.‘ A:3. --------------- ™
WL A=2A-__
~m — A= —--- A
© _|
> >
B 5 3
c L _J c
< < ©
(] (]
= < = 5
—
™ _| o -
- T T T T
1 2 1 2
Factor B Factor B

Check the Y-scale and see if the change in the slopes is big
enough to be important.
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Additive Model

An additive model or main-effect model for two-way factorial
data is as follows

1,...,4a,
1,...,b,
1,...,n.

i
o= 1+ a; + ; +eijk for <)
Yijk H i /BJ ijk Jk

A main effect B main effect

» The additive model takes the factorial structure of the a x b
treatments into account

» The additive model is nested in the means model
Yijk = jj + €jjk since the means model will become the
additive model if

pij = p+a;+ B foralli,j.
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Additive Model Assumes No Interactions
If the additive model y;i = p + o + Bj + €jji is true, then

wij = p+o;+p; foralli,j,
we have

Hivjy = Mivjp = Higjy + Hizjo
= (M + o + 5]1) - (H + o + sz)
—(p+aip, + By) + (b + ap + Bj)
=0

for all i1, iz, j1,j2. Thus the two factors have no interaction.
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Additive Model Assumes No Interactions
If the additive model y;i = p + o + Bj + €jji is true, then

wij = p+o;+p; foralli,j,

we have

Hivjy = Mivjp = Higjy + Hizjo
= (M + o + le) - (H + o + sz)
—(p+aip, + By) + (b + ap + Bj)
=0

for all i1, iz, j1,j2. Thus the two factors have no interaction.

However, under the means model, the two factors might have
interactions.

Mivjy — Bivjs — Mizjy T iz might not be 0.
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Main-Effect-Interaction Model for 2-Way Factorial Designs
The main-effect-interaction model is an extension of the additive
model that allows interactions

1,.
1,b
1,.

xS -
ol

Yijk = 1 + o + ﬁj + 04,3,']' + €ijk for

> «afj is a parameter by itself. a8 # o % Bj; afy # a x B

pi1|p12|- - | M1k a1
M1 | 22| - - | H2b a2
= % + +|B1|B2| - - Bb
Mal |Ha2 | |Hab Qg
afii|abiz|- - |abiy
afor|afn|- - |afap
_|_

afat|aBa|: - |aBab
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Main-Effect-Interaction Model Is Overparameterized

» The main-effect-interaction model yjjx = p+aj+Bj+afj+ei
is equivalent to the means model yj = pij + €jjk-
They have identical predicted values, residuals, and SSE.

» For a two-way a x b design, the means model |11 pi2[- s
has ab parameters; the main-effect-interaction |21 |H22]|- -~ | p2b
model has 1+ a + b+ ab parameters S :

Mal | Ha2 |- | Hab

» 1 parameter p
» a3 parameters for A main effects: a3, az,...,a,
» b parameters for B main effects: 51, 52,..., B
af|abi|- - |afi
af|aBn|- - |afs

» ab parameters for AB interactions:

afa1|afa|- - - |aBab

» Two equivalent models should have identical numbers of
parameters. The main-effect-interaction model is
overparameterized, meaning its parameters cannot be uniquely
determined unless we set constraints on them.
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Baseline Constraints (1)

R by default uses the baseline constraints by setting all the
parameters for the first level of a factor/interaction to 0,

a1 — 0, 51 == 0, Oé,Blj = aﬁ,-l =0 forall i,j.
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Baseline Constraints (1)

R by default uses the baseline constraints by setting all the
parameters for the first level of a factor/interaction to 0,

a1 — 0, 51 == 0, Oé,Blj = aﬁ,-l =0 forall i,j.

0 0 0 0

o 0 |aBa2|---|abasp
Iz + +| 0 |Baf- - - Bbl+

Q, 0 |afa|: - |afab

Effectively, there are

> 1 parameter p,

» a — 1 parameters for A main effects,

> b — 1 parameters for B main effects,

» (a—1)(b— 1) parameters for AB interactions.

In total, thereare 1+ (a—1)+(b—1)+(a—1)(b—1)=ab
parameters, same as the means model.
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Baseline Constraints (2)
Under the baseline constraint: a; =0, 1 =0, afj = aBj1 =0

> pi=p+ a1 + B +afun = p=pun
— =~

-0 =0 =0
> pun=ptai+ P +abin = o= pin — 1= it — f11
=0 =0

» Thus «; = effect of changing factor A from level 1 to level i on
the mean of y, while fixing factor B at level 1
P> Level 1 is the baseline level of factor A

> puij=p+ o1 B +aBy = B = p1— 0= p1y— pin
0
fr— :O
» Thus g; = effect of changing factor B from level 1 to level j
on the mean of y, while fixing factor A at level 1
» Level 1 is the baseline level of factor B

> af = pi—p— o =B
= pij — pa1 — (pir — paa) — (paj — pa1)
= Wij — pj1 — p1j + p11
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Zero-Sum Constraints (1)

For factorial data, the more commonly used constraints are the zero-sum

constraints:

a b a b
Za;:O, ZBJ:O, Zaﬁ;j:Ofor all j, and Zaﬁ;j:Ofor all J.
i=1 j=1 i=1 j=1

l.e., the row sums and column sums of
the array {3} are all 0.

afu|ab2| - |afb

afor|affa |- - |aPap

Oéﬁal OéﬁaZ aﬁab
sum O 0 0

sum
0
0
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Zero-Sum Constraints (1)

For factorial data, the more commonly used constraints are the zero-sum
constraints:

a b a b
Za;:O, Zﬁj:O, Zaﬂ;j:Ofor all j, and Zaﬁ;j:Ofor all i.
i=1 j=1 i=1 j=1

l.e., the row sums and column sums of aBilaBnl - abs Sli)m
the array {3} are all 0. Bar|aBa| | aBas| O
There are hence effectively, aBal abaZ aﬁ-ab 0
sum O o --- 0
» 1 parameter p,
» a— 1 parameters for A main effects since a; = — Z}:ll a;j,
» b — 1 parameters for B main effects since 5, = — Zf;ll Bj.

v

(a—1)(b— 1) parameters for AB interactions since the last row and
the last column of the {afj;} array can be determined from the
zero-sum constraint.

In total, thereare 1+ (a—1)+(b—1)+(a—1)(b—1)=ab

parameters, same as the means model.
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Zero-Sum Constraints (2)

Since pjj = p + ;i + B + afij, summing them over i, we get

- a
;Mij a,u—i-z a,+aﬂj+z aﬁy,:u+5j:igugzﬂ.j

= =0
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Zero-Sum Constraints (2)

Since pj = p 4 o + B + afj;, summing them over i, we get

a
Zuu—aquZ a+aBJ+Z aﬁg,:u+5jzézwzﬁ,j
%/—/ i=1

= =0

Likewise, summing pj; = p + o; + B + afj; over j, we get

Zuu—bu+ba:+z ﬂ,+z aﬂ,ﬁ:ma,szuu fiie
Jj=1 \TE_/ \—,6_/
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Zero-Sum Constraints (2)

Since pjj = p + ;i + B + afij, summing them over i, we get

a
Zuu—aquZ a+aBJ+Z aﬂg,:u+5jzézuazﬁ,j
%/—/ i=1

= =0

Likewise, summing pj; = p + o; + B + afj; over j, we get

Zuu—bu+ba:+z ﬂ,+z aﬂ,ﬁ:ma,szuu fiie
\‘/_/ \—,_/

j=1
=0 =0

Summing p + «; = [ije Over i, we get

a 1 b 1 a b
3/~L+Z Zun DD i = gD D = fiee

i=1 " j=1 i=1 j=1
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Zero-Sum Constraints (3)

Under the zero-sum constraint, parameters in the means model
and the main-effect-interaction model are related as follows

1 = [iee = overall mean

Qaj = [lje — [lese = row mean — overall mean

Bj = [lej — [lee = column mean — overall mean
afij = pij — p— o =
= /J’U - la.. - ()al. - ﬁ..) - (,a._[ - /1..)

= Hjj _,aio _,ao_] +,aoo

= cell mean — row mean — column mean + overall mean

pa1 | paz |- | b
f21 | 22 |- - | b
Mal | a2 |- | Hab
column mean [ie1 jle2 *** [leb

row mean
ﬁl.
pQ.

/_1/30
[lee = overall mean
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Estimation of Parameters under Zero-Sum Constraints(1)

Parameter estimation in a balanced factorial design under the
Zero-Sum constraint is straightforward. For

D Vil = i ik e (means model)
> yiik = p+ ;i + B + afij + gj(main-effect-interaction model)

the parameter estimates are
Hij = Yije
A= Yeue:
Qi = Yieo — Yeoes
Elj = Yejo — Yoo
OB = Vija = View = Vajo + Vaus
Observe the estimates satisfy the zero-sum constraints:

a a

a b
Zaizzgjzzgzbij:zgzbij =0, foralli,j.
i=1 j=1

i=1 j=1
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Estimation of Parameters under Zero-Sum Constraints(2)

Since the design is balanced, for any of the reduced models below,

P Vik = (no main effects, no interaction)
> Vik = QG ke (main effects of A only)
> Yik =B (main effects of B only)
> Yik =pF i+ B F ik (additive model)

the estimates of 1, a;'s, and (3;'s under the zero-sum constraints
are identical with those for the main-effects-interaction model:

//J'\ = Yeoes ai = yioo — Yeoe: /81 = YOj. — Yeoo
If NOT balanced, the estimates will change with the model.

Recall in a regression model, the estimate of a coefficient will
change with the presence of other covariates in the model.
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Parameter Estimates Under the Baseline Constraints(May Skip)
Under the baseline constraints,
a1 = 0, ﬂl = 0, Oéﬁlj = aﬂ,-l =0 forall i,j.

the least-square estimates for parameters in the 5 models are different
(see below), even if the data is balanced.

Parameter Estimates
Model Formula m ;i Bj aBj;
p+ o+ B+ abj Yile Yite = Y1i1e | Y1je = Yile |Yiie —Yile —Y1je tV11e
pt o+ B YieeTYele ~Yeoe |Yieo — Yiee |Yejo — Yele -
K+ Qi Yiee Yieo ~ Yiee -
A+ B Yele - Yejo —Yele
I Yeoo - - -

» Simplicity in the formulas for parameter estimates is the primary
reason we sadopt the zero-sum constraints for factorial data, even
though R uses the baseline constraints

» Don’t memorize the formulas for the baseline constraints!

» Models are not affected by the constraints imposed. The fitted
values, residuals, df, SSE are not affected.
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Fitted Values for a Main-Effect-Interaction Model

For a main-effect-interaction model, the fitted value for y;j under

the zero-sum constraints is

?Uk:ﬁJraiJrBjﬂLOéAﬁij
= Veeo T (Vieo = Yeos) T (Vejo = Vooo)
+ (Vijo = Yieo = Yojo T Veos)
= Yije = cell mean

which is equal to the fitted value under the baseline constraints:

~ o~

Vik = i+ @i + B + aBy
= V11e + (Vite = Y116) + (V1jo — V110)
+ (Vijo = Yite = V1ijo + V110)
=Yjje = cell mean.
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Fitted Values for an Additive Model

For an additive model (no interaction), the fitted value for y;;
under the zero-sum constraints is

Vik = fi+ @i + f;
= Yeoo T (yl... - )7000) + (YOjo - YO..)

= Yioo + .Vojo ~ Yoo
= row mean + column mean — overall mean

which is equal to the fitted value under the baseline constraints:

Vik = A+ a; + B
= (V1ee + Ve1e = Yeoo) + (Vieo = Y1es) + (Vojo = Ve1s)
= Yiee T Yejo ~ Yeoo
= row mean + column mean — overall mean
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Bacteria in Cheese (p.178 in Oehlert)

» Factor A: Bacteria R50#410, added or not

» Factor B: Bacteria R21#2, added or not

> 3 replicates
» Response: total free amino acids in cheddar cheese after 56

days of ripening.

No | R21 No R21 R21 added
R21 added NO R50 yll. == 1.709 ylz. == 1.952
No |1.697|2.211 R50 added || V514 = 2.153| Ve = 2.444
R50 [1.601|1.673
1.830| 1.973 <
R50 |2.032|2.091 T
added | 2.017 | 2.255 > -
2.409 | 2.987 B o
§ o7
[}
o |
Is there interaction? <] T e acded
No ‘RSO R50 e‘ldded
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Bacteria in Cheese (p.178 in Oehlert)

B-level 1 B-level 2 row mean
A-level 1 V1iie = 1.709  ¥i5e =1.952 | y;,, = 1.831
A-level 2 Vote = 2.153  Vope = 2.444 | V5ee = 2.299
column mean | Y410 = 1.931 ¥4pe =2.198 | ¥,ee = 2.065
7l = Vees = 2.065
01 = V1eo — Yees = 1.831 —2.065 = —0.234

/81 = Yele

af11 = Yiie

- YO..
- Y]_..

=1.931 — 2.065 = —0.134
- YO]_. + _7000

=1.709 — 1.831 — 1.931 4 2.065 = 0.012

The estimates of all other parameters can be computed by the

zero-sum constraints.
a1 +a>=0
. B j—\gz =0
(}?11 + Oflz =0
(}?11 + 0@21 =0
By + aBy =0

el

ar = —ay1 = 0.234

,82 —51 =0.134

C/V\ﬁn = —af;; = —0.012
afy = —afy = —0.012
04622 = —04512 =0.012
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Finding Parameter Estimates in R
Note that R finding parameter estimates using the baseline
constraints by default.

cheese = read.table(
"http://users.stat.umn.edu/~gary/book/fcdae.data/exmpl8.6" ,h=T)

cheese$r50 = as.factor(cheese$r50)

cheese$r21 = as.factor(cheese$r21)

Imcheese = lm(y ~ r50 + r21 + r50%r21, cheese)

lmcheese$coef

(Intercept) r502 r212 r502:r212
1.70933 0.44333 0.24300 0.04867

ﬁ:yllo ~ 1.709

PO R21
2 =Y1e— V114 & 2.153—1.700=0.444 R50 No (B=1) added (B=2)
Bo=V194— V114 ~ 1.952—1.709=0.243 No (A=1) |¥11,=1.709 y;,,=1.952
022 =T s0a—Vore —T12e +V11e added (A=2)|y,,=2.153 y,,, =2.444

~2.444—2.153—-1.952+1.709=0.048

~ —

and a1 = 01 = aff;; = afp = afy =0.
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How to Force R Using the Zero-Sum Constraints?
To force R using the zero-sum constraints, one needs to set the
following

contrasts(cheese$r50) = contr.sum(2)
contrasts(cheese$r21) = contr.sum(2)

where the number 2 inside contr.sum(2) is the number of levels
for the factor.

Next, one must fit the 1m() model again to update the estimated
coefficients.

Ilmcheese = lm(y ~ r50 + r21 + r50*r21, cheese)

Ilmcheese$coef

(Intercept) r501 r211  r501:r211
2.06467 -0.23383 -0.13367 0.01217

We get fi &~ 2.065, a1 ~ —0.234, B; ~ —0.134, a;; ~ 0.012
which match our calculations. Estimates for other parameters can

be determined by the zero-sum constraints.
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Sum of Squares for Balanced 2-Way Factorial Designs (1)

An balanced a x b two-way factorial design with n replicates is also
a CRD with ab treatments, so the sum of squares identity remains

valid.
SST = 554+ + SSE
where
SST = ZZZ Yijk — yoo- and
i=1 j=1 k=1
55trf: - nzz yyo yooo 27 SSE = ZZ Z(yljk yUo
i=1j=1 i=1 j=1 k=1

d.f. for SST = total # of observations — 1 = abn — 1

d.f. for SSy+ = # of treatments — 1 = ab — 1

d.f. for SSE = total # of observations — # of treatments
= abn — ab = ab(n—1)
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Sum of Squares for Balanced 2-Way Factorial Designs (2)

As the ab treatments have a factorial structure, SS¢+ can be
decomposed further as

SStrt - SSA + SSB + SSAB

in which
SS formula d.f.
a b
SSA n Zi:l ZJ-:I(YI'.. - Yn-o)2 a—1
a b
S5 n Zi:l ijl(yojo - y...)Z b—-1

a b
SSAB nzi 12. yijo _Yioo _y0j0+YO..)2 (a_l)(b_l)
Sstrt n ZI 1 Z yUo yooo 2 ab—1

Observe all the d.f.s for the SS of the main effects or interactions
equal (number of parameters) — (number of constraint(s))
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Sum of Squares for Balanced 2-Way Factorial Designs (3)

In summary

SST = 554 + SSg + SSaB + SSE

a b n
SST =2 3> (Vik — Veus)?

i= 1j 1 k=1
a
554 = (y oo ~Veao)? = bn) a7
a b n “ b
SSE=_"D" (Fujo — Vees)? = any_ 3
i=1j=lk=1 """ j=1
Bi
SSAB—ZZZ(yUQ Yiee — yojo+yooo _nzzaﬁu
i=1 j=1 k=1 i=1 j=1

aﬁu

SSE = ZZZW Vije)?

i=1j=1k=1
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ANOVA Table for Balanced Two-Way Factorial Designs

Source

d.f.

SS MS F
Factor A a—1 SSa MS, = 24 Fa = fist
Factor B b—1 SSs MSg = 228 Fg = Mﬁé
AB Interaction|(a—1)(b—1)|SSas MSABZ% Fag= ,\l\/5|SsA|§Eg
Error ab(n—1) | SSE| MSE = %
Total abn—1 |SST
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Questions of Interest in a 2-Way Factorial Design

1. Does factor A has an effect on the response?
E.g. does the age of seeds has an effect on germination?

= Fy

Ho!alz---:aa:() MSA
==~ F »—1) under Ho.
{Ha :not all oj's =0, MS a—1,ab(n—1) 0

2. Does factor B has an effect on the response?
E.g. does the water amount has an effect on germination?

~ Fb—l,ab(n—l) under HO.

Ho: fi=---=Bp=0 M
b: b1 Bb = Fp Se
H; :not all 8i's =0, MSE

3. Does the effect of factor A interact with that of factor B?
E.g., does the effect of age change with water amount?

~ F(afl)(bfl),ab(nfn under Hyg.

Ho : aBjj=0 for all i, j A
. = A=
H, : aBjj#0 for some i, j MSE
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Remark on the Test of Main Effects

Under the zero-sum constraints, «; = [ije — lies, the null
hypothesis Hy: a1 =---=a,=0 of the F-test of A main effects
actually means

ﬁlo:ﬁZOZ"’:Nao

which just means
levels of A (averaged over the levels of B)
have the same average effect on the response.

not necessarily means levels of A has the same effect on the
response at each levels of B, i

H1j = H2j = - = laj forallj:1,2,...,b.

unless A and B have no interactions.

Ditto for the F-test of B main effects.
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A Model w/ 0 Main effects but Non-zero Interactions
Consider a model for a 2 x 2 factorial design.
Yijk = ij + Eijk
:M+ai+6j+0é,3,'j+€,'jk

If a1 = ap =0, but af11 # 0, can Factor A have any effect on the
response? Consider the example below.

B=1 B=2 Mean

A=1|p1 =3 p2=2|pe =25 %-m_ Har
A=2|pupn =5 pp =0|p0e =25 q:cgq_
Mean |fie1 =4 fie2 = 1|jtee =25 = ®— B=1leHu
Under the zero-sum constraint, _5 ~- B=2alp

8 _ | .

Qi = fije — flee =2.5—25=0 =

g ©- A H22
fori=1,2. T 1
Clearly a3j; # 0 as the lines are not 1 2
parallel. Factor A
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Example: Bacteria in Cheese (p.178 in Oehlert)
SSa=bnYy " 67 =2x3x[(~0.234)% +0.234°] = 0.656
b~
SSg = an Zj:l B7 =2 x3x [(—0.134)* + 0.134’] = 0.214
a b —2
SSap=n) . > afy=3x[0012% x 4]~ 0.0017
Computing SSE needs more work. It is easier to compute the SST:
a b n . 2

= (1.697 — 2.065)? + (1.601 — 2.065)% + (1.830 — 2.065)?
+ .-+ 4+ (2.987 — 2.065)? = 1.598

Then we can get

SSE = SST — 554 — 558 — SSaB
= 1.598 — 0.656 — 0.214 — 0.0018 = 0.726.
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Example: Bacteria in Cheese — ANOVA table

Source d.f. SS MS F-value | P-value
A(R50) 1 0.656 0.656 7.23 0.028
B(R21) 1 0.214 0.214 2.36 0.16
AB interaction 1 0.0017 | 0.0017 0.019 0.89
Error 8 0.726 0.091

Total 11 | 1.598

Only main effect A (Bacteria R50) is moderately significant.
Main effect B and interaction are not.

One can also obtain the ANOVA table in R.

lmcheese = 1m(y ~ r50 + r21 + r50%r21, cheese)
anova(lmcheese)
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)
r50 1 0.65614 0.65614 7.2335 0.02752
r21 1 0.21440 0.21440 2.3636 0.16275
r50:r21 1 0.00178 0.00178 0.0196 0.89217
Residuals 8 0.72566 0.09071 4457



Recall Sprouting B

arley Data

Age of Seeds (weeks)
Yiik 1[3]6]09]12
11| 7| 9113120
water 4(ml) 9116 |19 | 35 | 37
6 | 17 | 35| 28 | 45
8 1 5 1|11
water 8(ml) 31 7] 9]10|15
3131 9] 91|25
Age of Seeds (weeks) Row means
Cell means y, 1 3 6 9 12 Yieo
water 4(ml) | 8.67 13.33 21.00 2533 34.00| 20.47
water 8(ml) 467 3.67 7.67 6.67 17.00 7.93
Column means y,;, | 6.67 850 14.33 16.00 25.50 | y,ee = 14.2

Does water have an effect on germination?
Does the age of seeds have an effect?

overall mean
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Finding Row Means, Column Means, Cell Means in R
Overall mean y,,, = [i:

library(mosaic)
mean(-~y, barley)
[1] 14.2

Row means y;,, and Column means y,j,:

mean(y ~ water, barley)
4 8
20.4667 7.9333
mean(y ~ week, barley)
1 & 6 9 12

6.6667 8.5000 14.3333 16.0000 25.5000
Cell means (¥, average of the 3 values in each cell):

mean(y ~ week+water, barley)
1.4 3.4 6.4 9.4 12.4 1.8 3.8 6.8
8.6667 13.3333 21.0000 25.3333 34.0000 4.6667 3.6667 7.6667
9.8 12.8

6.6667 17.0000
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ai = yioo - yooo:
mean(y ~ water, barley)-mean(-~y, barley)

4 8
6.2667 -6.2667

ﬁj = yojo - yooo:
mean(y ~ week, barley)-mean(-~y, barley)

1 3 6 9 12
-7.53333 -5.70000 0.13333 1.80000 11.30000
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@5,1 = yl_j. - yioo - YQjo + Veoo:

cell.mean = matrix(mean(y ~ week+twater, barley), 2,
cell.mean
[,1] [,2] [,3] [,4]1 [,5]
[1,]1 8.6667 13.3333 21.0000 25.3333 34
[2,] 4.6667 3.6667 7.6667 6.6667 17
row.mean = mean(y ~ water, barley)olrep(1,5); row.mean
[,11 [,2] [,3] [,4] [,5]
4 20.4667 20.4667 20.4667 20.4667 20.4667
8 7.9333 7.9333 7.9333 7.9333 7.9333

column.mean = rep(1,2)%o%mean(y ~ week, barley) ; column.mean

1 3 6 9 12
[1,] 6.6667 8.5 14.333 16 25.5
[2,] 6.6667 8.5 14.333 16 25.5
overall.mean = mean(-~y, barley)
cell.mean - row.mean - column.mean + overall.mean
[,1] [,21 [,3] [,4] [,5]
4 -4.2667 -1.4333 0.4 3.0667 2.2333
8 4.2667 1.4333 -0.4 -3.0667 -2.2333

T)
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barley$weekfac = as.factor(barley$week)

barley$waterfac = as.factor(barley$water)
contrasts(barley$weekfac) = contr.sum(5)
contrasts(barley$waterfac) = contr.sum(2)

lmbarley = lm(y ~ waterfac + weekfac + waterfac*weekfac, barley)
coef (lmbarley)
(Intercept) waterfacl weekfacl

14.20000 6.26667 -7.53333

weekfac?2 weekfac3 weekfac4d

-5.70000 0.13333 1.80000
waterfacl:weekfacl waterfacl:weekfac2 waterfacl:weekfac3

-4.26667 -1.43333 0.40000
waterfacl:weekfacd

3.06667

Observe that we get

i— 142, a1 ~ 6.267,
Bi~ 7533, [Bh=-51, B3~013,3 fBi=18,
04611 ~ —4266, 06612 [ _1433, 06513 =04 Ozﬁ14 ~ 3.067

which match our calculations. Estimates for other parameters can

be determined by the zero-sum constraints.
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Example: Sprouting Barley — ANOVA Table

anova(lmbarley)
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

waterfac 1 1178 1178 19.72 0.00025
weekfac 4 1321 330 5.53 0.00364
waterfac:weekfac 4 209 52 0.87 0.49673
Residuals 20 1195 60

Conclusion:

> It looks like both water and week main effects are significant,
but their interactions are not

> Wait! Need to check model assumptions before making
conclusions.
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Example: Sprouting Barley — Checking Assumptions (1)

library(ggplot2)
ggplot(barley, aes(x=fitted(lmbarley), lmbarley$res)) +
geom_point () + labs(x="Fitted Values", "Residuals")
qqnorm(lmbarley$res)
qgline (lmbarley$res)
151 . = Normal Q-Q Plot
10+ J * g "
[ o
» 54 : % OO
® o, ¢ o . g
= ' =
T 01e @ o>
3 o o o |o L
X 51 4 ) g? (. o0
-104 (c/? n [¢]
® o ﬂ o °
15 | | e N T T T |
10 20 30 -2 -1 0 1 2
Fitted Values Theoretical Quantiles

Spot any problem(s)?
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» size of noise increases w/ fitted values
» normal QQ plot appear heavy-tailed
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Example: Sprouting Barley — Checking Assumptions (2)

library (MASS)
boxcox (lmbarley)

What remedy does the Box-Cox
method suggest?

log-Likelihood
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Example: Sprouting Barley — Checking Assumptions (2)

library (MASS)
boxcox (lmbarley)
g
s |
o
£
g3 What remedy does the Box-Cox
-
& ' method suggest?
9 As the 95% for X includes 1/2, we
|

' ' ' ' ' thus take square root of the response
and fit a new model below.

Imbarley2 = 1m(sqrt(y) ~ waterfac*weekfac, barley)

Again, we should check model assumptions of the new model
before interpreting the ANOVA table.
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Need to Check Assumptions Again After Transformation

ggplot(barley, aes(x=fitted(lmbarley2), lmbarley2$res)) +
geom_point () + labs(

par(
qgnorm(1lmbarley2$res)
qqline(lmbarley2$res)

boxcox (1lmbarley2)
L]
1 'Y . L[]
.
o t: :
g .. . .
§ O1e . ®
o ® e
. .
1 .
0 o ° °
2 3 4 5
Fitted Values
>
>
| 2

Sample Quantiles

-1.5 -05 05

"Fitted Values",
c(.6,.6,.25,.02),

15

"Residuals")
c(2,.7,0))

Normal Q-Q Plot
[}

I370

-20
|

log-Likelihood

-40
|

-2

-1 0 1 2
Theoretical Quantiles A

size of noise appear constant, not changing with fitted values
no apparent non-normality from the normal QQ plot
95% CI for X includes 1, meaning the current response is fine,

no further transformation is required.
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Sprouting Barley — ANOVA Table After Transformation

3 —— 4ml °
m
D © ° ° o
3 -4A- 8ml
g 7
2
SIS
Q.
%)
B P
5 «~ -
S
—~ A A
T T T T T T T
0O 2 4 6 8 10 12
Age of Seed (week)
anova(lmbarley2)

Analysis of Variance Table

Response: sqrt(y)
Df Sum Sq Mean Sq F value Pr(>F)

waterfac 1 21.89 21.89 23.76 0.000092
weekfac 4 21.89 5.47 5.94 0.0026
waterfac:weekfac 4 2.25 0.56 0.61 0.6601
Residuals 20 18.43 0.92
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Factorial Designs v.s. One-At-a-Time Designs

When there are two factors A and B of interest, we could conduct
two separate experiments and change only one factor at a time,

Experiment #1 Experiment #2
A=1A=2|A=3|A=4 B=1|B=2|B=3

rather than a two-way factorial design

A=1[A=2[A=3[A=4
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Advantage of Factorial Designs

Factorial designs are superior to one-at-a-time designs that change
only one factor at a time because factorial design can

P test the effects of both factors at once — more efficient than
one-at-a-time design, taking fewer experimental units to
attain the same goal;

P investigate interaction of factors, but one-at-a-time designs
cannot.

» broaden the inductive base for generalizing our results by
trying a wide range of treatments
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