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Example: Sprouting Barley (p.166 in Oehlert)
Brewer’s malt is produced from germinating barley, so brewers like
to know under what conditions they should germinate their barley.
The following is part of an experiment on barley germination.
▶ 30 lots of barley seeds, 100 seeds per lot, are randomly divided

into 10 groups of 3 lots
▶ Each group receives a treatment according to

▶ water amount used in germination — 4 ml or 8 ml
▶ age of seeds in weeks after harvest — 1, 3, 6, 9, or 12

▶ Response: # of seeds germinated

Age of Seeds (weeks)
water 1 3 6 9 12

11 7 9 13 20
4(ml) 9 16 19 35 37

6 17 35 28 45
8 1 5 1 11

8(ml) 3 7 9 10 15
3 3 9 9 25
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Basic Terminology
The sprouting barley experiment has 10 treatments. The 10
treatments has a factorial structure.

▶ A factor is an experimentally adjustable variable,
e.g. water amount used in germination,
age of seeds in weeks after harvest, . . .

▶ Factors have levels, e.g.
water amount is a factor with 2 levels (4 ml or 8 ml)
age of seeds is a factor with 5 levels (1, 3, 6, 9, 12 weeks)

▶ A treatment is a combination of factors.
In the barley experiment, the treatments are the 2 × 5
combinations of the possible levels of the two factors

(4ml, 1 wk) (4ml, 3 wks) (4ml, 6 wks) (4ml, 9 wks) (4ml, 12 wks)
(8ml, 1 wk) (8ml, 3 wks) (8ml, 6 wks) (8ml, 9 wks) (8ml, 12 wks)
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Full k-Way Factorial Design

▶ Consider k factors with respectively L1, L2, . . ., Lk levels, a
full k-way factorial design include all the L1 × L2 × · · · × Lk
combination of the k factors as treatments.

▶ A factorial design is said to be balanced if all the treatment
groups have the same number of replicates. Otherwise, the
design is unbalanced.
▶ Question: How many units are there in a 3 × 2 design with 4

replicates?
▶ Balanced designs have many advantages, but not always

necessary — sometimes if a unit fails (ex, a test tube gets
dropped) we might end up with unbalanced results even if the
original design was balanced
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Data for a Two-Way a × b Design with n Replicates
B-level 1 B-level 2 B-level b

A-level 1

y111
y112

...
y11n

y121
y122

...
y12n

· · · · · ·

y1b1
y1b2

...
y1bn

A-level 2

y211
y212

...
y21n

y221
y222

...
y22n

· · · · · ·

y2b1
y2b2

...
y2bn

...
...

... . . . ...
...

...
... . . . ...

A-level a

ya11
ya12

...
ya1n

ya21
ya22

...
ya2n

· · · · · ·

yab1
yab2

...
yabn
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Means Model for a Two-Way Factorial Design

For a a × b two-way factorial experiment with n replicates

means model : yijk = µij + εijk for

i = 1, . . . , a,
j = 1, . . . , b,
k = 1, . . . , n.

▶ yijk = the kth replicate in the treatment formed from the ith
level of factor A and jth level of factor B

▶ εijk ’s are i.i.d. N(0, σ2)
▶ µij = the mean response in the treatment formed from the ith

level of factor A and jth level of factor B
▶ The means model regards the 2-way factorial design as a

completely randomized design (CRD) with a × b treatments,
ignoring the factorial structure of the treatments.
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Two-Way Interaction Contrast

The two-way interaction contrast between level (i1, i2) of factor A
and level (j1, j2) of factor B is defined as

C = µi1j1 − µi1j2 − µi2j1 + µi2j2 ,

which has two interpretations.

C = µi1j1 − µi1j2 − µi2j1 + µi2j2

= (µi1j1 − µi1j2)︸ ︷︷ ︸
effect of changing B from j1 to j2

− (µi2j1 − µi2j2)︸ ︷︷ ︸
effect of changing B from j1 to j2

when A is fixed at i1 when A is fixed at i2

= (µi1j1 − µi2j1)︸ ︷︷ ︸
effect of changing A from i1 to i2

− (µi1j2 − µi2j2)︸ ︷︷ ︸
effect of changing A from i1 to i2

when B is fixed at j1 when B is fixed at j2
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Two-Way Interaction

We say factor A and factor B have no interaction if and only if the
two-way interaction contrast between any two levels of A and any
two levels of B is 0, i.e.,

µi1j1 − µi1j2 − µi2j1 + µi2j2 = 0 for all i1, i2, j1, j2,

which has two interpretations:

▶ effect of A on Y doesn’t change with the levels of B, and
▶ effect of B on Y doesn’t change with the levels of A

Conversely, two factors A and B are said to have two-way
interactions if the effect of A on Y changes with the levels of B, or
the effect of B on Y changes with the levels of A.
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Interaction Plots
Plotting cell means (µij) against levels of one factor (A or B), with
different lines for the other factor (B or A)
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The two interaction plots convey the same information.
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Parallel Lines Indicate No Interaction (1)
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Parallel Lines Indicate No Interaction (2)
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Parallel Lines Indicate No Interaction (3)
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What does the interaction plot below tell us? (1)
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▶ No AB interaction

▶ B has no effect on Y since there is no gap between lines
▶ A has some effect on Y since the lines are not horizontal
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What does the interaction plot below tell us? (2)
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Interaction Plots for the Sprouting Barley Study
In reality, the population means µij are not observable. Interaction
plots are made using sample means y ij• rather than population
means µij .

Age of Seeds (weeks)
yijk 1 3 6 9 12

11 7 9 13 20
water 4(ml) 9 16 19 35 37

6 17 35 28 45
8 1 5 1 11

water 8(ml) 3 7 9 10 15
3 3 9 9 25

sample means Age of Seeds (weeks)
y ij• 1 3 6 9 12

water 4(ml) 8.67 13.33 21.00 25.33 34.00
water 8(ml) 4.67 3.67 7.67 6.67 17.00
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Interaction Plots in R
barley = read.table(

"http://www.stat.uchicago.edu/~yibi/s222/SproutingBarley.txt",h=T)
with(barley, interaction.plot(week,water,y,type="b",

xlab="Age of Seed (week)"))
with(barley, interaction.plot(water,week,y,type="b",

xlab="Water Amount (ml)"))
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Lines in the interaction plots might not be exactly parallel even if
the two factors have no interaction since y ij• ̸= µij .

The less parallel the lines, the stronger the evidence of interactions.
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“Parallel” Or Not Is Affected by The Y -Scale
Please note that the y -scale might affect your perception of
whether the lines are “parallel” or not.
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Additive Model

An additive model or main-effect model for two-way factorial
data is as follows

yijk = µ + αi︸︷︷︸
A main effect

+ βj︸︷︷︸
B main effect

+εijk for

i = 1, . . . , a,
j = 1, . . . , b,
k = 1, . . . , n.

▶ The additive model takes the factorial structure of the a × b
treatments into account

▶ The additive model is nested in the means model
yijk = µij + εijk since the means model will become the
additive model if

µij = µ + αi + βj for all i , j .
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Additive Model Assumes No Interactions
If the additive model yijk = µ + αi + βj + εijk is true, then

µij = µ + αi + βj for all i , j ,

we have

µi1j1 − µi1j2 − µi2j1 + µi2j2
= (µ + αi1 + βj1) − (µ + αi1 + βj2)

− (µ + αi2 + βj1) + (µ + αi2 + βj2)
= 0

for all i1, i2, j1, j2. Thus the two factors have no interaction.

However, under the means model, the two factors might have
interactions.

µi1j1 − µi1j2 − µi2j1 + µi2j2 might not be 0.
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Main-Effect-Interaction Model for 2-Way Factorial Designs
The main-effect-interaction model is an extension of the additive
model that allows interactions

yijk = µ + αi + βj + αβij + εijk for

i = 1, . . . , a,
j = 1, . . . , b,
k = 1, . . . , n.

▶ αβij is a parameter by itself. αβij ̸= αi × βj ; αβij ̸= α × βij

µ11 µ12 · · · µ1b
µ21 µ22 · · · µ2b
...

...
. . .

......
...

...
µa1 µa2 · · · µab

= µ +

α1
α2
......

αa

+ β1 β2 · · · · · · βb

+

αβ11 αβ12 · · · αβ1b
αβ21 αβ22 · · · αβ2b

...
...

. . .
......

...
...

αβa1 αβa2 · · · αβab
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Main-Effect-Interaction Model Is Overparameterized
▶ The main-effect-interaction model yijk = µ+αi +βj +αβij +εijk

is equivalent to the means model yijk = µij + εijk .
They have identical predicted values, residuals, and SSE.

▶ For a two-way a × b design, the means model
has ab parameters; the main-effect-interaction
model has 1 + a + b + ab parameters

µ11 µ12 · · · µ1b
µ21 µ22 · · · µ2b
...

...
...

µa1 µa2 · · · µab▶ 1 parameter µ
▶ a parameters for A main effects: α1, α2, . . . , αa
▶ b parameters for B main effects: β1, β2, . . . , βb

▶ ab parameters for AB interactions:

αβ11 αβ12 · · · αβ1b
αβ21 αβ22 · · · αβ2b

...
...

. . .
...

αβa1 αβa2 · · · αβab

▶ Two equivalent models should have identical numbers of
parameters. The main-effect-interaction model is
overparameterized, meaning its parameters cannot be uniquely
determined unless we set constraints on them.
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Baseline Constraints (1)
R by default uses the baseline constraints by setting all the
parameters for the first level of a factor/interaction to 0,

α1 = 0, β1 = 0, αβ1j = αβi1 = 0 for all i , j .

µ +

α1
α2
......

αa

+ β1 β2 · · · · · · βb +

αβ11 αβ12 · · · αβ1b
αβ21 αβ22 · · · αβ2b

...
...

. . .
......

...
...

αβa1 αβa2 · · · αβab

Effectively, there are
▶ 1 parameter µ,
▶ a − 1 parameters for A main effects,
▶ b − 1 parameters for B main effects,
▶ (a − 1)(b − 1) parameters for AB interactions.

In total, there are 1 + (a − 1) + (b − 1) + (a − 1)(b − 1) = ab
parameters, same as the means model.
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Baseline Constraints (2)
Under the baseline constraint: α1 = 0, β1 = 0, αβ1j = αβi1 = 0

▶ µ11 = µ + α1︸︷︷︸
=0

+ β1︸︷︷︸
=0

+ αβ11︸ ︷︷ ︸
=0

⇒ µ = µ11

▶ µi1 = µ + αi + β1︸︷︷︸
=0

+ αβi1︸ ︷︷ ︸
=0

⇒ αi = µi1 − µ = µi1 − µ11

▶ Thus αi = effect of changing factor A from level 1 to level i on
the mean of y , while fixing factor B at level 1

▶ Level 1 is the baseline level of factor A
▶ µ1j = µ + α1︸︷︷︸

=0

+βj + αβ1j︸ ︷︷ ︸
=0

⇒ βj = µ1j − µ = µ1j − µ11

▶ Thus βj = effect of changing factor B from level 1 to level j
on the mean of y , while fixing factor A at level 1

▶ Level 1 is the baseline level of factor B
▶ αβij = µij − µ − αi − βj

= µij − µ11 − (µi1 − µ11) − (µ1j − µ11)
= µij − µi1 − µ1j + µ11
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Zero-Sum Constraints (1)
For factorial data, the more commonly used constraints are the zero-sum
constraints:

a∑
i=1

αi = 0,

b∑
j=1

βj = 0,

a∑
i=1

αβij = 0 for all j , and
b∑

j=1
αβij = 0 for all i .

I.e., the row sums and column sums of
the array {αβij} are all 0.

sum
αβ11 αβ12 · · · αβ1b 0
αβ21 αβ22 · · · αβ2b 0

...
...

. . .
...

...
αβa1 αβa2 · · · αβab 0

sum 0 0 · · · 0

There are hence effectively,

▶ 1 parameter µ,
▶ a − 1 parameters for A main effects since αa = −

∑a−1
i=1 αi ,

▶ b − 1 parameters for B main effects since βb = −
∑b−1

j=1 βj ,
▶ (a − 1)(b − 1) parameters for AB interactions since the last row and

the last column of the {αβij} array can be determined from the
zero-sum constraint.

In total, there are 1 + (a − 1) + (b − 1) + (a − 1)(b − 1) = ab
parameters, same as the means model.
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Zero-Sum Constraints (2)
Since µij = µ + αi + βj + αβij , summing them over i , we get

a∑
i=1

µij = aµ +
∑a

i=1
αi︸ ︷︷ ︸

=0

+aβj +
∑a

i=1
αβij︸ ︷︷ ︸

=0

, ⇒ µ + βj = 1
a

a∑
i=1

µij = µ̄•j

Likewise, summing µij = µ + αi + βj + αβij over j , we get

b∑
j=1

µij = bµ + bαi +
∑b

j=1
βj︸ ︷︷ ︸

=0

+
∑b

j=1
αβij︸ ︷︷ ︸

=0

, ⇒ µ + αi = 1
b

b∑
j=1

µij = µ̄i•

Summing µ + αi = µ̄i• over i , we get

aµ +
∑a

i=1
αi︸ ︷︷ ︸

=0

=
a∑

i=1
µ̄i• =

a∑
i=1

1
b

b∑
j=1

µij ⇒ µ = 1
ab

a∑
i=1

b∑
j=1

µij = µ̄••
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b∑
j=1

µij = µ̄i•

Summing µ + αi = µ̄i• over i , we get

aµ +
∑a

i=1
αi︸ ︷︷ ︸

=0

=
a∑

i=1
µ̄i• =

a∑
i=1

1
b

b∑
j=1

µij ⇒ µ = 1
ab

a∑
i=1

b∑
j=1

µij = µ̄••
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Zero-Sum Constraints (3)
Under the zero-sum constraint, parameters in the means model
and the main-effect-interaction model are related as follows

µ = µ̄•• = overall mean
αi = µ̄i• − µ̄•• = row mean − overall mean
βj = µ̄•j − µ̄•• = column mean − overall mean

αβij = µij − µ − αi − βj

= µij − µ̄•• − (µ̄i• − µ̄••) − (µ̄•j − µ̄••)
= µij − µ̄i• − µ̄•j + µ̄••

= cell mean − row mean − column mean + overall mean
row mean

µ11 µ12 · · · µ1b µ̄1•
µ21 µ22 · · · µ2b µ̄2•
...

...
...

...
µa1 µa2 · · · µab µ̄a•

column mean µ̄•1 µ̄•2 · · · µ̄•b µ̄•• = overall mean
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Estimation of Parameters under Zero-Sum Constraints(1)
Parameter estimation in a balanced factorial design under the
Zero-Sum constraint is straightforward. For
▶ yijk = µij + εijk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (means model)
▶ yijk = µ + αi + βj + αβij + εijk(main-effect-interaction model)

the parameter estimates are

µ̂ij = y ij•

µ̂ = y•••,

α̂i = y i•• − y•••,

β̂j = y•j• − y•••

α̂βij = y ij• − y i•• − y•j• + y•••

Observe the estimates satisfy the zero-sum constraints:
a∑

i=1
α̂i =

b∑
j=1

β̂j =
a∑

i=1
α̂βij =

a∑
j=1

α̂βij = 0, for all i , j .
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Estimation of Parameters under Zero-Sum Constraints(2)

Since the design is balanced, for any of the reduced models below,

▶ yijk = µ + εijk . . . . . . . . . . . . . . . (no main effects, no interaction)
▶ yijk = µ + αi + εijk . . . . . . . . . . . . . . . . . . (main effects of A only)
▶ yijk = µ + βj + εijk . . . . . . . . . . . . . . . . . . (main effects of B only)
▶ yijk = µ + αi + βj + εijk . . . . . . . . . . . . . . . . . . . . (additive model)

the estimates of µ, αi ’s, and βj ’s under the zero-sum constraints
are identical with those for the main-effects-interaction model:

µ̂ = y•••, α̂i = y i•• − y•••, β̂j = y•j• − y•••

If NOT balanced, the estimates will change with the model.

Recall in a regression model, the estimate of a coefficient will
change with the presence of other covariates in the model.
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Parameter Estimates Under the Baseline Constraints(May Skip)
Under the baseline constraints,

α1 = 0, β1 = 0, αβ1j = αβi1 = 0 for all i , j .
the least-square estimates for parameters in the 5 models are different
(see below), even if the data is balanced.

Parameter Estimates
Model Formula µ̂ α̂i β̂j α̂βij

µ + αi + βj + αβij y11• y i1• − y11• y1j• − y11• y ij•−y i1•−y1j•+y11•

µ + αi + βj y1••+y•1•−y••• y i•• − y1•• y•j• − y•1• −
µ + αi y1•• y i•• − y1•• − −
µ + βj y•1• − y•j• − y•1• −
µ y••• − − −

▶ Simplicity in the formulas for parameter estimates is the primary
reason we sadopt the zero-sum constraints for factorial data, even
though R uses the baseline constraints

▶ Don’t memorize the formulas for the baseline constraints!
▶ Models are not affected by the constraints imposed. The fitted

values, residuals, df, SSE are not affected.
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Fitted Values for a Main-Effect-Interaction Model
For a main-effect-interaction model, the fitted value for yijk under
the zero-sum constraints is

ŷijk = µ̂ + α̂i + β̂j + α̂βij

= y••• + (y i•• − y•••) + (y•j• − y•••)
+ (y ij• − y i•• − y•j• + y•••)

= y ij• = cell mean

which is equal to the fitted value under the baseline constraints:

ŷijk = µ̂ + α̂i + β̂j + α̂βij

= y11• + (y i1• − y11•) + (y1j• − y11•)
+ (y ij• − y i1• − y1j• + y11•)

= y ij• = cell mean.
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Fitted Values for an Additive Model
For an additive model (no interaction), the fitted value for yijk
under the zero-sum constraints is

ŷijk = µ̂ + α̂i + β̂j

= y••• + (y i•• − y•••) + (y•j• − y•••)
= y i•• + y•j• − y•••

= row mean + column mean − overall mean

which is equal to the fitted value under the baseline constraints:

ŷijk = µ̂ + α̂i + β̂j

= (y1•• + y•1• − y•••) + (y i•• − y1••) + (y•j• − y•1•)
= y i•• + y•j• − y•••

= row mean + column mean − overall mean
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Bacteria in Cheese (p.178 in Oehlert)
▶ Factor A: Bacteria R50#10, added or not
▶ Factor B: Bacteria R21#2, added or not
▶ 3 replicates
▶ Response: total free amino acids in cheddar cheese after 56

days of ripening.

No R21
R21 added

No 1.697 2.211
R50 1.601 1.673

1.830 1.973
R50 2.032 2.091

added 2.017 2.255
2.409 2.987

⇒

Is there interaction?

No R21 R21 added
No R50 y11• = 1.709 y12• = 1.952

R50 added y21• = 2.153 y22• = 2.444

1.
6

2.
0

2.
4

m
ea

n 
of

  y

No R50 R50 added

R21 added
No R21
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Bacteria in Cheese (p.178 in Oehlert)
B-level 1 B-level 2 row mean

A-level 1 y11• = 1.709 y12• = 1.952 y1•• = 1.831
A-level 2 y21• = 2.153 y22• = 2.444 y2•• = 2.299

column mean y•1• = 1.931 y•2• = 2.198 y••• = 2.065
µ̂ = y••• = 2.065

α̂1 = y1•• − y••• = 1.831 − 2.065 = −0.234
β̂1 = y•1• − y••• = 1.931 − 2.065 = −0.134

α̂β11 = y11• − y1•• − y•1• + y•••

= 1.709 − 1.831 − 1.931 + 2.065 = 0.012
The estimates of all other parameters can be computed by the
zero-sum constraints.

α̂1 + α̂2 = 0 ⇒ α̂2 = −α̂1 = 0.234
β̂1 + β̂2 = 0 ⇒ β̂2 = −β̂1 = 0.134

α̂β11 + α̂β12 = 0 ⇒ α̂β12 = −α̂β11 = −0.012
α̂β11 + α̂β21 = 0 ⇒ α̂β21 = −α̂β11 = −0.012
α̂β12 + α̂β22 = 0 ⇒ α̂β22 = −α̂β12 = 0.012
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Finding Parameter Estimates in R
Note that R finding parameter estimates using the baseline
constraints by default.

cheese = read.table(
"http://users.stat.umn.edu/~gary/book/fcdae.data/exmpl8.6",h=T)

cheese$r50 = as.factor(cheese$r50)
cheese$r21 = as.factor(cheese$r21)
lmcheese = lm(y ~ r50 + r21 + r50*r21, data=cheese)
lmcheese$coef
(Intercept) r502 r212 r502:r212

1.70933 0.44333 0.24300 0.04867

µ̂=y 11• ≈ 1.709
α̂2 =y 21•−y 11• ≈ 2.153−1.709=0.444

β̂2 =y 12•−y 11• ≈ 1.952−1.709=0.243
α̂22 =y 22•−y 21•−y 12•+y 11•

≈2.444−2.153−1.952+1.709=0.048

R21
R50 No (B=1) added (B=2)

No (A=1) y 11• =1.709 y 12• =1.952
added (A=2) y 21• =2.153 y 22• =2.444

and α̂1 = β̂1 = α̂β11 = α̂β12 = α̂β21 = 0.
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How to Force R Using the Zero-Sum Constraints?
To force R using the zero-sum constraints, one needs to set the
following

contrasts(cheese$r50) = contr.sum(2)
contrasts(cheese$r21) = contr.sum(2)

where the number 2 inside contr.sum(2) is the number of levels
for the factor.
Next, one must fit the lm() model again to update the estimated
coefficients.

lmcheese = lm(y ~ r50 + r21 + r50*r21, data=cheese)
lmcheese$coef
(Intercept) r501 r211 r501:r211

2.06467 -0.23383 -0.13367 0.01217

We get µ̂ ≈ 2.065, α̂1 ≈ −0.234, β̂1 ≈ −0.134, α̂β11 ≈ 0.012
which match our calculations. Estimates for other parameters can
be determined by the zero-sum constraints.
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Sum of Squares for Balanced 2-Way Factorial Designs (1)
An balanced a × b two-way factorial design with n replicates is also
a CRD with ab treatments, so the sum of squares identity remains
valid.

SST = SStrt + SSE
where

SST =
a∑

i=1

b∑
j=1

n∑
k=1

(yijk − y•••)2 and

SStrt = n
a∑

i=1

b∑
j=1

(y ij• − y•••)2, SSE =
a∑

i=1

b∑
j=1

n∑
k=1

(yijk − y ij•)2

d.f. for SST = total # of observations − 1 = abn − 1
d.f. for SStrt = # of treatments − 1 = ab − 1
d.f. for SSE = total # of observations − # of treatments

= abn − ab = ab(n − 1)
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Sum of Squares for Balanced 2-Way Factorial Designs (2)
As the ab treatments have a factorial structure, SStrt can be
decomposed further as

SStrt = SSA + SSB + SSAB

in which

SS formula d.f.

SSA n
∑a

i=1

∑b

j=1
(y i•• − y•••)2 a − 1

SSB n
∑a

i=1

∑b

j=1
(y•j• − y•••)2 b − 1

SSAB n
∑a

i=1

∑b

j=1
(y ij•−y i••−y•j•+y•••)2 (a−1)(b−1)

SStrt n
∑a

i=1

∑b

j=1
(y ij• − y•••)2 ab − 1

Observe all the d.f.s for the SS of the main effects or interactions
equal (number of parameters) − (number of constraint(s))
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Sum of Squares for Balanced 2-Way Factorial Designs (3)
In summary

SST = SSA + SSB + SSAB + SSE

SST =
a∑

i=1

b∑
j=1

n∑
k=1

(yijk − y•••)2

SSA =
a∑

i=1

b∑
j=1

n∑
k=1

(y i•• − y•••︸ ︷︷ ︸
α̂i

)2 = bn
a∑

i=1
α̂2

i

SSB =
a∑

i=1

b∑
j=1

n∑
k=1

(y•j• − y•••︸ ︷︷ ︸
β̂j

)2 = an
b∑

j=1
β̂2

j

SSAB =
a∑

i=1

b∑
j=1

n∑
k=1

(y ij• − y i•• − y•j• + y•••︸ ︷︷ ︸
α̂βij

)2 = n
a∑

i=1

b∑
j=1

α̂β
2
ij

SSE =
a∑

i=1

b∑
j=1

n∑
k=1

(yijk − y ij•)2
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ANOVA Table for Balanced Two-Way Factorial Designs

Source d.f. SS MS F

Factor A a − 1 SSA MSA = SSA
a−1 FA = MSA

MSE

Factor B b − 1 SSB MSB = SSB
b−1 FB = MSB

MSE

AB Interaction (a−1)(b−1) SSAB MSAB = SSAB
(a−1)(b−1) FAB = MSAB

MSE

Error ab(n − 1) SSE MSE = SSE
ab(n−1)

Total abn − 1 SST
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Questions of Interest in a 2-Way Factorial Design
1. Does factor A has an effect on the response?

E.g. does the age of seeds has an effect on germination?{
H0 : α1 = · · ·=αa =0
Ha : not all αi ’s = 0,

⇒ FA = MSA
MSE ∼ Fa−1, ab(n−1) under H0.

2. Does factor B has an effect on the response?
E.g. does the water amount has an effect on germination?{

H0 : β1 = · · ·=βb =0
Ha : not all βi ’s = 0,

⇒ FB = MSB
MSE ∼ Fb−1, ab(n−1) under H0.

3. Does the effect of factor A interact with that of factor B?
E.g., does the effect of age change with water amount?{

H0 : αβij =0 for all i , j
Ha : αβij ̸=0 for some i , j

⇒ FAB = MSAB
MSE ∼ F(a−1)(b−1), ab(n−1) under H0.

40 / 57



Remark on the Test of Main Effects

Under the zero-sum constraints, αi = µ̄i• − µ̄••, the null
hypothesis H0: α1 = · · ·=αa =0 of the F -test of A main effects
actually means

µ̄1• = µ̄2• = · · · = µ̄a•

which just means
levels of A (averaged over the levels of B)
have the same average effect on the response.

not necessarily means levels of A has the same effect on the
response at each levels of B, i

µ1j = µ2j = · · · = µaj for all j = 1, 2, . . . , b.

unless A and B have no interactions.

Ditto for the F -test of B main effects.
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A Model w/ 0 Main effects but Non-zero Interactions
Consider a model for a 2 × 2 factorial design.

yijk = µij + εijk

= µ + αi + βj + αβij + εijk

If α1 = α2 = 0, but αβ11 ̸= 0, can Factor A have any effect on the
response? Consider the example below.

B = 1 B = 2 Mean
A = 1 µ11 = 3 µ12 = 2 µ1• = 2.5
A = 2 µ21 = 5 µ22 = 0 µ2• = 2.5
Mean µ•1 = 4 µ•2 = 1 µ•• = 2.5
Under the zero-sum constraint,

αi = µ̄i• − µ̄•• = 2.5 − 2.5 = 0

for i = 1, 2.
Clearly αβij ̸= 0 as the lines are not
parallel.

0
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4
5
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●
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Example: Bacteria in Cheese (p.178 in Oehlert)
SSA = bn

∑a
i=1

α̂2
i = 2 × 3 × [(−0.234)2 + 0.2342] = 0.656

SSB = an
∑b

j=1
β̂2

j = 2 × 3 × [(−0.134)2 + 0.1342] = 0.214

SSAB = n
∑a

i=1

∑b
j=1

α̂β
2
ij = 3 × [0.0122 × 4] ≈ 0.0017

Computing SSE needs more work. It is easier to compute the SST:

SST =
∑a

i=1

∑b
j=1

∑n
k=1

(yijk − y•••)2

= (1.697 − 2.065)2 + (1.601 − 2.065)2 + (1.830 − 2.065)2

+ · · · + (2.987 − 2.065)2 = 1.598

Then we can get

SSE = SST − SSA − SSB − SSAB

= 1.598 − 0.656 − 0.214 − 0.0018 = 0.726.
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Example: Bacteria in Cheese — ANOVA table
Source d.f. SS MS F -value P-value
A(R50) 1 0.656 0.656 7.23 0.028
B(R21) 1 0.214 0.214 2.36 0.16
AB interaction 1 0.0017 0.0017 0.019 0.89
Error 8 0.726 0.091
Total 11 1.598

Only main effect A (Bacteria R50) is moderately significant.
Main effect B and interaction are not.
One can also obtain the ANOVA table in R.
lmcheese = lm(y ~ r50 + r21 + r50*r21, data=cheese)
anova(lmcheese)
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

r50 1 0.65614 0.65614 7.2335 0.02752
r21 1 0.21440 0.21440 2.3636 0.16275
r50:r21 1 0.00178 0.00178 0.0196 0.89217
Residuals 8 0.72566 0.09071 44 / 57



Recall Sprouting Barley Data

Age of Seeds (weeks)
yijk 1 3 6 9 12

11 7 9 13 20
water 4(ml) 9 16 19 35 37

6 17 35 28 45
8 1 5 1 11

water 8(ml) 3 7 9 10 15
3 3 9 9 25

Age of Seeds (weeks) Row means
Cell means y ij• 1 3 6 9 12 y i••

water 4(ml) 8.67 13.33 21.00 25.33 34.00 20.47
water 8(ml) 4.67 3.67 7.67 6.67 17.00 7.93

Column means y•j• 6.67 8.50 14.33 16.00 25.50 y••• = 14.2
overall mean

Does water have an effect on germination?
Does the age of seeds have an effect?
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Finding Row Means, Column Means, Cell Means in R
Overall mean y••• = µ̂:

library(mosaic)
mean(~y, data=barley)
[1] 14.2

Row means y i•• and Column means y•j•:

mean(y ~ water, data=barley)
4 8

20.4667 7.9333
mean(y ~ week, data=barley)

1 3 6 9 12
6.6667 8.5000 14.3333 16.0000 25.5000

Cell means (y ij•, average of the 3 values in each cell):

mean(y ~ week+water, data=barley)
1.4 3.4 6.4 9.4 12.4 1.8 3.8 6.8

8.6667 13.3333 21.0000 25.3333 34.0000 4.6667 3.6667 7.6667
9.8 12.8

6.6667 17.0000
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α̂i = y i•• − y•••:

mean(y ~ water, data=barley)-mean(~y, data=barley)
4 8

6.2667 -6.2667

β̂j = y•j• − y•••:

mean(y ~ week, data=barley)-mean(~y, data=barley)
1 3 6 9 12

-7.53333 -5.70000 0.13333 1.80000 11.30000
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α̂βij = y ij• − y i•• − y•j• + y•••:

cell.mean = matrix(mean(y ~ week+water, data=barley),nrow=2,byrow=T)
cell.mean

[,1] [,2] [,3] [,4] [,5]
[1,] 8.6667 13.3333 21.0000 25.3333 34
[2,] 4.6667 3.6667 7.6667 6.6667 17
row.mean = mean(y ~ water, data=barley)%o%rep(1,5); row.mean

[,1] [,2] [,3] [,4] [,5]
4 20.4667 20.4667 20.4667 20.4667 20.4667
8 7.9333 7.9333 7.9333 7.9333 7.9333
column.mean = rep(1,2)%o%mean(y ~ week, data=barley);column.mean

1 3 6 9 12
[1,] 6.6667 8.5 14.333 16 25.5
[2,] 6.6667 8.5 14.333 16 25.5
overall.mean = mean(~y, data=barley)
cell.mean - row.mean - column.mean + overall.mean

[,1] [,2] [,3] [,4] [,5]
4 -4.2667 -1.4333 0.4 3.0667 2.2333
8 4.2667 1.4333 -0.4 -3.0667 -2.2333
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barley$weekfac = as.factor(barley$week)
barley$waterfac = as.factor(barley$water)
contrasts(barley$weekfac) = contr.sum(5)
contrasts(barley$waterfac) = contr.sum(2)
lmbarley = lm(y ~ waterfac + weekfac + waterfac*weekfac, data=barley)
coef(lmbarley)

(Intercept) waterfac1 weekfac1
14.20000 6.26667 -7.53333
weekfac2 weekfac3 weekfac4
-5.70000 0.13333 1.80000

waterfac1:weekfac1 waterfac1:weekfac2 waterfac1:weekfac3
-4.26667 -1.43333 0.40000

waterfac1:weekfac4
3.06667

Observe that we get

µ̂ = 14.2, α̂1 ≈ 6.267,

β̂1 ≈ −7.533, β̂2 = −5.7, β̂3 ≈ 0.13, 3 β̂4 = 1.8,

α̂β11 ≈ −4.266, α̂β12 ≈ −1.433, α̂β13 = 0.4 α̂β14 ≈ 3.067

which match our calculations. Estimates for other parameters can
be determined by the zero-sum constraints.
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Example: Sprouting Barley — ANOVA Table

anova(lmbarley)
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

waterfac 1 1178 1178 19.72 0.00025
weekfac 4 1321 330 5.53 0.00364
waterfac:weekfac 4 209 52 0.87 0.49673
Residuals 20 1195 60

Conclusion:

▶ It looks like both water and week main effects are significant,
but their interactions are not

▶ Wait! Need to check model assumptions before making
conclusions.
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Example: Sprouting Barley — Checking Assumptions (1)

library(ggplot2)
ggplot(barley, aes(x=fitted(lmbarley), lmbarley$res)) +

geom_point() + labs(x="Fitted Values", y="Residuals")
qqnorm(lmbarley$res)
qqline(lmbarley$res)
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▶ size of noise increases w/ fitted values
▶ normal QQ plot appear heavy-tailed
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Example: Sprouting Barley — Checking Assumptions (2)

library(MASS)
boxcox(lmbarley)
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What remedy does the Box-Cox
method suggest?

As the 95% for λ includes 1/2, we
thus take square root of the response
and fit a new model below.

lmbarley2 = lm(sqrt(y) ~ waterfac*weekfac, data=barley)

Again, we should check model assumptions of the new model
before interpreting the ANOVA table.
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Example: Sprouting Barley — Checking Assumptions (2)

library(MASS)
boxcox(lmbarley)
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Again, we should check model assumptions of the new model
before interpreting the ANOVA table.

53 / 57



Need to Check Assumptions Again After Transformation
ggplot(barley, aes(x=fitted(lmbarley2), lmbarley2$res)) +

geom_point() + labs(x="Fitted Values", y="Residuals")
par(mai=c(.6,.6,.25,.02),mgp=c(2,.7,0))
qqnorm(lmbarley2$res)
qqline(lmbarley2$res)
boxcox(lmbarley2)
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▶ size of noise appear constant, not changing with fitted values
▶ no apparent non-normality from the normal QQ plot
▶ 95% CI for λ includes 1, meaning the current response is fine,

no further transformation is required.
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Sprouting Barley — ANOVA Table After Transformation
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anova(lmbarley2)
Analysis of Variance Table

Response: sqrt(y)
Df Sum Sq Mean Sq F value Pr(>F)

waterfac 1 21.89 21.89 23.76 0.000092
weekfac 4 21.89 5.47 5.94 0.0026
waterfac:weekfac 4 2.25 0.56 0.61 0.6601
Residuals 20 18.43 0.92
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Factorial Designs v.s. One-At-a-Time Designs
When there are two factors A and B of interest, we could conduct
two separate experiments and change only one factor at a time,

Experiment #1
A = 1 A = 2 A = 3 A = 4

Experiment #2
B = 1 B = 2 B = 3

rather than a two-way factorial design

A = 1 A = 2 A = 3 A = 4
B= 1

B= 2

B= 3
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Advantage of Factorial Designs

Factorial designs are superior to one-at-a-time designs that change
only one factor at a time because factorial design can

▶ test the effects of both factors at once — more efficient than
one-at-a-time design, taking fewer experimental units to
attain the same goal;

▶ investigate interaction of factors, but one-at-a-time designs
cannot.

▶ broaden the inductive base for generalizing our results by
trying a wide range of treatments
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