STAT 222 Lecture 7
 Power \& Sample Size Calculation Section 3.6

Yibi Huang

Power \& Sample Size Calculation for ANOVA F-tests

When proposing an experiment (applying for funding etc), nowadays one needs to show that the proposed sample size (i.e. the number of experiment units) is

- neither so small that scientifically interesting effects will be swamped by random noise (i.e., unable to reject a false H_{0})
- nor larger than necessary, which is a waste of resources (time \& money)

Errors and Power in Hypothesis Testing

- A Type I error occurs when H_{0} is true but is rejected
- A Type II error occurs when failing to reject a false H_{0}
- The (significance) level of a test is the chance of making a Type I error, i.e., the chance to reject a H_{0} when it is true.
- The power of the test is the the chance of rejecting H_{0} when H_{a} is true:

$$
\begin{aligned}
\text { power } & =1-\mathrm{P}\left(\text { making type II error } \mid H_{0} \text { is false }\right)=1-\beta \\
& =\mathrm{P}\left(\text { correctly reject } H_{0} \mid H_{0} \text { is false }\right)
\end{aligned}
$$

A good test has a small significance level and a large power.

	H_{a} is rejected	H_{0} is rejected
H_{0} is true	$\sqrt{ }$	$\alpha=\mathrm{P}($ Type $/$ error $)$
H_{0} is false	$\beta=\mathrm{P}($ Type $/ /$ error $)$	$\sqrt{ }$

Recall the model for multi-sample data

$$
y_{i j}=\mu_{i}+\varepsilon_{i j}, \quad \text { where } \varepsilon_{i j} \text { 's are i.i.d. } N\left(0, \sigma^{2}\right)
$$

for $i=1, \ldots, g$, and $j=1, \ldots, n_{i}$.
The H_{0} and H_{a} for the ANOVA F test are

$$
H_{0}: \mu_{1}=\cdots=\mu_{g} \quad \text { v.s. } \quad H_{a}: \mu_{i} \text { 's not all equal. }
$$

Recall the model for multi-sample data

$$
y_{i j}=\mu_{i}+\varepsilon_{i j}, \quad \text { where } \varepsilon_{i j} \text { 's are i.i.d. } N\left(0, \sigma^{2}\right)
$$

for $i=1, \ldots, g$, and $j=1, \ldots, n_{i}$.
The H_{0} and H_{a} for the ANOVA F test are

$$
H_{0}: \mu_{1}=\cdots=\mu_{g} \quad \text { v.s. } \quad H_{a}: \mu_{i} \text { 's not all equal. }
$$

Recall we reject H_{0} if the F-statistic $F=\frac{M S_{t r t}}{M S E}$ exceeds some critical value. The power of the ANOVA F-test is hence

Power $=\mathrm{P}\left(\right.$ Reject $H_{0} \mid H_{a}$ is true $)=\mathrm{P}\left(F>\right.$ critical value $\mid H_{a}$ is true $)$.
Need to know the distribution of F to calculate the power.

- What is the distribution of F under H_{0} ? $F_{g-1, N-g}$.
- And under H_{a} ?

Non-Central F-Distribution

Under H_{a} : μ_{i} 's not all equal, it can be shown that

$$
F=\frac{\mathrm{MS}_{t r t}}{\mathrm{MSE}}=\frac{\mathrm{SS}_{t r t} /(g-1)}{\mathrm{SSE} /(N-g)}
$$

has a non-central F-distribution on degrees of freedom $g-1$ and $N-g$, with non-centrality parameter δ^{2}, denoted as

$$
F \sim F_{g-1, N-g, \delta^{2}} \quad \text { where } \quad \delta^{2}=\frac{\sum_{i=1}^{g} n_{i}\left(\mu_{i}-\mu\right)^{2}}{\sigma^{2}}
$$

where

$$
\mu=\frac{1}{N} \sum_{i=1}^{g} n_{i} \mu_{i}, \quad \text { and } N=\sum_{i=1}^{g} n_{i}
$$

Non-Central F-Distribution

Non-central F-distribution is also right skewed, and the greater the non-centrality parameter δ^{2}, the further away the peak of the distribution is from 0 .

Example 1: Power Calculation (1)

- $g=5$ treatment groups group sizes: $n_{1}=n_{2}=n_{3}=5, n_{4}=6, n_{5}=4$
- assume $\sigma=0.8$
- desired significance level $\alpha=0.05$
- find the power of the test when H_{a} is true with

$$
\mu_{1}=1.6, \mu_{2}=0.6, \mu_{3}=2, \mu_{4}=0, \mu_{5}=1
$$

Sol. The grand mean μ is

$$
\begin{aligned}
\mu=\frac{\sum_{i=1}^{g} n_{i} \mu_{i}}{N} & =\frac{5 \times 1.6+5 \times 0.6+5 \times 2+6 \times 0+4 \times 1}{5+5+5+6+4} \\
& =\frac{25}{25}=1
\end{aligned}
$$

Example 1: Power Calculation (2)

The non-centrality parameter is

$$
\begin{aligned}
\delta^{2} & =\frac{\sum_{i=1}^{g} n_{i}\left(\mu_{i}-\mu\right)^{2}}{\sigma^{2}} \\
& =\frac{5(1.6-1)^{2}+5(0.6-1)^{2}+5(2-1)^{2}+6(0-1)^{2}+4(1-1)^{2}}{0.8^{2}} \\
& =\frac{13.6}{0.64}=21.25
\end{aligned}
$$

So

$$
F=\frac{M S_{t r t}}{M S E} \sim \begin{cases}F_{g-1, N-g}=F_{4,25-5} & \text { under } \mathrm{H}_{0} \\ F_{g-1, N-g, \delta^{2}}=F_{4,25-5,21.25} & \text { under } \mathrm{H}_{a}\end{cases}
$$

Example 1: Power Calculation (3)

The critical value to reject H_{0} keeping the significance level at $\alpha=0.05$ is $F_{4,20,0.05} \approx 2.866$.
qf (0.05,4,20, lower.tail=F)
[1] 2.866

When H_{0} is true, the chance that H_{0} is rejected is only 0.05 (the red shaded area.)

Example 1: Power Calculation (4)

If H_{a} is true and

$$
\mu_{1}=1.6, \mu_{2}=0.6, \mu_{3}=2, \mu_{4}=0, \mu_{5}=1
$$

we know then $F \sim F_{4,20, \delta^{2}=21.25}$. The power to reject H_{0} is the area under the density of $F_{4,20, \delta^{2}=21.25}$ beyond the critical value (the blue shaded area,) which is 0.9249 .
$\mathrm{pf}(\mathrm{qf}(.95,4,20), 4,20$, ncp=21.25, lower.tail=F)
[1] 0.9249
In R, ncp stands for the "non-centrality parameter."

Power Depends On the Parameters in H_{a}

The power of a test is not a single value, but a function of the parameters in H_{a}. If parameter μ_{i} 's change, the power of the test also changes. Cannot talk about the power of a test without specifying the parameters in H_{a}
Ex. For $\mathrm{H}_{\mathrm{a}}: \mu_{1}=1.4, \mu_{2}=0.6, \mu_{3}=\mu_{4}=\mu_{5}=1$, then

$$
\begin{aligned}
\mu & =\frac{5 \cdot 1.4+5 \cdot 1+5 \cdot 0.6+6 \cdot 1+4 \cdot 1}{5+5+5+6+4}=1 \\
\delta^{2} & =\frac{5(1.4-1)^{2}+5(0.6-1)^{2}+5(1-1)^{2}+6(1-1)^{2}+4(1-1)^{2}}{0.8^{2}}=2.5
\end{aligned}
$$

$\mathrm{pf}(\mathrm{qf}(.95,4,20), 4,20, \mathrm{ncp}=2.5$, lower.tail=F)
[1] 0.1713

Power is 0.1713 .

Power of a Test Is Affected By ...

The larger the non-centrality parameter

$$
\delta^{2}=\frac{\sum_{i=1}^{g} n_{i}\left(\mu_{i}-\mu\right)^{2}}{\sigma^{2}}
$$

the greater the power.
The power of a test will increase if

- the number of replicate n_{i} per treatment increases
- the difference of treatment means $\mu_{i}-\mu$'s increase
- the size of noise σ^{2} decreases.

Example 2: Sample Size Calculation (1)

- $g=5$ treatment groups of equal sample size $n_{i}=n$ for all i
- assume $\sigma=0.8$
- desired significance level $\alpha=0.05$
- Assuming equal sample size n in all groups, what is the minimal sample size n per treatment to have power 0.95 when

$$
\mu_{1}=0.5, \mu_{2}=-0.5, \mu_{3}=1, \mu_{4}=-1, \mu_{5}=0 ?
$$

Sol. Can calculate that $\mu=\frac{1}{N} \sum_{i=1}^{g} n \mu_{i}=0$. The non-centrality parameter is

$$
\begin{aligned}
\delta^{2}=\frac{\sum_{i=1}^{g} n_{i}\left(\mu_{i}-\mu\right)^{2}}{\sigma^{2}} & =\frac{n}{0.8^{2}}\left[0.5^{2}+(-0.5)^{2}+1^{2}+(-1)^{2}+0^{2}\right] \\
& =\frac{n}{0.8^{2}} \times 2.5=3.9 n
\end{aligned}
$$

So

$$
F=\frac{M S_{t r t}}{M S E} \sim \begin{cases}F_{g-1, N-g}=F_{4,5 n-5} & \text { under } \mathrm{H}_{0} \\ F_{g-1, N-g, \delta^{2}}=F_{4,5 n-5,3.9 n} & \text { under } \mathrm{H}_{a}\end{cases}
$$

Recall the critical value F^{*} for rejecting H_{0} at level $\alpha=0.05$ is

$$
F^{*}=F_{g-1, N-g, \alpha}=F_{4,5 n-5,0.05}
$$

which can be find in R via the command

```
F.crit = qf(alpha, g-1, N-g, lower.tail=F) # syntax
F.crit = qf(0.05, 4, 5*n-5, lower.tail=F) # sub-in the values
```

By definition,

$$
\begin{aligned}
\text { Power } & =\mathrm{P}\left(\text { reject } H_{0} \mid H_{a} \text { is true }\right) \\
& =\mathrm{P}\left(\text { the non central } F \text { statistic } \geq F^{*}\right) \\
& =\mathrm{P}\left(F\left(g-1, N-g, \delta^{2}\right) \geq F^{*}\right) \\
& =\mathrm{P}\left(F(4,5 n-5,3.9 n) \geq F^{*}\right)
\end{aligned}
$$

which can be found in R via the command
pf (F.crit, g-1, N-g, ncp, lower.tail=F) \# syntax pf (F.crit, 4, $5 * n-5$, ncp=3.9*n, lower.tail=F) \# sub-in values
In R codes, ncp means the "non-centrality parameter."

Now we find the R code to find the power of the ANOVA F-test when n is known. Let's plug in different values of n and see what is the smallest n to make power ≥ 0.95.

```
F.crit = qf(alpha, g-1, N-g, lower.tail=F)
pf(F.crit, g-1, N-g, ncp, lower.tail=F) # syntax
n = 5
F.crit = qf(0.05, 4, 5*n-5, lower.tail=F)
pf(F.crit, 4, 5*n-5, ncp=3.9*n, lower.tail=F)
[1] 0.8995
```

Power is 0.8995 , less than 0.95 . $n=5$ is not high enough
$\mathrm{n}=6$
F.crit $=\mathrm{qf}(0.05,4,5 * n-5$, lower.tail=F) pf(F.crit, 4, 5*n-5, ncp=3.9*n, lower.tail=F) [1] 0.9579

Greater than 0.95 , bingo!
So we need 6 replicates in each of the 5 groups to ensure a power of 0.95 when $\mu_{1}=0.5, \mu_{2}=-0.5, \mu_{3}=1, \mu_{4}=-1, \mu_{5}=0$. Remark: Again, must fully specify H_{a} to calculate sample size.

But σ^{2} is Unknown...

As σ^{2} is usually unknown, here are a few ways to make a guess.

- Make a small-sample pilot study to get an estimate of σ^{2}.
- Based on prior studies or knowledge about the experimental units, can you think of a range of plausible values for σ^{2} ? If so, choose the biggest one.
- You could repeat the sample size calculations for various levels of σ^{2} to see how it affects the needed sample size.

How to Specify the H_{a} ?

As the power of a test depends on the alternative hypothesis H_{a}, that is, the μ_{i} 's, one might has to try several sets of μ_{i} 's to find the appropriate sample size. But how many H_{a} 's we have to try?

- μ_{i} 's only affects power through $\delta^{2}=\sum_{i=1}^{g} \frac{n_{i}\left(\mu_{i}-\mu\right)^{2}}{\sigma^{2}}$. Identical power if two sets of μ_{i} 's have identical δ^{2} values. Here is a useful trick.

1. Suppose we would be interested if any two means differed by D or more.
2. The smallest value of δ^{2} in this case is when two means differ by exactly, D, and the other $g-2$ means are halfway between.
So try $\mu_{1}=D / 2, \mu_{2}=-D / 2$, and $\mu_{i}=0$ for all other groups. Assuming equal sample sizes, μ would be 0 and the non-centrality parameter is

$$
\delta^{2}=\sum_{i} \frac{n\left(\mu_{i}-\mu\right)^{2}}{\sigma^{2}}=\frac{n\left(D^{2} / 4+D^{2} / 4\right)}{\sigma^{2}}=\frac{n D^{2}}{2 \sigma^{2}}
$$

