
STAT 222 Lecture 5-6
Multiple Comparisons

Yibi Huang

1 / 45



Outline

Textbook Coverage: Section 4.4

▶ Why Worry About Multiple Comparisons?
▶ Familywise Error Rate (FEWR)
▶ Simultaneous Confidence Intervals
▶ 4.4.2 Bonferroni’s Method for Pre-planned Comparisons
▶ 4.4.3 Scheffe’s Method for Comparing All Contrasts
▶ 4.4.4 Tukey’s Method for Pairwise Comparisons

Skip 4.4.5 Dunnett Method for Treatment-Versus-Control
Comparisons
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Why Worry About Multiple Comparisons?

Recall that, at level α = 0.05, a hypothesis test will make a Type I
error 5% of the time

▶ Type I error = H0 being falsely rejected when it is true

What if we conduct multiple hypothesis tests?

▶ When 100 H0’s are tested at 0.05 level, even if all H0’s are
true, it’s normal to have 5 being rejected.

▶ When multiple tests are done, it’s very likely that some
significant results may be NOT be TRUE FINDINGS. The
significance must be adjusted
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Why Worry About Multiple Comparisons?

▶ In an experiment, when the ANOVA F-test is rejected, we’d
then compare ALL pairs of treatments, as well as contrasts to
find treatments that are different from others. For an
experiment with g treatments, there are
▶

(
g
2

)
= g(g − 1)

2 pairwise comparisons to make, and
▶ numerous contrasts.

▶ When many H0’s are tested, it’s very likely that some of them
are falsely rejected even if all of H0’s are true as we would
falsely reject every true H0 at 5% level for about 5% of the
time.
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7 groups of observations of size 4 each are generated from the
N(0, 1) distribution.

g = 7 # number of treatments
n = 4 # number of replicates per treatment
trt = gl(g, n, labels=LETTERS[1:g]) # Treatment: A, B, C, D, E, F, G
y = rnorm(g*n, mean=0, sd = 1) # Standard normal
dat.tmp = data.frame(trt,y)
library(ggplot2)
ggplot(dat.tmp, aes(x=trt, y=y)) + geom_point()

−2
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0

1

A B C D E F G
trt

y
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As all the y ’s are generated from the N(0, 1) distribution, no pair
of treatments should be significantly different, but . . .

library(emmeans)
mod1 = aov(y ~ trt)
mod1emm = emmeans(mod1, "trt")
pwpm(mod1emm, adjust="none")

A B C D E F G
A [-0.1251] 0.9181 0.9805 0.9177 0.3162 0.1828 0.3836
B 0.0755 [-0.2006] 0.8987 0.8367 0.3667 0.1532 0.4408
C -0.0180 -0.0935 [-0.1071] 0.9371 0.3050 0.1905 0.3708
D -0.0759 -0.1515 -0.0579 [-0.0492] 0.2707 0.2169 0.3313
E 0.7452 0.6696 0.7632 0.8211 [-0.8703] 0.0255 0.8924
F -1.0000 -1.0755 -0.9820 -0.9240 -1.7451 [ 0.8749] 0.0340
G 0.6458 0.5703 0.6638 0.7218 -0.0993 1.6458 [-0.7709]

Row and column labels: trt
Upper triangle: P values
Diagonal: [Estimates] (emmean)
Lower triangle: Comparisons (estimate) earlier vs. later
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Repeat the following several times.

g = 7 # number of treatments
n = 4 # number of replicates per treatment
trt = gl(g, n, labels=LETTERS[1:g]) # Treatment: A, B, C, D, E, F, G
y = rnorm(g*n, mean=0, sd = 1) # Standard normal
mod1 = aov(y ~ trt)
mod1emm = emmeans(mod1, "trt")
pwpm(mod1emm, adjust="none")

How often do you see a significant difference?
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Familywise Error Rate (FWER)
Given a single null hypothesis H0,

▶ recall a Type I error occurs when H0 is true but is rejected;
▶ the significance level or Type I error rate of a test is the

chance of making a Type I error.

Given a family of null hypotheses H01, H02, . . ., H0k ,

▶ a familywise Type I error occurs if H01, H02, . . ., H0k are all
true but at least one of them is rejected

▶ The familywise error rate (FWER), also called
experimentwise error rate, or overall significance level is
defined as the chance of making a familywise Type I error

FWER = P(at least one of H01, . . . , H0k is falsely rejected)

▶ FWER depends on the family.
The larger the family, the larger the FWER.
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Simultaneous Confidence Intervals

Similarly, a 95% confidence interval (L, U) for a parameter θ may
fail to cover θ 5% of the time.

When we construct multiple 95% confidence intervals

{(L1, U1), (L2, U2), . . . , (Lk , Uk)}

for several different parameters θ1, θ2, . . . , θk , the chance that at
least one of the intervals fails to cover the parameter can be a lot
more than 5%.
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Simultaneous Confidence Intervals

Given a family of parameters {θ1, θ2, . . . , θk}, a 100(1 − α)%
simultaneous confidence intervals is a family of intervals

{(L1, U1), (L2, U2), . . . , (Lk , Uk)}

that
P(Li ≤ θi ≤ Ui for all i) > 1 − α.

Note here that Li ’s and Ui ’s are random variables that depends on
the data.
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Multiple Comparisons
To account for multiple comparisons, we need to make our C.I.’s
wider, and the critical values larger to ensure the chance of making
any false rejection < α.

We will introduce several multiple comparison methods.

All of them produce simultaneous C.I.’s of the form

estimate ± (critical value) × (SE of the estimate)

and reject H0 when

|t0| = |estimate|
SE of the estimate > critical value.

Here the “estimates” and “SEs” are identical to those in the usual
t-tests and t-intervals. Only the critical values change with the
adjustment methods.
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What is Data Snooping

If one looks at data first and decides which contrast(s) to test
based on what they see, that is data snooping, e.g.,

▶ when one decides to compare treatment A & E since A has
the highest mean and E the lowest

▶ one decides to test the contrast

C = µA + µC
2 − µB + µD

2

since A and C have higher means than B and D
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Why is Data Snooping Problematic?

▶ When people choose the pair of treatments with the greatest
difference or contrast with a big effect after looking at data,
they have implicitly tested many pairs and contrasts that are
unlikely to be significant. Effectively, they have conducted
many tests. They cannot pretend as if they’ve just done one.

▶ If a comparison or contrast is determined after looking at the
data (data snooping), one must adjust for multiple
comparisons.
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4.4.2 Bonferroni’s Method for Pre-planned
Comparisons
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Bonferroni’s Simultaneous CIs for Pre-planned Contrasts

Consider a multi-sample problem

yij = µi + εij , i = 1, . . . , g , j = 1, . . . , ni .

Given m pre-planned contrasts: C1, C2, . . . , Cm, where
Ck =

∑g
i=1 cikµi for k = 1, . . . , m, recall the estimates and SE’s of

these contrasts are respectively.

Ĉk =
g∑

i=1
cik ȳi• and SE(Ĉk) =

√√√√MSE ×
g∑

i=1

c2
ik

ni

The 100(1 − α)% simultaneous confidence interval for Ck is

Ĉk ± tN−g ,α/2/m × SE(Ĉk) for k = 1, . . . , m.
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Bonferroni’s Tests for Multiple Pre-planned Contrasts
Consider the family of tests for m pre-planned contrasts
C1, . . . , Cm,

H01 : C1 = 0 v.s. Ha1 : C1 ̸= 0
...

H0m : Cm = 0 v.s. Ham : Cm ̸= 0

Bonferroni’s method rejects H0k : Ck = 0 against Hak : Ck ̸= 0
controlling FWER at α if

|t-stat| = |Ĉk |
SE(Ĉk)

> tN−g ,α/2/m.

or equivalently if

P-value =
−|t| |t|

=2*pt(abs(t), df, lower.tail=F)<
α

m .
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Proof of Bonferroni’s Method (1)

If H0k : Ck = 0 is true, the t-statistic = Ĉk/SE(Ĉk) has a
t-distribution with N − g degrees of freedom, we know

P
(
|t-stat| > tN−g ,α/2/m

)
= α

m

− tdf,α 2 m tdf,α 2 m

α

2m

α

2m
1 −

α

m

If we reject H0k : Ck = 0 only when |t-stat| > tN−g ,α/2/m, the
chance we reject H0k when it is true is

P(H0k is rejected) = P
(
|t-stat| > tN−g ,α/2/m

)
= α

m .
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Proof of Bonferroni’s Method (2)

Using Bonferroni’s inequality in probability theory,

P(A1 or A2 or · · · or Am) ≤ P(A1) + P(A2) + · · · + P(Am)

given that H01, . . . , H0m being all true, we have

FWER = P(at least one of H01, . . . , H0m is rejected)
≤

∑m
k=1

P(H0k is rejected)

= α

m + · · · + α

m︸ ︷︷ ︸
m times

= α
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Proof of Bonferroni’s Method (3)

Likewise, the interval

Ĉk ± tN−g ,α/2/m × SE(Ĉk) for k = 1, . . . , m.

would only fail to include Ck with probability α/m.

Using Bonferroni’s inequality,

P(any of the m CI’s Ĉk ± tN−g ,α/2/mSE(Ĉk) fail to include Ck)

=
m∑

k=1
P(Ĉk ± tN−g ,α/2/m × SE(Ĉk) fail to include Ck)

= α

m + · · · + α

m︸ ︷︷ ︸
m times

= α
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Example: Grass/Weed Competition

Big bluestem was first seeded in these plots.
One year later, quack grass was seeded to each plot.

Response: Percentage of living material in each plot that is big
bluestem one year after quack grass was seeded.

Treatment 1N 1Y 2N 3N 4N 4Y
yij 97 83 85 64 52 48

96 87 84 72 56 58
92 78 78 63 44 49
95 81 79 74 50 53

Mean ȳi• 95 82.25 81.5 68.25 50.5 52
Size ni 4 4 4 4 4 4

, MSE = 17.97
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Example — Grass/Weed (Bonferroni’s Method)
Suppose we are ONLY interested in the 3 contrasts below:

C1 = µ1N−µ1Y , C2 = µ4N−µ4Y , C3 = µ1N + µ4N
2 −µ1Y + µ4Y

2 .

Their estimates and SE’s are
estimate SE

C1 95 − 82.25 = 12.75
√

17.97( 1
4 + 1

4 ) ≈ 2.9977

C2 50.5 − 52 = −1.5
√

17.97( 1
4 + 1

4 ) ≈ 2.9977

C3
95+50.5

2 − 82.25+52
2 =5.625

√
17.97( 0.52

4 + (−0.5)2

4 + 0.52

4 + (−0.5)2

4 ) ≈ 2.11967

As there are m = 3 contrasts, the critical value is
qt(0.05/2/3, df=18, lower.tail=F)
[1] 2.639

Bonferroni’s 95% Simultaneous CI for the 3 contrasts are
C1 : 12.75 ± 2.639 × 2.9977 ≈ 12.75 ± 7.91 = (4.84, 20.66)
C2 : −1.5 ± 2.639 × 2.9977 ≈ −1.5 ± 7.91 = (−9.41, 6.41)
C3 : 5.625 ± 2.639 × 2.11967 ≈ 5.625 ± 5.594 = (0.031, 11.219)

21 / 45



Bonferroni’s Method in R
grass = read.table(

"http://www.stat.uchicago.edu/~yibi/s222/grassweed.txt", h=T)
grass$trt = as.factor(grass$trt)
levels(grass$trt)
[1] "1N" "1Y" "2N" "3N" "4N" "4Y"
mod1 = aov(percent ~ trt, data=grass)
mod1emm = emmeans(mod1, "trt")
contrast(mod1emm, list(C1=c(1, -1, 0, 0, 0, 0),

C2=c(0, 0, 0, 0, 1, -1),
C3=c(1, -1, 0, 0, 1, -1)/2),

infer=c(T,T), level=0.95, adjust="bonferroni")
contrast estimate SE df lower.CL upper.CL t.ratio p.value
C1 12.75 3.00 18 4.839 20.66 4.253 0.0014
C2 -1.50 3.00 18 -9.411 6.41 -0.500 1.0000
C3 5.62 2.12 18 0.031 11.22 2.654 0.0485

Confidence level used: 0.95
Conf-level adjustment: bonferroni method for 3 estimates
P value adjustment: bonferroni method for 3 tests
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Compared w/ the CIs and the P-values without Bonferroni’s
adjustment.

contrast(mod1emm, list(C1=c(1, -1, 0, 0, 0, 0),
C2=c(0, 0, 0, 0, 1, -1),
C3=c(1, -1, 0, 0, 1, -1)/2),

infer=c(T,T), level=0.95, adjust="none")
contrast estimate SE df lower.CL upper.CL t.ratio p.value
C1 12.75 3.00 18 6.45 19.0 4.253 0.0005
C2 -1.50 3.00 18 -7.80 4.8 -0.500 0.6229
C3 5.62 2.12 18 1.17 10.1 2.654 0.0162

Confidence level used: 0.95

Note Bonferroni’s P-value is simply the unadjusted P-value
multiplied by m, cap at 1.
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Limitation of Bonferroni’s Method

▶ The number of tests m must be finite.
▶ Bonferroni’s method works OK when the number of tests m is

small
▶ When the number of tests m is large (> 10), Bonferroni often

get too conservative (too hard to reject H0) than necessary.
The actual FWER can be much less than α.
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4.4.3 Scheffe’s Method for Comparing All
Contrasts

25 / 45



Scheffe’s Method for Comparing All Contrasts
For multi-sample data with a total of N observations divided into
g groups. Consider a contrast C =

∑g
i=1 ciµi . Recall

Ĉ =
g∑

i=1
ci ȳi•, SE(Ĉ) =

√√√√MSE ×
g∑

i=1

c2
i

ni

▶ 100(1 − α)% Scheffe’s simultaneous C.I. for a contrast C is

Ĉ ±
√

(g − 1)Fg−1,N−g ,αSE(Ĉ)
▶ For testing H0 : C = 0 v.s. Ha : C ̸= 0, reject H0 when

|t0| = |Ĉ |
SE(Ĉ)

>
√

(g − 1)Fg−1,N−g ,α

where Fg−1,N−g ,α is the value such that

Fg−1,N−g,α

α1 − α

Density curve of F−distribution w/
 g−1 and N−g degrees of freedom
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Scheffe’s Method for Comparing All Contrasts

▶ Controls FWER at α,
where the family is ALL POSSIBLE CONTRASTS
C = ∑g

i=1 ciµi of the g group means µi

▶ Should be used if one has contrast(s) not pre-planned in
advance.

▶ Protects against data snooping!
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Proof of Scheffe’s Method (1)
Observe that

Ĉ =
∑g

i=1
ci ȳi• =

(∑g
i=1

ci ȳi•
)
−ȳ••

∑g
i=1

ci︸ ︷︷ ︸
=0

=
∑g

i=1
ci(ȳi•−ȳ••).

By Cauchy-Schwartz Inequality |
∑

aibi | ≤
√∑

a2
i

∑
b2

i and let
ai = ci√ni

and bi = √ni(ȳi• − ȳ••), we get

|Ĉ | =
∣∣∣∣∣

g∑
i=1

ci(ȳi• − ȳ••)
∣∣∣∣∣ ≤

√√√√ g∑
i=1

c2
i

ni

g∑
i=1

ni(ȳi• − ȳ••)2

Recall that SStrt =
∑g

i=1 ni(ȳi• − ȳ••)2, we get the inequality

|Ĉ | ≤

√√√√ g∑
i=1

c2
i

ni
SStrt .
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Proof of Scheffe’s Method (2)
Recall the t-statistic for testing H0: C = 0 is t0(C) = Ĉ

SE(Ĉ)
, and

using the inequality |Ĉ | ≤
√∑g

i=1
c2

i
ni

SStrt proved in the previous
page, we have

|t0(C)| = |Ĉ |
SE(Ĉ)

= |Ĉ |√
MSE

∑g
i=1

c2
i

ni

≤

√∑g
i=1

c2
i

ni
SStrt√

MSE
∑g

i=1
c2

i
ni

=

√
SStrt
MSE

Recall F = MStrt
MSE is the ANOVA F -statistic, we have

|t0(C)| ≤

√
SStrt
MSE =

√
(g − 1)MStrt

MSE =
√

(g − 1)F .

We thus get a uniform upper bound for the t-statistic for any
contrast C

|t0(C)| ≤
√

(g − 1)F .
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Proof of Scheffe’s Method (3)
Recall that F has a F -distribution with g − 1 and N − g degrees of
freedom, so P(F > Fg−1,N−g ,α) = α.

Fg−1,N−g,α

α1 − α

Density curve of F−distribution w/
 g−1 and N−g degrees of freedom

Since |t0(C)| <
√

(g − 1)F , we can see

FWER = P(H0: C = 0 is rejected for any contrast C)

= P
(

|t0(C)| >
√

(g − 1)Fα,g−1,N−g for any contrastC
)

≤ P
(√

(g − 1)F >
√

(g − 1)Fα,g−1,N−g

)
= P(F > Fα,g−1,N−g) = α.
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A Contrast for Nitrogen Effect
Group 1N 1Y 2N 3N 4N 4Y

ȳi• 95 82.25 81.5 68.25 50.5 52, MSE = 17.97

The contrast we consider is

C = µ1N + µ1Y
2 − µ4N + µ4Y

2
in which (c1N, c1Y, c2N, c3N, c4N , c4Y) = (0.5, 0.5, 0, 0, −0.5, −0.5),
estimated to be

Ĉ = ȳ1N• + ȳ1Y •

2 − ȳ4N• + ȳ4Y •

2 = 95 + 82.25
2 − 50.5 + 52

2 = 37.375.

with the standard error

SE(Ĉ) =

√√√√MSE
g∑

i=1

c2
i

ni
=

√
17.97

(0.52

4 + 0.52

4 + (−0.5)2

4 + (−0.5)2

4

)
≈ 2.12.

To test H0: C = 0 v.s. Ha: C ̸= 0, the t-statistic is

t = Ĉ
SE(Ĉ)

≈ 37.375
2.12 ≈ 17.63.
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A Contrast for Nitrogen Effect
Scheffe’s critical value controlling FWER at 0.05 is√

(g − 1)Fg−1,N−g ,α =
√

(6 − 1)F6−1,24−6,0.05

≈
√

(6 − 1) × 2.773 ≈ 3.723

qf(0.05, df1=6-1, df2=24-6, lower.tail=F)
[1] 2.773
sqrt((6-1)*qf(0.05, df1=6-1, df2=24-6, lower.tail=F))
[1] 3.723

▶ Scheffe’s critical value 3.723 means that: if all treatments are
equal, the contrast with the greatest t-statistic will exceed
3.723 for only 5% of the time

▶ The t-statistic 17.63 for the nitrogen effect contrast is far
above the critical value 3.723

▶ Conclusion: The contrast is highly significant, even if the
contrast was suggested by data snooping
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Scheffe’s Simultaneous CI for Contrasts
If the Nitrogen effect contrast

C = µ1N + µ1Y
2 − µ4N + µ4Y

2

is considered after looking at the data (suggested by data
snooping), it’s safer to use Scheffe’s 95% simultaneous CI

Ĉ ±
√

(g − 1)Fg−1,N−g ,αSE(Ĉ) ≈ 37.375 ± 3.723 × 2.12

≈ 37.375 ± 7.893 ≈ (29.482, 45.268)

where the critical value is
√

(g − 1)Fg−1,N−g ,α =√
(6 − 1)F6−1,24−6,0.05 ≈

√
(6 − 1) × 2.773 ≈ 3.723.

sqrt((6-1)*qf(0.05, df1=6-1, df2=24-6, lower.tail=F))
[1] 3.723
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Scheffe’s Method in R

To get the correct Scheffe’s simultaneous CI and P-value, one must

▶ specify adjust ="scheffe",
▶ apply summary() on contrast(), and
▶ specify scheffe.rank = g-1

summary(contrast(mod1emm, list(C4=c(1, 1, 0, 0, -1, -1)/2),
infer=c(T,T), level=0.95, adjust="scheffe"), scheffe.rank = 5)

contrast estimate SE df lower.CL upper.CL t.ratio p.value
C4 37.4 2.12 18 29.5 45.3 17.632 <.0001

Confidence level used: 0.95
Conf-level adjustment: scheffe method with rank 5
P value adjustment: scheffe method with rank 5

Without doing all three things above, the reported simultaneous CI
and P-value are not correct, as shown in the next page.
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Incorrect Scheffe’s Method in R
Not applying summary() on contrast(), and not specifying
scheffe.rank = g-1:
contrast(mod1emm, list(C4=c(1, 1, 0, 0, -1, -1)/2),

infer=c(T,T), level=0.95, adjust="scheffe")
contrast estimate SE df lower.CL upper.CL t.ratio p.value
C4 37.4 2.12 18 32.9 41.8 17.632 <.0001

Confidence level used: 0.95
Conf-level adjustment: scheffe method with rank 1
P value adjustment: scheffe method with rank 1

Not applying summary() on contrast()

contrast(mod1emm, list(C4=c(1, 1, 0, 0, -1, -1)/2),
infer=c(T,T), level=0.95, adjust="scheffe", scheffe.rank = 5)

contrast estimate SE df lower.CL upper.CL t.ratio p.value
C4 37.4 2.12 18 32.9 41.8 17.632 <.0001

Confidence level used: 0.95
Conf-level adjustment: scheffe method with rank 1
P value adjustment: scheffe method with rank 1 35 / 45



Scheffe’s Method in R on Several Contrasts
Recall we considered the 3 contrasts below when demonstrating
the Bonferroni’s method.

C1 = µ1N−µ1Y , C2 = µ4N−µ4Y , C3 = µ1N + µ4N
2 −µ1Y + µ4Y

2 .

summary(contrast(mod1emm, list(C1=c(1, -1, 0, 0, 0, 0),
C2=c(0, 0, 0, 0, 1, -1),
C3=c(1, -1, 0, 0, 1, -1)/2),

infer=c(T,T), level=0.95, adjust="scheffe"), scheffe.rank=5)
contrast estimate SE df lower.CL upper.CL t.ratio p.value
C1 12.75 3.00 18 1.59 23.91 4.253 0.0193
C2 -1.50 3.00 18 -12.66 9.66 -0.500 0.9982
C3 5.62 2.12 18 -2.27 13.52 2.654 0.2683

Confidence level used: 0.95
Conf-level adjustment: scheffe method with rank 5
P value adjustment: scheffe method with rank 5

Note C3 is not significant after Scheffe’s adjustment though it’s
significant after Bonferroni’s adjustment of 3 contrasts
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4.4.4 Tukey Method for Pairwise Comparisons
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4.4.4 Tukey Method for Pairwise Comparisons

▶ Family: ALL PAIRWISE COMPARISON µi − µk
▶ If equal size in all groups (n1 = . . . = ng = n), observe that

|t0| = |ȳi• − ȳk•|√
MSE

(
1
n + 1

n

) ≤ ȳmax − ȳmin√
2MSE/n

= q√
2

.

in which q = ȳmax−ȳmin√
MSE/n

has a studentized range distribution.
▶ The critical values qg ,N−g ,α for the studentized range

distribution can be found on p.814-815, Table A.8 in the
textbook

▶ Controls the FWER exactly at α if equal group sizes
(n1 = . . . = ng); no more than α if unequal group sizes
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Tukey’s Method for Pairwise Comparisons

For all 1 ≤ i ̸= k ≤ g , the 100(1 − α)% Tukey’s simultaneous C.I.
for µi − µk is

ȳi• − ȳk• ± qg ,N−g ,α√
2

SE(ȳi• − ȳk•)

For H0 : µi − µk = 0 v.s. Ha : µi − µk ̸= 0, reject H0 if

|t0| = | ȳi• − ȳk•|
SE(ȳi• − ȳk•) >

qg ,N−g ,α√
2

In both the C.I. and the test,

SE(ȳi• − ȳk•) =
√

MSE
( 1

ni
+ 1

nk

)
.
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Tukey’s HSD
If equal group sizes (n1 = . . . = ng = n), to be significant at
FWER = α based Tukey’s correction, the mean difference ȳi• − ȳk•
must be at least

qg ,N−g ,α√
2

×
√

MSE
(1

n + 1
n

)
.

This is called Tukey’s Honest Significant Difference (Tukey’s HSD).
R command to find qg ,N−g ,α: qtukey(1-alpha,g,N-g)

qtukey(0.95, 6, 18)/sqrt(2)
[1] 3.178

For the Grass/Weed example, Tukey’s HSD is

3.178 ×
√

17.97
(1

4 + 1
4

)
≈ 9.526

4N 4Y 3N 2N 1Y 1N
50.50 52.00 68.25 81.50 82.25 95.00
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Tukey’s Method in R

library(emmeans)
mod1 = aov(percent ~ trt, data=grass)
mod1emm = emmeans(mod1, "trt")
pairs(mod1emm, infer=c(T,T), level=0.95, adjust="tukey")

See the R output on the next page
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contrast estimate SE df lower.CL upper.CL t.ratio p.value
1N - 1Y 12.75 3 18 3.22 22.28 4.253 0.0054
1N - 2N 13.50 3 18 3.97 23.03 4.503 0.0032
1N - 3N 26.75 3 18 17.22 36.28 8.924 <.0001
1N - 4N 44.50 3 18 34.97 54.03 14.845 <.0001
1N - 4Y 43.00 3 18 33.47 52.53 14.344 <.0001
1Y - 2N 0.75 3 18 -8.78 10.28 0.250 0.9998
1Y - 3N 14.00 3 18 4.47 23.53 4.670 0.0022
1Y - 4N 31.75 3 18 22.22 41.28 10.592 <.0001
1Y - 4Y 30.25 3 18 20.72 39.78 10.091 <.0001
2N - 3N 13.25 3 18 3.72 22.78 4.420 0.0038
2N - 4N 31.00 3 18 21.47 40.53 10.341 <.0001
2N - 4Y 29.50 3 18 19.97 39.03 9.841 <.0001
3N - 4N 17.75 3 18 8.22 27.28 5.921 0.0002
3N - 4Y 16.25 3 18 6.72 25.78 5.421 0.0005
4N - 4Y -1.50 3 18 -11.03 8.03 -0.500 0.9955

Confidence level used: 0.95
Conf-level adjustment: tukey method for comparing a family of 6 estimates
P value adjustment: tukey method for comparing a family of 6 estimates
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Note that the widths of all CIs above are 2x of the HSD.
E.g., the width of the CI for 1Y-1N is 22.28 − 3.22 = 19.06 is
twice of HSD ≈ 9.526.
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Summary of Multiple Comparison Adjustments

Critical Value to
Method Family of Tests Keep FWER < α

t-test a single contrast tN−g ,α/2

Tukey all pairwise qg ,N−g ,α/
√

2
comparisons

Bonferroni varies tN−g ,α/(2m), where
m = # of preplanned contrasts

Scheffe all contrasts
√

(g − 1)Fg−1,N−g ,α
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Which Procedures to Use?

▶ Use BONFERRONI when only interested in a small number of
planned contrasts (or pairwise comparisons)

▶ Use TUKEY when only interested in all (or most) pairwise
comparisons of means

▶ Use SCHEFFE when doing anything that could be considered
data snooping – i.e. for any unplanned contrasts
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