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Outine

Textbook Coverage: Section 4.1-4.3

▶ Inference for a Single Mean µi in a Multi-Sample Problem
▶ Pairwise Comparisons
▶ Contrasts
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Last Lecture
One-way ANOVA F -test for the Grass/Weed Competition Study:

H0 : µ1N = µ1Y = µ2N = µ3N = µ4N = µ4Y

Ha : µ1N, µ1Y, µ2N, µ3N, µ4N, µ4Y not all equal

grass = read.table(
"http://www.stat.uchicago.edu/~yibi/s222/grassweed.txt", h=T)

mod1 = lm(percent ~ trt, data=grass)
anova(mod1)
Analysis of Variance Table

Response: percent
Df Sum Sq Mean Sq F value Pr(>F)

trt 5 6398 1280 71.2 3.2e-11
Residuals 18 323 18

▶ Tiny P-value ⇒ significant differences in the means.
What should we do next?
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Inference for a Single Group Mean µi in a
Multi-Sample Problem
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Notations for the t-Critical Values

In the remainder of the course, we use tdf ,α/2 to denote the value
that

P(−tdf ,α/2 < T < tdf ,α/2) = 1 − α

where T has a t-distribution w/ df degrees of freedom

− tdf,α 2 tdf,α 2

α 2α 2 1 − α

which can be found in R using qt():

qt(alpha/2, df, lower.tail=F)

90% CI 95% CI 99% CI
tdf,0.1/2 tdf,0.05/2 tdf,0.01/2

↓ ↓ ↓
df α

0.1 0.05 0.025 0.01 0.005
1 3.08 6.31 12.71 31.82 63.66
2 1.89 2.92 4.30 6.96 9.92
3 1.64 2.35 3.18 4.54 5.84
4 1.53 2.13 2.78 3.75 4.60
5 1.48 2.02 2.57 3.36 4.03
6 1.44 1.94 2.45 3.14 3.71
7 1.41 1.89 2.36 3.00 3.50
...

...
...

...
...

...
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Confidence Interval (CI) for One-Sample Mean (Review)
If y1, y2, . . . , yn are i.i.d. ∼ (µ, σ2),

by CLT ⇒ Z = ȳ − µ

σ/
√

n ∼ N(0, 1).

• valid for all n if yi ’s are normal
• approx. valid for large n

if yi ’s are not normal

However, σ is unknown. We estimate it with s =
√∑

i (yi −ȳ)2

n−1

t = ȳ − µ

s/
√

n ∼ tn−1

• valid for all n if yi ’s are normal
• approx. valid for large n

if yi ’s are not normal

Inverting P(−tn−1,α/2 < t = ȳ−µ
s/

√
n < tn−1,α/2) = 1 − α, we get the

(1 − α)100% CI for µ:

ȳ ± tn−1,α/2 × s√
n
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A Naive CI for a Group Mean in a Multi-Sample Problem
Model for the multi-sample problem:

yij = µi + εij , εij ∼ N(0, σ2)

⇒ Z = ȳk• − µk
σ/

√nk
∼ N(0, 1)

µ1

µ2

µ3

µ4

σ σ

σ σ

σ σ

σ σ

Distribution of
 Population 1

Distribution of
 Population 2

Distribution of
 Population 3

Distribution of
 Population 4

A naive estimate for the unknown σ is

sk = sample SD of the kth group =

√∑nk
j=1(ykj − ȳk•)2

nk − 1 .

A naive but valid 100(1 − α)% CI for µk would be

ȳk• ± tnk−1,α/2 × sk√nk
since t = ȳi• − µk

sk/
√nk

∼ tnk−1.

which uses only data in the kth group, ignoring the rest, not
optimal!

7 / 43



A Naive CI for a Group Mean in a Multi-Sample Problem
Model for the multi-sample problem:

yij = µi + εij , εij ∼ N(0, σ2)

⇒ Z = ȳk• − µk
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nk − 1 .

A naive but valid 100(1 − α)% CI for µk would be
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A Better CI for a Group Mean in a Multi-Sample Problem
As all the groups have a common SD σ,
data in other groups cannot help
estimating µk but they can help
estimating σ. A better estimate for σ is

σ̂ =
√

MSE =

√∑g
i=1

∑ni
j=1(yij − ȳi•)2

N − g µ1

µ2

µ3

µ4

σ σ

σ σ

σ σ

σ σ

Distribution of
 Population 1

Distribution of
 Population 2

Distribution of
 Population 3

Distribution of
 Population 4

We have
t = ȳk• − µk

σ̂/
√nk

= ȳi• − µk√
MSE/

√nk
∼ tN−g ,

from which, a better 100(1 − α)% CI for µk is

ȳk• ± tN−g ,α/2

√
MSE

√nk
▶ using observations in all groups to estimate the unknown σ
▶ higher df = N − g , not nk − 1
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Example: Grass/Weed Competition
Treatment 1N 1Y 2N 3N 4N 4Y
Mean ȳi• 95 82.25 81.5 68.25 50.5 52
SD si 2.16 3.775 3.512 5.56 5.00 4.546

, MSE = 17.97

The naive 95% CI for µ4Y using only data in Group 4Y:

ȳ4Y • ± tn4Y−1,α/2
s4Y√n4Y

≈ 52 ± 3.182 × 4.546√
4

≈ 52 ± 7.23.

The better 95% CI for µ4Y using the MSE is

ȳi• ± tN−g,α/2

√
MSE

√n4Y
= 52 ± 2.101 ×

√
17.97√

4
≈ 52 ± 4.45

where n4Y = 4, N = 24, g = 6, α = 0.05. Using R, we can find
tn4Y−1,α/2 = t4−1,0.05/2 ≈ 3.182 and tN−g,α/2 = t24−6,0.05/2 ≈ 2.101.

qt(0.05/2, df = 4-1, lower.tail=F)
[1] 3.182
qt(0.05/2, df = 24-6, lower.tail=F)
[1] 2.101

Observe the naive CI has a bigger margin of error 7.23 than the margin of
error 4.45 for the CI using the MSE.
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ȳi• ± tN−g,α/2

√
MSE

√n4Y
= 52 ± 2.101 ×

√
17.97√

4
≈ 52 ± 4.45

where n4Y = 4, N = 24, g = 6, α = 0.05. Using R, we can find
tn4Y−1,α/2 = t4−1,0.05/2 ≈ 3.182 and tN−g,α/2 = t24−6,0.05/2 ≈ 2.101.

qt(0.05/2, df = 4-1, lower.tail=F)
[1] 3.182
qt(0.05/2, df = 24-6, lower.tail=F)
[1] 2.101

Observe the naive CI has a bigger margin of error 7.23 than the margin of
error 4.45 for the CI using the MSE.

9 / 43



Interpretation of the better 95% CI for µ4Y: 52 ± 4.45
For plots received 800 mg N/kg soil and 1 cm of irrigation per
week, we estimate that 52.0% of living material is bluestem (grass)
on average with a margin of error of 4.45% at 95% confidence.
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emmeans Library in R

The R library emmeans can produce confidence intervals for each
group mean.

Need to install the emmeans library first, by the following
command. You only need to install ONCE!

install.packages("emmeans") # JUST RUN THIS ONCE!

Once installed, must load emmeans at every R session before it can
be used.

library(emmeans)

The Section 3.9 and 4.7 of the textbook use the library lsmeans,
which is now obsolete and replaced by the emmeans library.
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grass = read.table(
"http://www.stat.uchicago.edu/~yibi/s222/grassweed.txt", h=T)

mod1 = lm(percent ~ trt, data=grass)
emmeans(mod1, "trt", level=0.95)
trt emmean SE df lower.CL upper.CL
1N 95.0 2.12 18 90.5 99.5
1Y 82.2 2.12 18 77.8 86.7
2N 81.5 2.12 18 77.0 86.0
3N 68.2 2.12 18 63.8 72.7
4N 50.5 2.12 18 46.0 55.0
4Y 52.0 2.12 18 47.5 56.5

Confidence level used: 0.95

or
mod2 = aov(percent ~ trt, data=grass)
emmeans(mod2, "trt", level=0.95)
trt emmean SE df lower.CL upper.CL
1N 95.0 2.12 18 90.5 99.5
1Y 82.2 2.12 18 77.8 86.7
2N 81.5 2.12 18 77.0 86.0
3N 68.2 2.12 18 63.8 72.7
4N 50.5 2.12 18 46.0 55.0
4Y 52.0 2.12 18 47.5 56.5

Confidence level used: 0.95
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Pairwise Comparison
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Pairwise Comparison of Group Means
Model for the multi-sample problem:

yij = µi + εij , εij ∼ N(0, σ2)

Consider the pairwise comparison of group means µk − µℓ:

▶ the estimator is ȳk• − ȳℓ•

▶ Since ȳk• and ȳℓ• are independent, we have

V(ȳk• − ȳℓ•) = V(ȳk•) + V(ȳℓ•) = σ2

nk
+ σ2

nℓ

▶ SD(ȳk• − ȳℓ•) =
√
V(ȳk• − ȳℓ•) =

√
σ2

( 1
nk

+ 1
nℓ

)
,

▶ SE(ȳk• − ȳℓ•) = ŜD(ȳk• − ȳℓ•) =
√

MSE
( 1

nk
+ 1

nℓ

)
.

▶ t = ȳk• − ȳℓ• − (µk − µℓ)
SE(ȳk• − ȳℓ•) = ȳk• − ȳℓ• − (µk − µℓ)√

MSE
(

1
nk

+ 1
nℓ

) ∼ tN−g
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▶ Since ȳk• and ȳℓ• are independent, we have
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√

MSE
( 1

nk
+ 1

nℓ

)
.

▶ t = ȳk• − ȳℓ• − (µk − µℓ)
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Confidence Intervals (CIs) for Pairwise Differences
The 100(1 − α)% confidence interval (C.I.) for µk − µℓ is

ȳk• − ȳℓ• ± tN−g,α/2

√
MSE

(
1
nk

+ 1
nℓ

)
.

Note this is neither the two-sample CI assuming equal SDs

ȳk•−ȳℓ•±tnk +nℓ−2,α/2

√
s2
p

( 1
nk

+ 1
nℓ

)
, where s2

p = (nk −1)s2
k +(nℓ−1)s2

ℓ
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ȳk•−ȳℓ•±tnk +nℓ−2,α/2

√
s2
p

( 1
nk

+ 1
nℓ

)
, where s2

p = (nk −1)s2
k +(nℓ−1)s2

ℓ

nk + nℓ − 2 ,

nor the two-sample CI not assuming equal SDs
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Hypothesis Tests for Pairwise Differences
For testing the hypothesis H0: µk − µℓ = 0, the test statistic is

t = yk• − y ℓ•
SE(yk• − y ℓ•) = yk• − y ℓ•√

MSE
(

1
nk

+ 1
nℓ

) ∼ tN−g

If Ha: µk ̸= µℓ (two-sided),

P-value =
−|t| |t|

=2*pt(abs(t), df, lower.tail=F)

If Ha: µk < µℓ (lower one-sided),

P-value =
t

= pt(t, df)

If Ha: µk > µℓ (upper one-sided),

P-value =
t

= pt(t, df, lower.tail=F)

The bell curve above is the t-curve with df = N − g .
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Example: CI for Pairwise Diff. (Grass/Weed)
Group 1N 1Y 2N 3N 4N 4Y

Mean ȳi• 95 82.25 81.5 68.25 50.5 52
SD si 2.16 3.775 3.512 5.56 5.00 4.546

, MSE = 17.97

A 95% confidence interval for µ1N − µ1Y is

ȳ1N• − ȳ1Y • ± t18,0.025 ×
√

MSE
( 1

n1N
+ 1

n1Y

)

= 95 − 82.25 ± 2.101 ×
√

17.97
(1

4 + 1
4

)
= 12.75 ± 6.30

in which t18,0.025 = 2.101 is found using the R command

qt(0.05/2, df = 18, lower.tail=F)
[1] 2.101

Irrigation reduced the percentage of grass (bluestem) by 12.75%
on average, with a margin of error of 6.30%, at 95% confidence.
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Example: Hyp Tests for Pairwise Diff. (Grass/Weed)

To test whether treatments 1N and 1Y have the same effect

H0 : µ1N − µ1Y = 0 v.s. Ha : µ1N − µ1Y ̸= 0

the test statistic is

t = ȳ1N• − ȳ1Y •√
MSE

( 1
n1N

+ 1
n1Y

) = 95 − 82.25√
17.97

(
1
4 + 1

4

) ≈ 12.75
2.9975 ≈ 4.253

with df = N − g = 24 − 6 = 18. The two-sided P-value is

2*pt(4.235, df = 18, lower.tail=F)
[1] 0.000498

As the P-value < 0.05, we again confirm that irrigation made
grass (bluestem) less competitive.
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Pairwise t-Tests using emmeans in R

The R library emmeans can perform pairwise comparisons between
all pairs of treatments.

library(emmeans)
mod1 = aov(percent ~ trt, data=grass)
mod1emm = emmeans(mod1, "trt")
pairs(mod1emm, infer=c(T,T), level=0.95, adjust="none")

See the output on the next page.

The output would include both confidence intervals and hypothesis
tests if adding infer=c(T,T).
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contrast estimate SE df lower.CL upper.CL t.ratio p.value
1N - 1Y 12.75 3 18 6.45 19.05 4.253 0.0005
1N - 2N 13.50 3 18 7.20 19.80 4.503 0.0003
1N - 3N 26.75 3 18 20.45 33.05 8.924 <.0001
1N - 4N 44.50 3 18 38.20 50.80 14.845 <.0001
1N - 4Y 43.00 3 18 36.70 49.30 14.344 <.0001
1Y - 2N 0.75 3 18 -5.55 7.05 0.250 0.8053
1Y - 3N 14.00 3 18 7.70 20.30 4.670 0.0002
1Y - 4N 31.75 3 18 25.45 38.05 10.592 <.0001
1Y - 4Y 30.25 3 18 23.95 36.55 10.091 <.0001
2N - 3N 13.25 3 18 6.95 19.55 4.420 0.0003
2N - 4N 31.00 3 18 24.70 37.30 10.341 <.0001
2N - 4Y 29.50 3 18 23.20 35.80 9.841 <.0001
3N - 4N 17.75 3 18 11.45 24.05 5.921 <.0001
3N - 4Y 16.25 3 18 9.95 22.55 5.421 <.0001
4N - 4Y -1.50 3 18 -7.80 4.80 -0.500 0.6229

Confidence level used: 0.95

20 / 43



The pwpm() function in the emmeans library can display the
P-values of pairwise comparison concisely.

pwpm(mod1emm, adjust="none")
1N 1Y 2N 3N 4N 4Y

1N [95.0] 0.0005 0.0003 <.0001 <.0001 <.0001
1Y 12.75 [82.2] 0.8053 0.0002 <.0001 <.0001
2N 13.50 0.75 [81.5] 0.0003 <.0001 <.0001
3N 26.75 14.00 13.25 [68.3] <.0001 <.0001
4N 44.50 31.75 31.00 17.75 [50.5] 0.6229
4Y 43.00 30.25 29.50 16.25 -1.50 [52.0]

Row and column labels: trt
Upper triangle: P values
Diagonal: [Estimates] (emmean)
Lower triangle: Comparisons (estimate) earlier vs. later
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Underline Diagrams (p.88, Section 5.4.1 in Oehlert’s book)
a concise way to summarize pairwise comparisons

1N 1Y 2N 3N 4N 4Y
1N [95.0] 0.0005 0.0003 <.0001 <.0001 <.0001
1Y 12.75 [82.2] 0.8053 0.0002 <.0001 <.0001
2N 13.50 0.75 [81.5] 0.0003 <.0001 <.0001
3N 26.75 14.00 13.25 [68.3] <.0001 <.0001
4N 44.50 31.75 31.00 17.75 [50.5] 0.6229
4Y 43.00 30.25 29.50 16.25 -1.50 [52.0]

How to make a underline diagram?

1. Write out group labels horizontally in increasing order
sorted by group means

2. (Optional) Write the group mean ȳi• under the corresponding
group label

3. Draw a line segment under a set of groups if no two groups in
that set of groups are significantly different from each other

4Y 4N 3N 2N 1Y 1N
50.5 52 68.25 81.5 82.25 95
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Underline Diagrams
Answer the following questions based on the underline diagram for
pairwise comparisons of the 5 treatments A, B, C , D and E in a
randomized experiment.

C B A D E

▶ Order the means of the 5 groups from low to high.

C < B < A < D < E

▶ Check all the pairs that are significantly different from each
other.

B

v

A

v

D

v

E

v v v

C B A D
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Least Significant Difference (LSD)

▶ It’s an awful lot of work to to compare every pair of groups.
One needs to compute the SE, the t-statistic, and P-value for
each pair of groups. When there are g groups, there are(g

2
)

= g(g − 1)/2 pairs to compare with.
▶ When all groups are of the same size n, an easier way to do

pairwise comparisons of all treatments is to compute the
least significant difference (LSD), which is the minimum
amount by which two means must differ in order to be
considered statistically different.

24 / 43



Least Significant Difference (LSD)
▶ When all groups are of the same size n, the SEs of pairwise

comparisons all equal to

SE =
√

MSE
(1

n + 1
n

)

▶ To be significant at level α, the t-statistic for pairwise
comparison

t = ȳk• − ȳℓ•
SE

must be at least tN−g ,α/2 in absolute value
▶ So µk and µℓ are significantly different at level α if and only if

ȳk• − ȳℓ• is at least

tN−g ,α/2

√
MSE

(1
n + 1

n

)
= LSD

in absolute value, which is called the least significant
difference (LSD)
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SE
must be at least tN−g ,α/2 in absolute value

▶ So µk and µℓ are significantly different at level α if and only if
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Example: Least Significant Difference (Grass/Weed)

For the Grass/Weed experiment, the critical value at α = 5%
significance is tN−g ,α/2 = t24−6,0.025 ≈ 2.101, the LSD at 5% level
is

LSD = tN−g ,α/2

√
MSE

(1
n + 1

n

)
= 2.101

√
17.97

(1
4 + 1

4

)
≈ 6.30

Two treatments are significantly different at 5% level if and only if
their means differ by 6.30 or more.

Only the pairs (4Y, 4N) and (2N, 1Y) are not significantly
different, as they are the only pairs differ by less than 6.30 in mean.

4Y 4N 3N 2N 1Y 1N
50.5 52 68.25 81.5 82.25 95
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Contrasts
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Quantities of Interest Other Than Pairwise Differences (1)
For the Grass/Weed experiment, we are also interested in
Q1 Irrigation effect: µ1N − µ1Y or µ4N − µ4Y or the combination

µ1N + µ4N
2 − µ1Y + µ4Y

2
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Quantities of Interest Other Than Pairwise Differences (2)
Q2 Does the irrigation effect change with nitrogen levels?

(µ1N − µ1Y︸ ︷︷ ︸) − (µ4N − µ4Y︸ ︷︷ ︸)
irrigation effect at irrigation effect at
nitrogen level 200 nitrogen level 800
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Quantities of Interest Other Than Pairwise Differences (3)
For the Grass/Weed experiment, we are also interested in

Q3 Nitrogen effect: µ1N − µ2N, µ2N − µ3N, etc.
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Quantities of Interest Other Than Pairwise Differences (4)
Q4 Is the nitrogen effect linear?

µ1N − µ2N
200 − µ2N − µ3N

200 , or µ2N − µ3N
200 − µ3N − µ4N

200 , etc.
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Definition of Contrasts
All the quantities above are contrasts.

A contrast is a linear combination of group means µi ’s

C =
∑g

i=1
ciµi

where ci ’s are known coefficients that add up to 0,
∑g

i=1 ci = 0.

Ex. Irrigation Effect Contrast:

C = µ1N + µ4N
2 − µ1Y + µ4Y

2
= 0.5µ1N+0.5µ4N+(−0.5)µ1Y+(−0.5)µ4Y+ 0 µ2N+ 0 µ3N

↓ ↓ ↓ ↓ ↓ ↓
c1N c4N c1Y c4Y c2N c3N

Observe that c1N + c4N + c1Y + c4Y + c2N + c3N

= 0.5 + 0.5 + (−0.5) + (−0.5) + 0 + 0 = 0
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Example of Contrasts
Q2 Does the irrigation effect change with nitrogen levels?

C = (µ1N − µ1Y) − (µ4N − µ4Y)

= 1 µ1N+(−1)µ1Y+(−1)µ4N+ 1 µ4Y+ 0 µ2N+ 0 µ3N
↓ ↓ ↓ ↓ ↓ ↓

c1N c1Y c4N c4Y c2N c3N

Observe that
∑

i ci = 1 + (−1) + (−1) + 1 + 0 + 0 = 0.

Q4 Is the nitrogen effect linear?

C = µ1N − µ2N
200 − µ2N − µ3N

200
= 1

200 µ1N+( −2
200)µ2N+ 1

200 µ3N+ 0 µ4N+ 0 µ1Y+ 0 µ4Y
↓ ↓ ↓ ↓ ↓ ↓

c1N c2N c3N c4N c1Y c4Y

Observe that
∑

i ci = 1
200 + ( −2

200) + 1
200 + 0 + 0 + 0 = 0.
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More Examples of Contrasts

▶ Every pairwise comparison is a contrast! (C = µk − µℓ)

ck = 1, cℓ = −1, all other ci ’s are 0, and∑g
i=1 ci = 1 + (−1) + 0 + · · · + 0 = 0

▶ A single treatment mean C = µk is NOT a contrast
▶ Is C = µ1 + µ2

2 − µ3 + µ4 + µ5
3 a contrast?

Yes.

c1 = c2 = 1
2 , c3 = c4 = c5 = −1

3 , which add up to 0.

▶ Is C = µ1 + µ2
2 − µ3 + µ4

2 + µ5 a contrast?

No.

c1 = c2 = 1
2 , c3 = c4 = −1

2 , c5 = 1, which add up to 1, not 0.
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Estimator and Confidence Interval for a Contrast
A natural estimator for a contrast C =

∑g
i=1 ciµi is

Ĉ =
g∑

i=1
ci ȳi•

As ȳ1•, ȳ2•, . . ., and ȳg• are indep. of each other, we know

V
( g∑

i=1
ci ȳi•

)
=

g∑
i=1

V(ci ȳi•) =
g∑

i=1
c2

i V(ȳi•) =
g∑

i=1
c2

i
σ2

ni
.

The SD and SE of the estimator Ĉ :

SD(Ĉ) =

√√√√σ2
g∑

i=1

c2
i

ni
, SE(Ĉ) =

√√√√MSE ×
g∑

i=1

c2
i

ni

A (1 − α)100% confidence interval for the contrast C is

Ĉ ± tN−g ,α/2 × SE(Ĉ)
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Hypothesis Testing for a Contrast
To test whether a contrast C is 0, H0 : C = 0, the test statistic is

t = Ĉ
SE(Ĉ)

=
∑g

i=1 ci ȳi•√
MSE ×

∑g
i=1

c2
i

ni

∼ tN−g

If Ha: C ̸= 0 (two-sided),

P-value =
−|t| |t|

=2*pt(abs(t), df, lower.tail=F)

If Ha: C < 0 (lower one-sided),

P-value =
t

= pt(t, df)

If Ha: C > 0 (upper one-sided),

P-value =
t

= pt(t, df, lower.tail=F)

The bell curve above is the t-curve with df = N − g .
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Does the Irrigation Effect Change with Nitrogen Levels?
Group 1N 1Y 2N 3N 4N 4Y

ȳi• 95 82.25 81.5 68.25 50.5 52, MSE = 17.97

The contrast we consider is

C = (µ1N − µ1Y︸ ︷︷ ︸) − (µ4N − µ4Y︸ ︷︷ ︸)

irrigation effect at irrigation effect at
nitro level = 200 nitro level = 800

in which (c1N, c1Y, c2N, c3N, c4N , c4Y) = (1, −1, 0, 0, −1, 1).

The contrast is estimated by

Ĉ = ȳ1N• − ȳ1Y • − (ȳ4N• − ȳ4Y •) = 95 − 82.25 − (50.5 − 52) = 14.25.

with the standard error

SE(Ĉ) =

√√√√MSE
g∑

i=1

c2
i

ni
=

√
17.97

(12

4 + (−1)2

4 + (−1)2

4 + 12

4

)
≈ 4.24
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Does the Irrigation Effect Change with Nitrogen Levels?
To test whether the irrigation effect changes with nitrogen level
H0: C = (µ1N − µ1Y) − (µ4N − µ4Y) = 0 v.s. Ha: C ̸= 0, the
t-statistic is

t = Ĉ
SE(Ĉ)

= 14.25
4.24 ≈ 3.36

with df = N − g = 24 − 6 = 18.

The two-sided p-value is

2*pt(3.36,df=18, lower.tail=F)
[1] 0.003487

The small P-value indicates the
irrigation effects are significantly
different at the nitrogen level 200
and 800 mg N/kg soil. 200 400 600 800
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Does the Irrigation Effect Change with Nitrogen Levels?

The 95% confidence interval for C = (µ1N − µ1Y) − (µ4N − µ4Y) is

Ĉ ± tN−g ,0.025 × SE(Ĉ) ≈ 14.25 ± 2.101 × 4.24 ≈ (5.34, 23.16)

in which t24−6,0.025 ≈ 2.101 is found by the R command

qt(0.025,df=18, lower.tail=F)
[1] 2.101

This means that the irrigation effect (% of grass w/ irrigation −
w/o irrigation) is on average 5.34% to 23.16% higher at nitrogen
level 200 than at level 800 mg N/kg soil, with 95% confidence.
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Is the Nitrogen Effect Linear?
Treatment 1N 1Y 2N 3N 4N 4Y
Mean ȳi• 95 82.25 81.5 68.25 50.5 52, MSE = 17.97

The contrast we consider is

C = µ1N − µ2N
200 − µ2N − µ3N

200 = µ1N − 2µ2N + µ3N
200

with the coefficients (c1N, c2N, c3N) = ( 1
200 , −2

200 , 1
200).

The contrast is estimated by

Ĉ = ȳ1N• − 2ȳ2N• + ȳ3N•

200 = 95−2 × 81.5 + 68.25
200 = 0.25

200 = 0.00125.

with

SE(Ĉ) =

√√√√MSE
g∑

i=1

c2
i

ni
=

√
17.97

( (1/200)2

4 +
( −2

200 )2

4 + (1/200)2

4

)
≈ 0.026
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Is the Nitrogen Effect Linear?
To test whether the nitrogen effect is linear, the t-statistic is

t = Ĉ
SE(Ĉ)

= 0.00125
0.026 ≈ 0.048

with df = N − g = 24 − 6 = 18.
The two-sided p-value is

2*pt(0.048,df=18, lower.tail=F)
[1] 0.9622

Conclusion: The huge P-value
means little evidence of nonlinear-
ity (at nitrogen level 1,2, and 3).
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Remark: One can also test the linearity at level 2, 3, and 4

C = µ2N − µ3N
200 − µ3N − µ4N

200 = µ2N − 2µ3N + µ4N
200 .

which is left as an exercise.
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Inference for Contrasts in R

The R library emmeans can produce confidence intervals can
conduct tests for contrasts.

e.g., for the interaction contrast C = (µ1N − µ1Y) − (µ4N − µ4Y):

grass$trt = as.factor(grass$trt)
levels(grass$trt)
[1] "1N" "1Y" "2N" "3N" "4N" "4Y"
mod1 = aov(percent ~ trt, data=grass)
mod1emm = emmeans(mod1, "trt")
contrast(mod1emm, list(interaction=c(1, -1, 0, 0, -1, 1)),

infer=c(T,T), level=0.95, side="two-sided")
contrast estimate SE df lower.CL upper.CL t.ratio p.value
interaction 14.2 4.24 18 5.34 23.2 3.361 0.0035

Confidence level used: 0.95
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Inference for Contrasts in R
Contrast C = µ1N − 2µ2N + µ3N

200

contrast(mod1emm, list(lin123=c(1, 0, -2, 1, 0, 0)/200),
infer=c(T,T), level=0.95, side="two-sided")

contrast estimate SE df lower.CL upper.CL t.ratio p.value
lin123 0.00125 0.026 18 -0.0533 0.0558 0.048 0.9621

Confidence level used: 0.95

Contrast C = µ2N − 2µ3N + µ4N
200

contrast(mod1emm, list(lin234=c(0, 0, 1, -2, 1, 0)/200),
infer=c(T,T), level=0.95, side="two-sided")

contrast estimate SE df lower.CL upper.CL t.ratio p.value
lin234 -0.0225 0.026 18 -0.077 0.032 -0.867 0.3975

Confidence level used: 0.95
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