STAT 222 Lecture 3-4
 Pairwise Comparisons \& Contrasts

Yibi Huang

Outine

Textbook Coverage: Section 4.1-4.3

- Inference for a Single Mean μ_{i} in a Multi-Sample Problem
- Pairwise Comparisons
- Contrasts

Last Lecture

One-way ANOVA F-test for the Grass/Weed Competition Study:

$$
\begin{aligned}
& H_{0}: \mu_{1 \mathrm{~N}}=\mu_{1 \mathrm{Y}}=\mu_{2 \mathrm{~N}}=\mu_{3 \mathrm{~N}}=\mu_{4 \mathrm{~N}}=\mu_{4 \mathrm{Y}} \\
& H_{a}: \mu_{1 \mathrm{~N}}, \mu_{1 \mathrm{Y}}, \mu_{2 \mathrm{~N}}, \mu_{3 \mathrm{~N}}, \mu_{4 \mathrm{~N}}, \mu_{4 \mathrm{Y}} \text { not all equal }
\end{aligned}
$$

```
grass = read.table(
    "http://www.stat.uchicago.edu/~yibi/s222/grassweed.txt", h=T)
mod1 = lm(percent ~ trt, data=grass)
anova(mod1)
Analysis of Variance Table
Response: percent
    Df Sum Sq Mean Sq F value Pr(>F)
trt 5 6398 1280 71.2 3.2e-11
Residuals 18 323 18
```


Last Lecture

One-way ANOVA F-test for the Grass/Weed Competition Study:

$$
\begin{aligned}
& H_{0}: \mu_{1 \mathrm{~N}}=\mu_{1 \mathrm{Y}}=\mu_{2 \mathrm{~N}}=\mu_{3 \mathrm{~N}}=\mu_{4 \mathrm{~N}}=\mu_{4 \mathrm{Y}} \\
& H_{a}: \mu_{1 \mathrm{~N}}, \mu_{1 \mathrm{Y}}, \mu_{2 \mathrm{~N}}, \mu_{3 \mathrm{~N}}, \mu_{4 \mathrm{~N}}, \mu_{4 \mathrm{Y}} \text { not all equal }
\end{aligned}
$$

```
grass = read.table(
    "http://www.stat.uchicago.edu/~yibi/s222/grassweed.txt", h=T)
mod1 = lm(percent ~ trt, data=grass)
anova(mod1)
Analysis of Variance Table
Response: percent
    Df Sum Sq Mean Sq F value Pr (>F)
trt 5 6398 1280 71.2 3.2e-11
Residuals 18 323 18
```

- Tiny P-value \Rightarrow significant differences in the means. What should we do next?

Inference for a Single Group Mean μ_{i} in a Multi-Sample Problem

Notations for the t-Critical Values

In the remainder of the course, we use $t_{d f, \alpha / 2}$ to denote the value that

$$
P\left(-t_{d f, \alpha / 2}<T<t_{d f, \alpha / 2}\right)=1-\alpha
$$

where T has a t-distribution w / df degrees of freedom

Confidence Interval (CI) for One-Sample Mean (Review)

If $y_{1}, y_{2}, \ldots, y_{n}$ are i.i.d. $\sim\left(\mu, \sigma^{2}\right)$,

$$
\text { by CLT } \Rightarrow Z=\frac{\bar{y}-\mu}{\sigma / \sqrt{n}} \sim N(0,1) \text {. }
$$

Confidence Interval (CI) for One-Sample Mean (Review)

If $y_{1}, y_{2}, \ldots, y_{n}$ are i.i.d. $\sim\left(\mu, \sigma^{2}\right)$,

$$
\text { by CLT } \Rightarrow Z=\frac{\bar{y}-\mu}{\sigma / \sqrt{n}} \sim N(0,1) \text {. }
$$

- valid for all n if y_{i} 's are normal

Confidence Interval (CI) for One-Sample Mean (Review)

If $y_{1}, y_{2}, \ldots, y_{n}$ are i.i.d. $\sim\left(\mu, \sigma^{2}\right)$,
by CLT $\Rightarrow Z=\frac{\bar{y}-\mu}{\sigma / \sqrt{n}} \sim N(0,1)$.

- valid for all n if y_{i} 's are normal
- approx. valid for large n if y_{i} 's are not normal

Confidence Interval (CI) for One-Sample Mean (Review)

If $y_{1}, y_{2}, \ldots, y_{n}$ are i.i.d. $\sim\left(\mu, \sigma^{2}\right)$,
by CLT $\Rightarrow Z=\frac{\bar{y}-\mu}{\sigma / \sqrt{n}} \sim N(0,1)$.

- valid for all n if y_{i} 's are normal
- approx. valid for large n if y_{i} 's are not normal

However, σ is unknown. We estimate it with $s=\sqrt{\frac{\sum_{i}\left(y_{i}-\bar{y}\right)^{2}}{n-1}}$

$$
t=\frac{\bar{y}-\mu}{s / \sqrt{n}} \sim t_{n-1}
$$

Confidence Interval (CI) for One-Sample Mean (Review)

If $y_{1}, y_{2}, \ldots, y_{n}$ are i.i.d. $\sim\left(\mu, \sigma^{2}\right)$,
by CLT $\Rightarrow Z=\frac{\bar{y}-\mu}{\sigma / \sqrt{n}} \sim N(0,1)$.

- valid for all n if y_{i} 's are normal
- approx. valid for large n if y_{i} 's are not normal

However, σ is unknown. We estimate it with $s=\sqrt{\frac{\sum_{i}\left(y_{i}-\bar{y}\right)^{2}}{n-1}}$

$$
t=\frac{\bar{y}-\mu}{s / \sqrt{n}} \sim t_{n-1}
$$

- valid for all n if y_{i} 's are normal

Confidence Interval (CI) for One-Sample Mean (Review)

If $y_{1}, y_{2}, \ldots, y_{n}$ are i.i.d. $\sim\left(\mu, \sigma^{2}\right)$,
by CLT $\Rightarrow Z=\frac{\bar{y}-\mu}{\sigma / \sqrt{n}} \sim N(0,1)$.

- valid for all n if y_{i} 's are normal
- approx. valid for large n if y_{i} 's are not normal

However, σ is unknown. We estimate it with $s=\sqrt{\frac{\sum_{i}\left(y_{i}-\bar{y}\right)^{2}}{n-1}}$

$$
t=\frac{\bar{y}-\mu}{s / \sqrt{n}} \sim t_{n-1}
$$

- valid for all n if y_{i} 's are normal
- approx. valid for large n
if y_{i} 's are not normal

Confidence Interval (CI) for One-Sample Mean (Review)

If $y_{1}, y_{2}, \ldots, y_{n}$ are i.i.d. $\sim\left(\mu, \sigma^{2}\right)$,
by CLT $\Rightarrow Z=\frac{\bar{y}-\mu}{\sigma / \sqrt{n}} \sim N(0,1)$.

- valid for all n if y_{i} 's are normal
- approx. valid for large n if y_{i} 's are not normal

However, σ is unknown. We estimate it with $s=\sqrt{\frac{\sum_{i}\left(y_{i}-\bar{y}\right)^{2}}{n-1}}$

$$
t=\frac{\bar{y}-\mu}{s / \sqrt{n}} \sim t_{n-1}
$$

- valid for all n if y_{i} 's are normal
- approx. valid for large n
if y_{i} 's are not normal
Inverting $P\left(-t_{n-1, \alpha / 2}<t=\frac{\bar{y}-\mu}{s / \sqrt{n}}<t_{n-1, \alpha / 2}\right)=1-\alpha$, we get the $(1-\alpha) 100 \% \mathrm{Cl}$ for μ :

$$
\bar{y} \pm t_{n-1, \alpha / 2} \times \frac{s}{\sqrt{n}}
$$

A Naive Cl for a Group Mean in a Multi-Sample Problem
 Model for the multi-sample problem:

$$
y_{i j}=\mu_{i}+\varepsilon_{i j}, \quad \varepsilon_{i j} \sim N\left(0, \sigma^{2}\right)
$$

A Naive Cl for a Group Mean in a Multi-Sample Problem

Model for the multi-sample problem:

$$
\begin{aligned}
y_{i j} & =\mu_{i}+\varepsilon_{i j}, \quad \varepsilon_{i j} \sim N\left(0, \sigma^{2}\right) \\
\Rightarrow \quad Z & =\frac{\bar{y}_{k \bullet}-\mu_{k}}{\sigma / \sqrt{n_{k}}} \sim N(0,1)
\end{aligned}
$$

A Naive Cl for a Group Mean in a Multi-Sample Problem
 Model for the multi-sample problem:
 $$
\begin{aligned} y_{i j} & =\mu_{i}+\varepsilon_{i j}, \quad \varepsilon_{i j} \sim N\left(0, \sigma^{2}\right) \\ \Rightarrow \quad Z & =\frac{\bar{y}_{k \bullet}-\mu_{k}}{\sigma / \sqrt{n_{k}}} \sim N(0,1) \end{aligned}
$$
 $$
\xrightarrow{\substack{\text { Distribution of } \\ \text { Population 2 }}}
$$

 $$
\begin{aligned} & \text { Distribution of } \\ & \text { Population } 1 \end{aligned}
$$

A naive estimate for the unknown σ is

$$
s_{k}=\text { sample SD of the } k \text { th group }=\sqrt{\frac{\sum_{j=1}^{n_{k}}\left(y_{k j}-\bar{y}_{k \bullet}\right)^{2}}{n_{k}-1}} .
$$

A Naive Cl for a Group Mean in a Multi-Sample Problem
 Model for the multi-sample problem:
 $$
\begin{aligned} y_{i j} & =\mu_{i}+\varepsilon_{i j}, \quad \varepsilon_{i j} \sim N\left(0, \sigma^{2}\right) \\ \Rightarrow \quad Z & =\frac{\bar{y}_{k \bullet}-\mu_{k}}{\sigma / \sqrt{n_{k}}} \sim N(0,1) \end{aligned}
$$

A naive estimate for the unknown σ is

$$
s_{k}=\text { sample SD of the } k \text { th group }=\sqrt{\frac{\sum_{j=1}^{n_{k}}\left(y_{k j}-\bar{y}_{k \bullet}\right)^{2}}{n_{k}-1}} .
$$

A naive but valid $100(1-\alpha) \% \mathrm{Cl}$ for μ_{k} would be

$$
\bar{y}_{k \bullet} \pm t_{n_{k}-1, \alpha / 2} \times \frac{s_{k}}{\sqrt{n_{k}}} \quad \text { since } \quad t=\frac{\bar{y}_{i \bullet}-\mu_{k}}{s_{k} / \sqrt{n_{k}}} \sim t_{n_{k}-1} .
$$

which uses only data in the k th group, ignoring the rest, not optimal!

A Better Cl for a Group Mean in a Multi-Sample Problem

 As all the groups have a common SD σ, data in other groups cannot help estimating μ_{k} but they can help estimating σ. A better estimate for σ is$$
\widehat{\sigma}=\sqrt{\mathrm{MSE}}=\sqrt{\frac{\sum_{i=1}^{g} \sum_{j=1}^{n_{i}}\left(y_{i j}-\bar{y}_{i \bullet}\right)^{2}}{N-g}}
$$

We have

$$
t=\frac{\bar{y}_{k \bullet}-\mu_{k}}{\hat{\sigma} / \sqrt{n_{k}}}=\frac{\bar{y}_{i \bullet}-\mu_{k}}{\sqrt{\mathrm{MSE}} / \sqrt{n_{k}}} \sim t_{N-g},
$$

from which, a better $100(1-\alpha) \% \mathrm{Cl}$ for μ_{k} is

$$
\bar{y}_{k \bullet} \pm t_{N-g, \alpha / 2} \frac{\sqrt{\mathrm{MSE}}}{\sqrt{n_{k}}}
$$

- using observations in all groups to estimate the unknown σ
- higher df $=N-g$, not $n_{k}-1$

Example: Grass/Weed Competition

Treatment	$1 N$	$1 Y$	$2 N$	$3 N$	$4 N$	$4 Y$
Mean	$\bar{y}_{i} \bullet$	95	82.25	81.5	68.25	50.5
52						
SD	s_{i}	2.16	3.775	3.512	5.56	5.00
4.546						

The naive $95 \% \mathrm{Cl}$ for $\mu_{4 \mathrm{Y}}$ using only data in Group 4Y:

$$
\bar{y}_{4 Y} \bullet \pm t_{n_{4 Y}-1, \alpha / 2} \frac{s_{4 Y}}{\sqrt{n_{4 Y}}} \approx 52 \pm 3.182 \times \frac{4.546}{\sqrt{4}} \approx 52 \pm 7.23
$$

The better $95 \% \mathrm{Cl}$ for $\mu_{4 \mathrm{Y}}$ using the MSE is

$$
\bar{y}_{i \bullet} \pm t_{N-g, \alpha / 2} \frac{\sqrt{\mathrm{MSE}}}{\sqrt{n_{4 \mathrm{Y}}}}=52 \pm 2.101 \times \frac{\sqrt{17.97}}{\sqrt{4}} \approx 52 \pm 4.45
$$

Example: Grass/Weed Competition

Treatment	$1 N$	$1 Y$	$2 N$	$3 N$	$4 N$	$4 Y$
Mean \bar{y}_{i}	95	82.25	81.5	68.25	50.5	52
SD s_{i}	2.16	3.775	3.512	5.56	5.00	4.546

The naive $95 \% \mathrm{Cl}$ for $\mu_{4 \mathrm{Y}}$ using only data in Group 4Y:

$$
\bar{y}_{4 Y \bullet} \pm t_{n_{4 Y}-1, \alpha / 2} \frac{s_{4 Y}}{\sqrt{n_{4 Y}}} \approx 52 \pm 3.182 \times \frac{4.546}{\sqrt{4}} \approx 52 \pm 7.23
$$

The better $95 \% \mathrm{Cl}$ for $\mu_{4 \mathrm{Y}}$ using the MSE is

$$
\bar{y}_{i \bullet} \pm t_{N-g, \alpha / 2} \frac{\sqrt{\mathrm{MSE}}}{\sqrt{n_{4 \mathrm{Y}}}}=52 \pm 2.101 \times \frac{\sqrt{17.97}}{\sqrt{4}} \approx 52 \pm 4.45
$$

where $n_{4 Y}=4, N=24, g=6, \alpha=0.05$. Using R, we can find
$t_{n_{4 Y-1, \alpha / 2}}=t_{4-1,0.05 / 2} \approx 3.182$ and $t_{N-g, \alpha / 2}=t_{24-6,0.05 / 2} \approx 2.101$.
qt(0.05/2, df $=4-1$, lower.tail=F)
[1] 3.182
qt(0.05/2, df $=24-6$, lower.tail=F)
[1] 2.101

Example: Grass/Weed Competition

Treatment	$1 N$	$1 Y$	$2 N$	$3 N$	$4 N$	$4 Y$
Mean \bar{y}_{i}	95	82.25	81.5	68.25	50.5	52
SD s_{i}	2.16	3.775	3.512	5.56	5.00	4.546

The naive $95 \% \mathrm{Cl}$ for $\mu_{4 \mathrm{Y}}$ using only data in Group 4Y:

$$
\bar{y}_{4 Y \bullet} \pm t_{n_{4 Y}-1, \alpha / 2} \frac{s_{4 Y}}{\sqrt{n_{4 Y}}} \approx 52 \pm 3.182 \times \frac{4.546}{\sqrt{4}} \approx 52 \pm 7.23
$$

The better $95 \% \mathrm{Cl}$ for $\mu_{4 \mathrm{Y}}$ using the MSE is

$$
\bar{y}_{\bullet \bullet} \pm t_{N-g, \alpha / 2} \frac{\sqrt{\mathrm{MSE}}}{\sqrt{n_{4 \mathrm{Y}}}}=52 \pm 2.101 \times \frac{\sqrt{17.97}}{\sqrt{4}} \approx 52 \pm 4.45
$$

where $n_{4 \mathrm{Y}}=4, N=24, g=6, \alpha=0.05$. Using R, we can find
$t_{n_{4 Y}-1, \alpha / 2}=t_{4-1,0.05 / 2} \approx 3.182$ and $t_{N-g, \alpha / 2}=t_{24-6,0.05 / 2} \approx 2.101$.
qt ($0.05 / 2, \mathrm{df}=4-1$, lower.tail $=\mathrm{F}$)
[1] 3.182
qt (0.05/2, df $=24-6$, lower.tail=F)
[1] 2.101
Observe the naive CI has a bigger margin of error 7.23 than the margin of error 4.45 for the Cl using the MSE.

Interpretation of the better $95 \% \mathrm{Cl}$ for $\mu_{4 \mathrm{Y}}: 52 \pm 4.45$
For plots received $800 \mathrm{mg} \mathrm{N} / \mathrm{kg}$ soil and 1 cm of irrigation per week, we estimate that 52.0% of living material is bluestem (grass) on average with a margin of error of 4.45% at 95% confidence.

emmeans Library in R

The R library emmeans can produce confidence intervals for each group mean.

Need to install the emmeans library first, by the following command. You only need to install ONCE!
install.packages("emmeans") \# JUST RUN THIS ONCE!

Once installed, must load emmeans at every R session before it can be used.
library (emmeans)

The Section 3.9 and 4.7 of the textbook use the library lsmeans, which is now obsolete and replaced by the emmeans library.

```
grass = read.table(
    "http://www.stat.uchicago.edu/~yibi/s222/grassweed.txt", h=T)
mod1 = lm(percent ~ trt, data=grass)
emmeans(mod1, "trt", level=0.95)
trt emmean SE df lower.CL upper.CL
\begin{tabular}{llllll}
1 N & 95.0 & 2.12 & 18 & 90.5 & 99.5 \\
1 Y & 82.2 & 2.12 & 18 & 77.8 & 86.7 \\
2N & 81.5 & 2.12 & 18 & 77.0 & 86.0 \\
3N & 68.2 & 2.12 & 18 & 63.8 & 72.7 \\
4N & 50.5 & 2.12 & 18 & 46.0 & 55.0 \\
4 Y & 52.0 & 2.12 & 18 & 47.5 & 56.5
\end{tabular}
```

Confidence level used: 0.95
or

mod2 $=$ aov(percent \sim trt, data=grass)				
emmeans (mod2, "trt", level=0.95)				
trt emmean	SE df	lower.CL upper.CL		
1N	95.0	2.12	18	90.5

Pairwise Comparison

Pairwise Comparison of Group Means

Model for the multi-sample problem:

$$
y_{i j}=\mu_{i}+\varepsilon_{i j}, \quad \varepsilon_{i j} \sim N\left(0, \sigma^{2}\right)
$$

Consider the pairwise comparison of group means $\mu_{k}-\mu_{\ell}$:

- the estimator is $\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet}$

Pairwise Comparison of Group Means

Model for the multi-sample problem:

$$
y_{i j}=\mu_{i}+\varepsilon_{i j}, \quad \varepsilon_{i j} \sim N\left(0, \sigma^{2}\right)
$$

Consider the pairwise comparison of group means $\mu_{k}-\mu_{\ell}$:

- the estimator is $\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet}$
- Since $\bar{y}_{k \bullet}$ and $\bar{y}_{\ell \bullet}$ are independent, we have

$$
\mathbb{V}\left(\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet}\right)=\mathbb{V}\left(\bar{y}_{k \bullet}\right)+\mathbb{V}\left(\bar{y}_{\ell \bullet}\right)=\frac{\sigma^{2}}{n_{k}}+\frac{\sigma^{2}}{n_{\ell}}
$$

Pairwise Comparison of Group Means

Model for the multi-sample problem:

$$
y_{i j}=\mu_{i}+\varepsilon_{i j}, \quad \varepsilon_{i j} \sim N\left(0, \sigma^{2}\right)
$$

Consider the pairwise comparison of group means $\mu_{k}-\mu_{\ell}$:

- the estimator is $\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet}$
- Since $\bar{y}_{k \bullet}$ and $\bar{y}_{\ell \bullet}$ are independent, we have

$$
\mathbb{V}\left(\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet}\right)=\mathbb{V}\left(\bar{y}_{k \bullet}\right)+\mathbb{V}\left(\bar{y}_{\ell \bullet}\right)=\frac{\sigma^{2}}{n_{k}}+\frac{\sigma^{2}}{n_{\ell}}
$$

- $\operatorname{SD}\left(\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet}\right)=\sqrt{\mathbb{V}\left(\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet}\right)}=\sqrt{\sigma^{2}\left(\frac{1}{n_{k}}+\frac{1}{n_{\ell}}\right)}$,

Pairwise Comparison of Group Means

Model for the multi-sample problem:

$$
y_{i j}=\mu_{i}+\varepsilon_{i j}, \quad \varepsilon_{i j} \sim N\left(0, \sigma^{2}\right)
$$

Consider the pairwise comparison of group means $\mu_{k}-\mu_{\ell}$:

- the estimator is $\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet}$
- Since $\bar{y}_{k \bullet}$ and $\bar{y}_{\ell \bullet}$ are independent, we have

$$
\mathbb{V}\left(\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet}\right)=\mathbb{V}\left(\bar{y}_{k \bullet}\right)+\mathbb{V}\left(\bar{y}_{\ell \bullet}\right)=\frac{\sigma^{2}}{n_{k}}+\frac{\sigma^{2}}{n_{\ell}}
$$

- $\operatorname{SD}\left(\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet}\right)=\sqrt{\mathbb{V}\left(\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet}\right)}=\sqrt{\sigma^{2}\left(\frac{1}{n_{k}}+\frac{1}{n_{\ell}}\right)}$,
- $\operatorname{SE}\left(\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet}\right)=\widehat{\mathrm{SD}}\left(\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet}\right)=\sqrt{\operatorname{MSE}\left(\frac{1}{n_{k}}+\frac{1}{n_{\ell}}\right)}$.

Pairwise Comparison of Group Means

Model for the multi-sample problem:

$$
y_{i j}=\mu_{i}+\varepsilon_{i j}, \quad \varepsilon_{i j} \sim N\left(0, \sigma^{2}\right)
$$

Consider the pairwise comparison of group means $\mu_{k}-\mu_{\ell}$:

- the estimator is $\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet}$
- Since $\bar{y}_{k \bullet}$ and $\bar{y}_{\ell \bullet}$ are independent, we have

$$
\begin{gathered}
\mathbb{V}\left(\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet}\right)=\mathbb{V}\left(\bar{y}_{k \bullet}\right)+\mathbb{V}\left(\bar{y}_{\ell \bullet}\right)=\frac{\sigma^{2}}{n_{k}}+\frac{\sigma^{2}}{n_{\ell}} \\
\nabla \mathrm{SD}\left(\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet}\right)=\sqrt{\mathbb{V}\left(\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet}\right)}=\sqrt{\sigma^{2}\left(\frac{1}{n_{k}}+\frac{1}{n_{\ell}}\right)}, \\
\operatorname{SE}\left(\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet}\right)=\widehat{\mathrm{SD}}\left(\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet}\right)=\sqrt{\operatorname{MSE}\left(\frac{1}{n_{k}}+\frac{1}{n_{\ell}}\right)} \\
\nabla t=\frac{\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet}-\left(\mu_{k}-\mu_{\ell}\right)}{\mathrm{SE}\left(\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet}\right)}=\frac{\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet}-\left(\mu_{k}-\mu_{\ell}\right)}{\sqrt{\operatorname{MSE}\left(\frac{1}{n_{k}}+\frac{1}{n_{\ell}}\right)}} \sim t_{N-g}
\end{gathered}
$$

Confidence Intervals (Cls) for Pairwise Differences

The $100(1-\alpha) \%$ confidence interval (C.I.) for $\mu_{k}-\mu_{\ell}$ is

$$
\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet} \pm t_{N-g, \alpha / 2} \sqrt{\operatorname{MSE}\left(\frac{1}{n_{k}}+\frac{1}{n_{\ell}}\right)} .
$$

Confidence Intervals (Cls) for Pairwise Differences

The $100(1-\alpha) \%$ confidence interval (C.I.) for $\mu_{k}-\mu_{\ell}$ is

$$
\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet} \pm t_{N-g, \alpha / 2} \sqrt{\operatorname{MSE}\left(\frac{1}{n_{k}}+\frac{1}{n_{\ell}}\right)}
$$

Note this is neither the two-sample Cl assuming equal SDs

$$
\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet} \pm t_{n_{k}+n_{\ell}-2, \alpha / 2} \sqrt{s_{p}^{2}\left(\frac{1}{n_{k}}+\frac{1}{n_{\ell}}\right)}, \text { where } s_{p}^{2}=\frac{\left(n_{k}-1\right) s_{k}^{2}+\left(n_{\ell}-1\right) s_{\ell}^{2}}{n_{k}+n_{\ell}-2}
$$

nor the two-sample Cl not assuming equal SDs

$$
\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet} \pm t_{d f, \alpha / 2} \sqrt{\frac{s_{k}^{2}}{n_{k}}+\frac{s_{\ell}^{2}}{n_{\ell}}}, \quad \text { where } d f=\frac{\left(\frac{s_{k}^{2}}{n_{k}}+\frac{s_{\ell}^{2}}{n_{\ell}}\right)^{2}}{\frac{1}{n_{k}-1}\left(\frac{s_{k}^{2}}{n_{k}}\right)^{2}+\frac{1}{n_{\ell}-1}\left(\frac{s_{\ell}^{2}}{n_{\ell}}\right)^{2}}
$$

Confidence Intervals (Cls) for Pairwise Differences

The $100(1-\alpha) \%$ confidence interval (C.I.) for $\mu_{k}-\mu_{\ell}$ is

$$
\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet} \pm t_{N-g, \alpha / 2} \sqrt{\operatorname{MSE}\left(\frac{1}{n_{k}}+\frac{1}{n_{\ell}}\right)}
$$

Note this is neither the two-sample Cl assuming equal SDs
$\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet} \pm t_{n_{k}+n_{\ell}-2, \alpha / 2} \sqrt{s_{p}^{2}\left(\frac{1}{n_{k}}+\frac{1}{n_{\ell}}\right)}$, where $s_{p}^{2}=\frac{\left(n_{k}-1\right) s_{k}^{2}+\left(n_{\ell}-1\right) s_{\ell}^{2}}{n_{k}+n_{\ell}-2}$,
nor the two-sample Cl not assuming equal SD

$$
\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet} \pm t_{d f, \alpha / 2} \sqrt{\frac{s_{k}^{2}}{n_{k}}+\frac{s_{\ell}^{2}}{n_{\ell}}}, \quad \text { where } d f=\frac{\left(\frac{s_{k}^{2}}{n_{k}}+\frac{s_{\ell}^{2}}{n_{\ell}}\right)^{2}}{\frac{1}{n_{k}-1}\left(\frac{s_{k}^{2}}{n_{k}}\right)^{2}+\frac{1}{n_{\ell}-1}\left(\frac{s_{\ell}^{2}}{n_{\ell}}\right)^{2}}
$$

- MSE $=\frac{\sum_{i=1}^{g} \sum_{j=1}^{n_{i}}\left(y_{i j}-\bar{y}_{i \bullet}\right)^{2}}{N-g}$ calculated using the whole data is a more accurate estimator of σ^{2} than s_{p}^{2} or s_{k}^{2}, s_{ℓ}^{2} calculated using only data in the two groups compared
- The critical value for the two-sample C.I. is larger

$$
t_{n_{k}+n_{\ell}-2, \alpha / 2}>t_{N-g, \alpha / 2}
$$

Hypothesis Tests for Pairwise Differences

For testing the hypothesis $\mathrm{H}_{0}: \mu_{k}-\mu_{\ell}=0$, the test statistic is

$$
t=\frac{\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet}}{\operatorname{SE}\left(\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet}\right)}=\frac{\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet}}{\sqrt{\operatorname{MSE}\left(\frac{1}{n_{k}}+\frac{1}{n_{\ell}}\right)}} \sim t_{N-g}
$$

If $\mathrm{H}_{\mathrm{a}}: \mu_{k} \neq \mu_{\ell}$ (two-sided),
P-value $=\underbrace{}_{-|t|}=2 * p t(\operatorname{abs}(t)$, df, lower.tail $=F)$
If $\mathrm{H}_{\mathrm{a}}: \mu_{k}<\mu_{\ell}$ (lower one-sided),
P -value $=\bigcap_{\mathrm{t}}=\mathrm{pt}(\mathrm{t}, \mathrm{df})$
If $\mathrm{H}_{a}: \mu_{k}>\mu_{\ell}$ (upper one-sided),
P -value $=\bigcap_{\mathrm{t}}^{\bigcap_{\mathrm{t}}}=\mathrm{pt}(\mathrm{t}, \mathrm{df}$, lower.tail=F)
The bell curve above is the t-curve with $\mathrm{df}=N-g$.

Example: CI for Pairwise Diff. (Grass/Weed)

Group	$1 N$	$1 Y$	$2 N$	$3 N$	$4 N$	$4 Y$
Mean $\bar{y}_{i \bullet}$	95	82.25	81.5	68.25	50.5	52
SD	s_{i}	2.16	3.775	3.512	5.56	5.00
4.546						

A 95% confidence interval for $\mu_{1 \mathrm{~N}}-\mu_{1 \mathrm{Y}}$ is

$$
\begin{aligned}
& \bar{y}_{1 N \bullet}-\bar{y}_{1 Y \bullet} \pm t_{18,0.025} \times \sqrt{\operatorname{MSE}\left(\frac{1}{n_{1 N}}+\frac{1}{n_{1 Y}}\right)} \\
= & 95-82.25 \pm 2.101 \times \sqrt{17.97\left(\frac{1}{4}+\frac{1}{4}\right)}=12.75 \pm 6.30
\end{aligned}
$$

in which $t_{18,0.025}=2.101$ is found using the R command
qt(0.05/2, df = 18, lower.tail=F)
[1] 2.101
Irrigation reduced the percentage of grass (bluestem) by 12.75% on average, with a margin of error of 6.30%, at 95% confidence.

Example: Hyp Tests for Pairwise Diff. (Grass/Weed)

To test whether treatments 1 N and 1 Y have the same effect

$$
H_{0}: \mu_{1 \mathrm{~N}}-\mu_{1 Y}=0 \quad \text { v.s. } \quad H_{a}: \mu_{1 \mathrm{~N}}-\mu_{1 Y} \neq 0
$$

the test statistic is

$$
t=\frac{\bar{y}_{1 N \bullet}-\bar{y}_{1 Y \bullet}}{\sqrt{\operatorname{MSE}\left(\frac{1}{n_{1 N}}+\frac{1}{n_{1 Y}}\right)}}=\frac{95-82.25}{\sqrt{17.97\left(\frac{1}{4}+\frac{1}{4}\right)}} \approx \frac{12.75}{2.9975} \approx 4.253
$$

with $\mathrm{df}=N-g=24-6=18$. The two-sided P-value is
$2 * p t(4.235, \mathrm{df}=18$, lower.tail=F)
[1] 0.000498
As the P-value <0.05, we again confirm that irrigation made grass (bluestem) less competitive.

Pairwise t-Tests using emmeans in R

The R library emmeans can perform pairwise comparisons between all pairs of treatments.
library(emmeans)
mod1 $=\operatorname{aov}$ (percent \sim trt, data=grass)
mod1emm = emmeans(mod1, "trt")
pairs(mod1emm, infer=c(T,T), level=0.95, adjust="none")

See the output on the next page.
The output would include both confidence intervals and hypothesis tests if adding infer $=\mathrm{c}(\mathrm{T}, \mathrm{T})$.

contrast	estimate	SE df	lower.CL	upper.CL	t.ratio	p.value	
1N -1 Y	12.75	3	18	6.45	19.05	4.253	0.0005
1N - 2N	13.50	3	18	7.20	19.80	4.503	0.0003
1N - 3N	26.75	3	18	20.45	33.05	8.924	$<.0001$
1N - 4N	44.50	3	18	38.20	50.80	14.845	$<.0001$
1N - 4Y	43.00	3	18	36.70	49.30	14.344	$<.0001$
1Y - 2N	0.75	3	18	-5.55	7.05	0.250	0.8053
1Y - 3N	14.00	3	18	7.70	20.30	4.670	0.0002
1Y - 4N	31.75	3	18	25.45	38.05	10.592	$<.0001$
1Y - 4Y	30.25	3	18	23.95	36.55	10.091	$<.0001$
2N - 3N	13.25	3	18	6.95	19.55	4.420	0.0003
2N - 4N	31.00	3	18	24.70	37.30	10.341	$<.0001$
2N - 4Y	29.50	3	18	23.20	35.80	9.841	$<.0001$
3N - 4N	17.75	3	18	11.45	24.05	5.921	$<.0001$
3N - 4Y	16.25	3	18	9.95	22.55	5.421	$<.0001$
4N - 4Y	-1.50	3	18	-7.80	4.80	-0.500	0.6229

Confidence level used: 0.95

The pwpm () function in the emmeans library can display the P -values of pairwise comparison concisely.

pwpm(mod1emm, adjust="none")							
	1N	1 Y	2 N	3 N	4 N	4 Y	
1N	$[95.0]$	0.0005	0.0003	$<.0001$	$<.0001$	$<.0001$	
1Y	12.75	$[82.2]$	0.8053	0.0002	$<.0001$	$<.0001$	
2N	13.50	0.75	$[81.5]$	0.0003	$<.0001$	$<.0001$	
3N	26.75	14.00	13.25	$[68.3]$	$<.0001$	$<.0001$	
4N	44.50	31.75	31.00	17.75	$[50.5]$	0.6229	
4Y	43.00	30.25	29.50	16.25	-1.50	$[52.0]$	

Row and column labels: trt
Upper triangle: P values
Diagonal: [Estimates] (emmean)
Lower triangle: Comparisons (estimate) earlier vs. later

Underline Diagrams (p.88, Section 5.4.1 in Oehlert's book) a concise way to summarize pairwise comparisons

	1 N	1 Y	2 N	3 N	4 N	4 Y
1N	$[95.0]$	0.0005	0.0003	$<.0001$	$<.0001$	$<.0001$
1Y	12.75	$[82.2]$	0.8053	0.0002	$<.0001$	$<.0001$
2N	13.50	0.75	$[81.5]$	0.0003	$<.0001$	$<.0001$
3N	26.75	14.00	13.25	$[68.3]$	$<.0001$	$<.0001$
4N	44.50	31.75	31.00	17.75	$[50.5]$	0.6229
4Y	43.00	30.25	29.50	16.25	-1.50	$[52.0]$

How to make a underline diagram?

1. Write out group labels horizontally in increasing order sorted by group means
2. (Optional) Write the group mean $\bar{y}_{i \bullet}$ under the corresponding group label
3. Draw a line segment under a set of groups if no two groups in that set of groups are significantly different from each other

4 Y	4 N	3 N	2 N	1 Y	1 N
50.5	52	68.25	81.5	82.25	95

Underline Diagrams

Answer the following questions based on the underline diagram for pairwise comparisons of the 5 treatments A, B, C, D and E in a randomized experiment.

- Order the means of the 5 groups from low to high.
- Check all the pairs that are significantly different from each other.

Underline Diagrams

Answer the following questions based on the underline diagram for pairwise comparisons of the 5 treatments A, B, C, D and E in a randomized experiment.

- Order the means of the 5 groups from low to high.

$$
C<B<A<D<E
$$

- Check all the pairs that are significantly different from each other.

Underline Diagrams

Answer the following questions based on the underline diagram for pairwise comparisons of the 5 treatments A, B, C, D and E in a randomized experiment.

- Order the means of the 5 groups from low to high.

$$
C<B<A<D<E
$$

- Check all the pairs that are significantly different from each other.

Underline Diagrams

Answer the following questions based on the underline diagram for pairwise comparisons of the 5 treatments A, B, C, D and E in a randomized experiment.

- Order the means of the 5 groups from low to high.

$$
C<B<A<D<E
$$

- Check all the pairs that are significantly different from each other.

Underline Diagrams

Answer the following questions based on the underline diagram for pairwise comparisons of the 5 treatments A, B, C, D and E in a randomized experiment.

- Order the means of the 5 groups from low to high.

$$
C<B<A<D<E
$$

- Check all the pairs that are significantly different from each other.

Least Significant Difference (LSD)

- It's an awful lot of work to to compare every pair of groups. One needs to compute the SE, the t-statistic, and P-value for each pair of groups. When there are g groups, there are $\binom{g}{2}=g(g-1) / 2$ pairs to compare with.
- When all groups are of the same size n, an easier way to do pairwise comparisons of all treatments is to compute the least significant difference (LSD), which is the minimum amount by which two means must differ in order to be considered statistically different.

Least Significant Difference (LSD)

- When all groups are of the same size n, the SEs of pairwise comparisons all equal to

$$
\mathrm{SE}=\sqrt{\operatorname{MSE}\left(\frac{1}{n}+\frac{1}{n}\right)}
$$

Least Significant Difference (LSD)

- When all groups are of the same size n, the SEs of pairwise comparisons all equal to

$$
\mathrm{SE}=\sqrt{\operatorname{MSE}\left(\frac{1}{n}+\frac{1}{n}\right)}
$$

- To be significant at level α, the t-statistic for pairwise comparison

$$
t=\frac{\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet}}{\mathrm{SE}}
$$

must be at least $t_{N-g, \alpha / 2}$ in absolute value

Least Significant Difference (LSD)

- When all groups are of the same size n, the SEs of pairwise comparisons all equal to

$$
\mathrm{SE}=\sqrt{\operatorname{MSE}\left(\frac{1}{n}+\frac{1}{n}\right)}
$$

- To be significant at level α, the t-statistic for pairwise comparison

$$
t=\frac{\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet}}{\mathrm{SE}}
$$

must be at least $t_{N-g, \alpha / 2}$ in absolute value

- So μ_{k} and μ_{ℓ} are significantly different at level α if and only if $\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet}$ is at least

$$
t_{N-g, \alpha / 2} \sqrt{\operatorname{MSE}\left(\frac{1}{n}+\frac{1}{n}\right)}=\operatorname{LSD}
$$

in absolute value, which is called the least significant difference (LSD)

Example: Least Significant Difference (Grass/Weed)

For the Grass/Weed experiment, the critical value at $\alpha=5 \%$ significance is $t_{N-g, \alpha / 2}=t_{24-6,0.025} \approx 2.101$, the LSD at 5% level is

$$
\mathrm{LSD}=t_{N-g, \alpha / 2} \sqrt{\operatorname{MSE}\left(\frac{1}{n}+\frac{1}{n}\right)}=2.101 \sqrt{17.97\left(\frac{1}{4}+\frac{1}{4}\right)} \approx 6.30
$$

Two treatments are significantly different at 5% level if and only if their means differ by 6.30 or more.

Only the pairs ($4 \mathrm{Y}, 4 \mathrm{~N}$) and (2N, 1 Y) are not significantly different, as they are the only pairs differ by less than 6.30 in mean.

4Y	4 N	3N	2 N	1 Y	1 N
50.5	52	68.25	81.5	82.25	95

Contrasts

Quantities of Interest Other Than Pairwise Differences (1)

For the Grass/Weed experiment, we are also interested in
Q1 Irrigation effect: $\mu_{1 \mathrm{~N}}-\mu_{1 \mathrm{Y}}$ or $\mu_{4 \mathrm{~N}}-\mu_{4 \mathrm{Y}}$ or the combination

$$
\frac{\mu_{1 \mathrm{~N}}+\mu_{4 \mathrm{~N}}}{2}-\frac{\mu_{1 \mathrm{Y}}+\mu_{4 \mathrm{Y}}}{2}
$$

Quantities of Interest Other Than Pairwise Differences (2)

Q2 Does the irrigation effect change with nitrogen levels?

$$
\begin{array}{cc}
(\underbrace{\mu_{1 \mathrm{~N}}-\mu_{1 \mathrm{Y}}}_{\begin{array}{c}
\text { irrigation effect at } \\
\text { nitrogen level } 200
\end{array}}) & -(\underbrace{\mu_{4 \mathrm{~N}}-\mu_{4 \mathrm{Y}}}_{\begin{array}{c}
\text { irrigation effect at } \\
\text { nitrogen level } 800
\end{array}})
\end{array}
$$

Quantities of Interest Other Than Pairwise Differences (3)

For the Grass/Weed experiment, we are also interested in
Q3 Nitrogen effect: $\mu_{1 \mathrm{~N}}-\mu_{2 \mathrm{~N}}, \mu_{2 \mathrm{~N}}-\mu_{3 \mathrm{~N}}$, etc.

Quantities of Interest Other Than Pairwise Differences (4)

Q4 Is the nitrogen effect linear?

$$
\frac{\mu_{1 \mathrm{~N}}-\mu_{2 \mathrm{~N}}}{200}-\frac{\mu_{2 \mathrm{~N}}-\mu_{3 \mathrm{~N}}}{200}, \quad \text { or } \quad \frac{\mu_{2 \mathrm{~N}}-\mu_{3 \mathrm{~N}}}{200}-\frac{\mu_{3 \mathrm{~N}}-\mu_{4 \mathrm{~N}}}{200}, \quad \text { etc. }
$$

Definition of Contrasts

All the quantities above are contrasts.
A contrast is a linear combination of group means μ_{i} 's

$$
C=\sum_{i=1}^{g} c_{i} \mu_{i}
$$

where c_{i} 's are known coefficients that add up to $0, \sum_{i=1}^{g} c_{i}=0$.

Definition of Contrasts

All the quantities above are contrasts.
A contrast is a linear combination of group means μ_{i} 's

$$
C=\sum_{i=1}^{g} c_{i} \mu_{i}
$$

where c_{i} 's are known coefficients that add up to $0, \sum_{i=1}^{g} c_{i}=0$.
Ex. Irrigation Effect Contrast:

$$
C=\frac{\mu_{1 \mathrm{~N}}+\mu_{4 \mathrm{~N}}}{2}-\frac{\mu_{1 \mathrm{Y}}+\mu_{4 \mathrm{Y}}}{2}
$$

Definition of Contrasts

All the quantities above are contrasts.
A contrast is a linear combination of group means μ_{i} 's

$$
C=\sum_{i=1}^{g} c_{i} \mu_{i}
$$

where c_{i} 's are known coefficients that add up to $0, \sum_{i=1}^{g} c_{i}=0$.
Ex. Irrigation Effect Contrast:

$$
\begin{aligned}
C & =\frac{\mu_{1 \mathrm{~N}}+\mu_{4 \mathrm{~N}}}{2}-\frac{\mu_{1 \mathrm{Y}}+\mu_{4 \mathrm{Y}}}{2} \\
& =0.5 \mu_{1 \mathrm{~N}}+0.5 \mu_{4 \mathrm{~N}}+(-0.5) \mu_{1 \mathrm{Y}}+(-0.5) \mu_{4 \mathrm{Y}}+0 \mu_{2 \mathrm{~N}}+0 \mu_{3 \mathrm{~N}}
\end{aligned}
$$

Definition of Contrasts

All the quantities above are contrasts.
A contrast is a linear combination of group means μ_{i} 's

$$
C=\sum_{i=1}^{g} c_{i} \mu_{i}
$$

where c_{i} 's are known coefficients that add up to $0, \sum_{i=1}^{g} c_{i}=0$.
Ex. Irrigation Effect Contrast:

$$
\begin{array}{rllll}
C= & \frac{\mu_{1 \mathrm{~N}}+\mu_{4 \mathrm{~N}}}{2}-\frac{\mu_{1 \mathrm{Y}}+\mu_{4 \mathrm{Y}}}{2} \\
= & 0.5 \mu_{1 \mathrm{~N}}+0.5 & \mu_{4 \mathrm{~N}}+(-0.5) \mu_{1 \mathrm{Y}}+(-0.5) \mu_{4 \mathrm{Y}}+ & 0 & \mu_{2 \mathrm{~N}}+ \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
c_{1 N} & c_{4 N} & c_{1 Y} & c_{4 Y} & c_{3 \mathrm{~N}} \\
& & c_{2 N} & \downarrow \\
c_{3 N}
\end{array}
$$

Definition of Contrasts

All the quantities above are contrasts.
A contrast is a linear combination of group means μ_{i} 's

$$
C=\sum_{i=1}^{g} c_{i} \mu_{i}
$$

where c_{i} 's are known coefficients that add up to $0, \sum_{i=1}^{g} c_{i}=0$.
Ex. Irrigation Effect Contrast:

$$
\begin{array}{rllll}
C= & \frac{\mu_{1 \mathrm{~N}}+\mu_{4 \mathrm{~N}}}{2}-\frac{\mu_{1 \mathrm{Y}}+\mu_{4 \mathrm{Y}}}{2} \\
= & 0.5 \mu_{1 \mathrm{~N}}+0.5 \mu_{4 \mathrm{~N}}+(-0.5) \mu_{1 \mathrm{Y}}+(-0.5) \mu_{4 \mathrm{Y}}+ & 0 & \mu_{2 \mathrm{~N}}+ & 0 \\
& \downarrow & \downarrow & \downarrow & \downarrow \\
c_{1 N} & c_{4 N} & c_{1 Y} & c_{4 Y} & \downarrow \\
c_{2 N} & \downarrow \\
& c_{3 N}
\end{array}
$$

Observe that $\quad c_{1 N}+c_{4 N}+c_{1 Y}+c_{4 Y}+c_{2 N}+c_{3 N}$

$$
=0.5+0.5+(-0.5)+(-0.5)+0+0=0
$$

Example of Contrasts

Q2 Does the irrigation effect change with nitrogen levels?

$$
C=\left(\mu_{1 \mathrm{~N}}-\mu_{1 \mathrm{Y}}\right)-\left(\mu_{4 \mathrm{~N}}-\mu_{4 \mathrm{Y}}\right)
$$

Example of Contrasts

Q2 Does the irrigation effect change with nitrogen levels?

$$
\begin{aligned}
C & =\left(\mu_{1 \mathrm{~N}}-\mu_{1 \mathrm{Y}}\right)-\left(\mu_{4 \mathrm{~N}}-\mu_{4 \mathrm{Y}}\right) \\
& =1 \mu_{1 \mathrm{~N}}+(-1) \mu_{1 \mathrm{Y}}+(-1) \mu_{4 \mathrm{~N}}+1 \mu_{4 \mathrm{Y}}+0 \mu_{2 \mathrm{~N}}+0 \mu_{3 \mathrm{~N}}
\end{aligned}
$$

Example of Contrasts

Q2 Does the irrigation effect change with nitrogen levels?

$$
\begin{aligned}
& C=\left(\mu_{1 \mathrm{~N}}-\mu_{1 \mathrm{Y}}\right)-\left(\mu_{4 \mathrm{~N}}-\mu_{4 \mathrm{Y}}\right) \\
& \begin{array}{cccccc}
1 & \mu_{1 \mathrm{~N}}+(-1) \mu_{1 \mathrm{Y}}+(-1) \mu_{4 \mathrm{~N}}+ & 1 & \mu_{4 \mathrm{Y}}+ & 0 & \mu_{2 \mathrm{~N}}+ \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
c_{1 N} & c_{1 Y} & c_{4 N} & c_{4 Y} & c_{2 N} & c_{3 N}
\end{array}
\end{aligned}
$$

Example of Contrasts

Q2 Does the irrigation effect change with nitrogen levels?

$$
\begin{aligned}
C= & \left(\mu_{1 \mathrm{~N}}-\mu_{1 \mathrm{Y}}\right)-\left(\mu_{4 \mathrm{~N}}-\mu_{4 \mathrm{Y}}\right) \\
= & \begin{array}{ccccc}
1 & \mu_{1 \mathrm{~N}}+(-1) & \mu_{1 \mathrm{Y}}+(-1) \mu_{4 \mathrm{~N}}+ & 1 & \mu_{4 \mathrm{Y}}+ \\
\downarrow & \downarrow & \downarrow & \mu_{2 \mathrm{~N}}+ & 0
\end{array} \mu_{3 \mathrm{~N}} \\
c_{1 N} & c_{1 Y}
\end{aligned} C_{4 N} \quad \downarrow \begin{gathered}
4 Y \\
c_{1 N}
\end{gathered}
$$

Observe that $\sum_{i} c_{i}=1+(-1)+(-1)+1+0+0=0$.

Example of Contrasts

Q2 Does the irrigation effect change with nitrogen levels?

$$
\begin{aligned}
C= & \left(\mu_{1 \mathrm{~N}}-\mu_{1 \mathrm{Y}}\right)-\left(\mu_{4 \mathrm{~N}}-\mu_{4 \mathrm{Y}}\right) \\
= & 1 \\
1 & \mu_{1 \mathrm{~N}}+(-1) \\
\downarrow & \downarrow \\
c_{1 \mathrm{Y}}+(-1) \mu_{4 \mathrm{~N}}+ & \downarrow \\
c_{1 N} & c_{1 Y}
\end{aligned} \mu_{4 \mathrm{Y}}+\begin{array}{llll}
0 & \mu_{2 \mathrm{~N}}+ & 0 & \mu_{3 \mathrm{~N}} \\
c_{4 N} & \downarrow & \downarrow & \downarrow \\
c_{4 Y} & c_{2 N} & C_{3 N}
\end{array}
$$

Observe that $\sum_{i} c_{i}=1+(-1)+(-1)+1+0+0=0$.
Q4 Is the nitrogen effect linear?

$$
C=\frac{\mu_{1 \mathrm{~N}}-\mu_{2 \mathrm{~N}}}{200}-\frac{\mu_{2 \mathrm{~N}}-\mu_{3 \mathrm{~N}}}{200}
$$

Example of Contrasts

Q2 Does the irrigation effect change with nitrogen levels?

$$
\begin{aligned}
C= & \left(\mu_{1 \mathrm{~N}}-\mu_{1 \mathrm{Y}}\right)-\left(\mu_{4 \mathrm{~N}}-\mu_{4 \mathrm{Y}}\right) \\
= & 1 \\
1 & \mu_{1 \mathrm{~N}}+(-1) \\
\downarrow & \downarrow \\
c_{1 \mathrm{Y}}+(-1) \mu_{4 \mathrm{~N}}+ & \downarrow \\
c_{1 N} & c_{1 Y}
\end{aligned} \mu_{4 \mathrm{Y}}+\begin{array}{llll}
0 & \mu_{2 \mathrm{~N}}+ & 0 & \mu_{3 \mathrm{~N}} \\
& \downarrow & c_{4 Y} & \downarrow \\
c_{2 N} & \downarrow \\
C_{3 N}
\end{array}
$$

Observe that $\sum_{i} c_{i}=1+(-1)+(-1)+1+0+0=0$.
Q4 Is the nitrogen effect linear?

$$
\begin{aligned}
C & =\frac{\mu_{1 \mathrm{~N}}-\mu_{2 \mathrm{~N}}}{200}-\frac{\mu_{2 \mathrm{~N}}-\mu_{3 \mathrm{~N}}}{200} \\
& =\frac{1}{200} \mu_{1 \mathrm{~N}}+\left(\frac{-2}{200}\right) \mu_{2 \mathrm{~N}}+\frac{1}{200} \mu_{3 \mathrm{~N}}+0 \mu_{4 \mathrm{~N}}+0 \mu_{1 \mathrm{Y}}+0 \mu_{4 \mathrm{Y}}
\end{aligned}
$$

Example of Contrasts

Q2 Does the irrigation effect change with nitrogen levels?

$$
\begin{aligned}
& C=\left(\mu_{1 \mathrm{~N}}-\mu_{1 \mathrm{Y}}\right)-\left(\mu_{4 \mathrm{~N}}-\mu_{4 \mathrm{Y}}\right) \\
& \begin{array}{cccccc}
1 & \mu_{1 \mathrm{~N}}+(-1) \mu_{1 \mathrm{Y}}+(-1) \mu_{4 \mathrm{~N}}+ & 1 & \mu_{4 \mathrm{Y}}+ & 0 & \mu_{2 \mathrm{~N}}+ \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
c_{1 N} & c_{1 Y} & c_{4 N} & c_{4 Y} & c_{2 N} & C_{3 N}
\end{array}
\end{aligned}
$$

Observe that $\sum_{i} c_{i}=1+(-1)+(-1)+1+0+0=0$.
Q4 Is the nitrogen effect linear?

$$
\begin{aligned}
C= & \frac{\mu_{1 \mathrm{~N}}-\mu_{2 \mathrm{~N}}}{200}-\frac{\mu_{2 \mathrm{~N}}-\mu_{3 \mathrm{~N}}}{200} \\
= & \frac{1}{200} \mu_{1 \mathrm{~N}}+\left(\frac{-2}{200}\right) \mu_{2 \mathrm{~N}}+\frac{1}{200} \mu_{3 \mathrm{~N}}+ \\
\downarrow & \downarrow \\
\downarrow & \downarrow \\
c_{1 N} & c_{2 N} \\
& c_{3 N}+ \\
& \downarrow \\
c_{4 N} & \downarrow \\
c_{4 \mathrm{~N}} & c_{1 Y} \\
c_{1 \mathrm{Y}}+ & c_{4 Y}
\end{aligned}
$$

Example of Contrasts

Q2 Does the irrigation effect change with nitrogen levels?

$$
\begin{aligned}
C= & \left(\mu_{1 \mathrm{~N}}-\mu_{1 \mathrm{Y}}\right)-\left(\mu_{4 \mathrm{~N}}-\mu_{4 \mathrm{Y}}\right) \\
= & 1 \\
1 & \mu_{1 \mathrm{~N}}+(-1) \\
\downarrow & \downarrow \\
c_{1 \mathrm{Y}}+(-1) \mu_{4 \mathrm{~N}}+ & \downarrow \\
c_{1 N} & c_{1 Y}
\end{aligned} \mu_{4 \mathrm{Y}}+\begin{array}{llll}
0 & \mu_{2 \mathrm{~N}}+ & 0 & \mu_{3 \mathrm{~N}} \\
& \downarrow & c_{4 Y} & \downarrow \\
c_{2 N} & \downarrow \\
C_{3 N}
\end{array}
$$

Observe that $\sum_{i} c_{i}=1+(-1)+(-1)+1+0+0=0$.
Q4 Is the nitrogen effect linear?

$$
\begin{array}{rlllll}
C= & \frac{\mu_{1 \mathrm{~N}}-\mu_{2 \mathrm{~N}}}{200}-\frac{\mu_{2 \mathrm{~N}}-\mu_{3 \mathrm{~N}}}{200} \\
= & \frac{1}{200} \mu_{1 \mathrm{~N}}+\left(\frac{-2}{200}\right) \mu_{2 \mathrm{~N}}+\frac{1}{200} \mu_{3 \mathrm{~N}}+ & 0 & \mu_{4 \mathrm{~N}}+ & 0 & \mu_{1 \mathrm{Y}}+ \\
& \downarrow & \downarrow & \mu_{4 \mathrm{Y}} \\
c_{1 N} & c_{2 N} & \downarrow & \downarrow & \downarrow & \downarrow \\
& C_{3 N} & C_{4 N} & c_{1 Y} & c_{4 Y}
\end{array}
$$

Observe that $\sum_{i} c_{i}=\frac{1}{200}+\left(\frac{-2}{200}\right)+\frac{1}{200}+0+0+0=0$.

More Examples of Contrasts

- Every pairwise comparison is a contrast! $\left(C=\mu_{k}-\mu_{\ell}\right)$

More Examples of Contrasts

- Every pairwise comparison is a contrast! $\left(C=\mu_{k}-\mu_{\ell}\right)$
$c_{k}=1, c_{\ell}=-1$, all other c_{i} 's are 0 , and
$\sum_{i=1}^{g} c_{i}=1+(-1)+0+\cdots+0=0$
- A single treatment mean $C=\mu_{k}$ is NOT a contrast

More Examples of Contrasts

- Every pairwise comparison is a contrast! ($C=\mu_{k}-\mu_{\ell}$)
$c_{k}=1, c_{\ell}=-1$, all other c_{i} 's are 0 , and
$\sum_{i=1}^{g} c_{i}=1+(-1)+0+\cdots+0=0$
- A single treatment mean $C=\mu_{k}$ is NOT a contrast
- Is $C=\frac{\mu_{1}+\mu_{2}}{2}-\frac{\mu_{3}+\mu_{4}+\mu_{5}}{3}$ a contrast?
- Is $C=\frac{\mu_{1}+\mu_{2}}{2}-\frac{\mu_{3}+\mu_{4}}{2}+\mu_{5}$ a contrast?

More Examples of Contrasts

- Every pairwise comparison is a contrast! $\left(C=\mu_{k}-\mu_{\ell}\right)$
$c_{k}=1, c_{\ell}=-1$, all other c_{i} 's are 0 , and $\sum_{i=1}^{g} c_{i}=1+(-1)+0+\cdots+0=0$
- A single treatment mean $C=\mu_{k}$ is NOT a contrast
- Is $C=\frac{\mu_{1}+\mu_{2}}{2}-\frac{\mu_{3}+\mu_{4}+\mu_{5}}{3}$ a contrast? Yes.
$c_{1}=c_{2}=\frac{1}{2}, c_{3}=c_{4}=c_{5}=-\frac{1}{3}$, which add up to 0.
- Is $C=\frac{\mu_{1}+\mu_{2}}{2}-\frac{\mu_{3}+\mu_{4}}{2}+\mu_{5}$ a contrast?

More Examples of Contrasts

- Every pairwise comparison is a contrast! $\left(C=\mu_{k}-\mu_{\ell}\right)$
$c_{k}=1, c_{\ell}=-1$, all other c_{i} 's are 0 , and $\sum_{i=1}^{g} c_{i}=1+(-1)+0+\cdots+0=0$
- A single treatment mean $C=\mu_{k}$ is NOT a contrast
- Is $C=\frac{\mu_{1}+\mu_{2}}{2}-\frac{\mu_{3}+\mu_{4}+\mu_{5}}{3}$ a contrast? Yes.
$c_{1}=c_{2}=\frac{1}{2}, c_{3}=c_{4}=c_{5}=-\frac{1}{3}$, which add up to 0.
- Is $C=\frac{\mu_{1}+\mu_{2}}{2}-\frac{\mu_{3}+\mu_{4}}{2}+\mu_{5}$ a contrast?

More Examples of Contrasts

- Every pairwise comparison is a contrast! $\left(C=\mu_{k}-\mu_{\ell}\right)$
$c_{k}=1, c_{\ell}=-1$, all other c_{i} 's are 0 , and
$\sum_{i=1}^{g} c_{i}=1+(-1)+0+\cdots+0=0$
- A single treatment mean $C=\mu_{k}$ is NOT a contrast
- Is $C=\frac{\mu_{1}+\mu_{2}}{2}-\frac{\mu_{3}+\mu_{4}+\mu_{5}}{3}$ a contrast? Yes.

$$
c_{1}=c_{2}=\frac{1}{2}, c_{3}=c_{4}=c_{5}=-\frac{1}{3}, \text { which add up to } 0 .
$$

- Is $C=\frac{\mu_{1}+\mu_{2}}{2}-\frac{\mu_{3}+\mu_{4}}{2}+\mu_{5}$ a contrast? No.

$$
c_{1}=c_{2}=\frac{1}{2}, c_{3}=c_{4}=-\frac{1}{2}, c_{5}=1, \text { which add up to } 1, \text { not } 0 .
$$

Estimator and Confidence Interval for a Contrast

A natural estimator for a contrast $C=\sum_{i=1}^{g} c_{i} \mu_{i}$ is

$$
\widehat{C}=\sum_{i=1}^{g} c_{i} \bar{y}_{i \bullet}
$$

Estimator and Confidence Interval for a Contrast

A natural estimator for a contrast $C=\sum_{i=1}^{g} c_{i} \mu_{i}$ is

$$
\widehat{C}=\sum_{i=1}^{g} c_{i} \bar{y}_{i \bullet}
$$

As $\bar{y}_{1 \bullet}, \bar{y}_{2 \bullet}, \ldots$, and $\bar{y}_{g \bullet}$ are indep. of each other, we know

$$
\mathbb{V}\left(\sum_{i=1}^{g} c_{i} \bar{y}_{i \bullet}\right)=\sum_{i=1}^{g} \mathbb{V}\left(c_{i} \bar{y}_{i \bullet}\right)=\sum_{i=1}^{g} c_{i}^{2} \mathbb{V}\left(\bar{y}_{i \bullet}\right)=\sum_{i=1}^{g} c_{i}^{2} \frac{\sigma^{2}}{n_{i}} .
$$

Estimator and Confidence Interval for a Contrast

A natural estimator for a contrast $C=\sum_{i=1}^{g} c_{i} \mu_{i}$ is

$$
\widehat{C}=\sum_{i=1}^{g} c_{i} \bar{y}_{i \bullet}
$$

As $\bar{y}_{1 \bullet}, \bar{y}_{2 \bullet}, \ldots$, and $\bar{y}_{g \bullet}$ are indep. of each other, we know

$$
\mathbb{V}\left(\sum_{i=1}^{g} c_{i} \bar{y}_{i \bullet}\right)=\sum_{i=1}^{g} \mathbb{V}\left(c_{i} \bar{y}_{i \bullet}\right)=\sum_{i=1}^{g} c_{i}^{2} \mathbb{V}\left(\bar{y}_{i \bullet}\right)=\sum_{i=1}^{g} c_{i}^{2} \frac{\sigma^{2}}{n_{i}}
$$

The SD and SE of the estimator \widehat{C} :

$$
\mathrm{SD}(\widehat{C})=\sqrt{\sigma^{2} \sum_{i=1}^{g} \frac{c_{i}^{2}}{n_{i}}}, \quad \mathrm{SE}(\widehat{C})=\sqrt{\mathrm{MSE} \times \sum_{i=1}^{g} \frac{c_{i}^{2}}{n_{i}}}
$$

A $(1-\alpha) 100 \%$ confidence interval for the contrast C is

$$
\widehat{C} \pm t_{N-g, \alpha / 2} \times \operatorname{SE}(\widehat{C})
$$

Hypothesis Testing for a Contrast

To test whether a contrast C is $0, \mathrm{H}_{0}: C=0$, the test statistic is

$$
t=\frac{\widehat{C}}{\operatorname{SE}(\widehat{C})}=\frac{\sum_{i=1}^{g} c_{i} \bar{y}_{i \bullet}}{\sqrt{\operatorname{MSE} \times \sum_{i=1}^{g} \frac{c_{i}^{2}}{n_{i}}}} \sim t_{N-g}
$$

If $\mathrm{H}_{\mathrm{a}}: C \neq 0$ (two-sided),
P -value $=\bigcap_{-|t|}=2 * \mathrm{lt\mid}(\operatorname{abs}(\mathrm{t}), \mathrm{df}$, lower.tail=F)
If $\mathrm{H}_{\mathrm{a}}: \mathrm{C}<0$ (lower one-sided),
P -value $=\bigcap_{\mathrm{t}}=\mathrm{pt}(\mathrm{t}, \mathrm{df})$
If $\mathrm{H}_{\mathrm{a}}: \mathrm{C}>0$ (upper one-sided),
P-value $=\bigcap_{\mathrm{t}}^{\bigcap_{\mathrm{C}}}=\mathrm{pt}(\mathrm{t}, \mathrm{df}$, lower.tail=F)
The bell curve above is the t-curve with $\mathrm{df}=N-g$.

Does the Irrigation Effect Change with Nitrogen Levels?

| Group | 1 N | 1 Y | 2 N | 3 N | 4 N | 4 Y |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |,\quad MSE $=17.97$

The contrast we consider is

$$
C=\underbrace{\mu_{1 \mathrm{~N}}-\mu_{1 Y}}_{\begin{array}{c}
\text { irrigation effect at } \\
\text { nitro level }=200
\end{array}})-\underbrace{\mu_{4 \mathrm{~N}}-\mu_{4 Y}}_{\begin{array}{c}
\text { irrigation effect at } \\
\text { nitro level }=800
\end{array}})
$$

in which $\left(c_{1 N}, c_{1 Y}, c_{2 N}, c_{3 N}, c_{4 N}, c_{4 Y}\right)=(1,-1,0,0,-1,1)$.

Does the Irrigation Effect Change with Nitrogen Levels?

Group	1 N	1 Y	2 N	3 N	4 N	4 Y
$\bar{y}_{i \bullet}$	95	82.25	81.5	68.25	50.5	52

The contrast we consider is

$$
C=\underbrace{\mu_{1 \mathrm{~N}}-\mu_{1 Y}}_{\begin{array}{c}
\text { irrigation effect at } \\
\text { nitro level }=200
\end{array}})-\underbrace{\mu_{4 \mathrm{~N}}-\mu_{4 Y}}_{\begin{array}{c}
\text { irrigation effect at } \\
\text { nitro level }=800
\end{array}})
$$

in which $\left(c_{1 N}, c_{1 Y}, c_{2 N}, c_{3 N}, c_{4 N}, c_{4 Y}\right)=(1,-1,0,0,-1,1)$.
The contrast is estimated by

$$
\widehat{C}=\bar{y}_{1 N_{\bullet}}-\bar{y}_{1 Y_{\bullet}}-\left(\bar{y}_{4 N_{\bullet} \bullet}-\bar{y}_{4 Y_{\bullet}}\right)=95-82.25-(50.5-52)=14.25 .
$$

Does the Irrigation Effect Change with Nitrogen Levels?

| Group | 1 N | 1 Y | 2 N | 3 N | 4 N | 4 Y |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |,$\quad \mathrm{MSE}=17.97$

The contrast we consider is

$$
C=\underbrace{\mu_{1 \mathrm{~N}}-\mu_{1 Y}}_{\begin{array}{c}
\text { irrigation effect at } \\
\text { nitro level }=200
\end{array}})-\underbrace{\mu_{4 \mathrm{~N}}-\mu_{4 Y}}_{\begin{array}{c}
\text { irrigation effect at } \\
\text { nitro level }=800
\end{array}})
$$

in which $\left(c_{1 N}, c_{1 Y}, c_{2 N}, c_{3 N}, c_{4 N}, c_{4 Y}\right)=(1,-1,0,0,-1,1)$.
The contrast is estimated by

$$
\widehat{C}=\bar{y}_{1 N_{\bullet}}-\bar{y}_{1 Y_{\bullet}}-\left(\bar{y}_{4 N_{\bullet}}-\bar{y}_{4 Y_{\bullet}}\right)=95-82.25-(50.5-52)=14.25 .
$$

with the standard error

$$
\operatorname{SE}(\widehat{C})=\sqrt{\operatorname{MSE} \sum_{i=1}^{g} \frac{c_{i}^{2}}{n_{i}}}=\sqrt{17.97\left(\frac{1^{2}}{4}+\frac{(-1)^{2}}{4}+\frac{(-1)^{2}}{4}+\frac{1^{2}}{4}\right)} \approx 4.24
$$

Does the Irrigation Effect Change with Nitrogen Levels?

To test whether the irrigation effect changes with nitrogen level $\mathrm{H}_{0}: C=\left(\mu_{1 \mathrm{~N}}-\mu_{1 \mathrm{Y}}\right)-\left(\mu_{4 \mathrm{~N}}-\mu_{4 \mathrm{Y}}\right)=0$ v.s. $\mathrm{H}_{a}: C \neq 0$, the t-statistic is

$$
t=\frac{\widehat{C}}{\operatorname{SE}(\widehat{C})}=\frac{14.25}{4.24} \approx 3.36
$$

with $\mathrm{df}=N-g=24-6=18$.
The two-sided p-value is
$2 * p t(3.36, \mathrm{df}=18$, lower.tail=F) [1] 0.003487

The small P-value indicates the irrigation effects are significantly different at the nitrogen level 200 and $800 \mathrm{mg} \mathrm{N} / \mathrm{kg}$ soil.

Does the Irrigation Effect Change with Nitrogen Levels?

The 95% confidence interval for $C=\left(\mu_{1 \mathrm{~N}}-\mu_{1 \mathrm{Y}}\right)-\left(\mu_{4 \mathrm{~N}}-\mu_{4 \mathrm{Y}}\right)$ is

$$
\widehat{C} \pm t_{N-g, 0.025} \times \mathrm{SE}(\widehat{C}) \approx 14.25 \pm 2.101 \times 4.24 \approx(5.34,23.16)
$$

in which $t_{24-6,0.025} \approx 2.101$ is found by the R command
qt (0.025, df=18, lower.tail=F)
[1] 2.101

This means that the irrigation effect (\% of grass w/ irrigation w/o irrigation) is on average 5.34% to 23.16% higher at nitrogen level 200 than at level $800 \mathrm{mg} \mathrm{N} / \mathrm{kg}$ soil, with 95% confidence.

Is the Nitrogen Effect Linear?

Treatment	1 N	1 Y	2 N	3 N	4 N	4 Y
Mean $\bar{y}_{i \bullet}$	95	82.25	81.5	68.25	50.5	52

The contrast we consider is

$$
C=\frac{\mu_{1 \mathrm{~N}}-\mu_{2 \mathrm{~N}}}{200}-\frac{\mu_{2 \mathrm{~N}}-\mu_{3 \mathrm{~N}}}{200}=\frac{\mu_{1 \mathrm{~N}}-2 \mu_{2 \mathrm{~N}}+\mu_{3 \mathrm{~N}}}{200}
$$

with the coefficients $\left(c_{1 N}, c_{2 N}, c_{3 N}\right)=\left(\frac{1}{200}, \frac{-2}{200}, \frac{1}{200}\right)$.

Is the Nitrogen Effect Linear?

Treatment	1 N	1 Y	2 N	3 N	4 N	4 Y
Mean $\bar{y}_{i \bullet}$	95	82.25	81.5	68.25	50.5	52

The contrast we consider is

$$
C=\frac{\mu_{1 \mathrm{~N}}-\mu_{2 \mathrm{~N}}}{200}-\frac{\mu_{2 \mathrm{~N}}-\mu_{3 \mathrm{~N}}}{200}=\frac{\mu_{1 \mathrm{~N}}-2 \mu_{2 \mathrm{~N}}+\mu_{3 \mathrm{~N}}}{200}
$$

with the coefficients $\left(c_{1 N}, c_{2 N}, c_{3 N}\right)=\left(\frac{1}{200}, \frac{-2}{200}, \frac{1}{200}\right)$.
The contrast is estimated by

$$
\widehat{C}=\frac{\bar{y}_{1 N_{\bullet}}-2 \bar{y}_{2 N_{\bullet}}+\bar{y}_{3 N_{\bullet}}}{200}=\frac{95-2 \times 81.5+68.25}{200}=\frac{0.25}{200}=0.00125 .
$$

with
$\operatorname{SE}(\hat{C})=\sqrt{\operatorname{MSE} \sum_{i=1}^{g} \frac{c_{i}^{2}}{n_{i}}}=\sqrt{17.97\left(\frac{(1 / 200)^{2}}{4}+\frac{\left(\frac{-2}{200}\right)^{2}}{4}+\frac{(1 / 200)^{2}}{4}\right)} \approx 0.026$

Is the Nitrogen Effect Linear?

To test whether the nitrogen effect is linear, the t-statistic is

$$
t=\frac{\widehat{C}}{\operatorname{SE}(\widehat{C})}=\frac{0.00125}{0.026} \approx 0.048
$$

with $\mathrm{df}=N-g=24-6=18$.
The two-sided p-value is
2*pt (0.048, df=18, lower.tail=F) [1] 0.9622

Conclusion: The huge P-value means little evidence of nonlinearity (at nitrogen level 1,2 , and 3).

Is the Nitrogen Effect Linear?

To test whether the nitrogen effect is linear, the t-statistic is

$$
t=\frac{\widehat{C}}{\mathrm{SE}(\widehat{C})}=\frac{0.00125}{0.026} \approx 0.048
$$

with $\mathrm{df}=N-g=24-6=18$.
The two-sided p-value is
2*pt (0.048, df=18, lower.tail=F) [1] 0.9622

Conclusion: The huge P-value means little evidence of nonlinearity (at nitrogen level 1,2, and 3).

Remark: One can also test the linearity at level 2, 3, and 4

$$
C=\frac{\mu_{2 N}-\mu_{3 N}}{200}-\frac{\mu_{3 N}-\mu_{4 N}}{200}=\frac{\mu_{2 N}-2 \mu_{3 N}+\mu_{4 N}}{200} .
$$

which is left as an exercise.

Inference for Contrasts in R

The R library emmeans can produce confidence intervals can conduct tests for contrasts.
e.g., for the interaction contrast $C=\left(\mu_{1 \mathrm{~N}}-\mu_{1 \mathrm{Y}}\right)-\left(\mu_{4 \mathrm{~N}}-\mu_{4 \mathrm{Y}}\right)$:

```
grass$trt = as.factor(grass$trt)
levels(grass$trt)
[1] "1N" "1Y" "2N" "3N" "4N" "4Y"
mod1 = aov(percent ~ trt, data=grass)
mod1emm = emmeans(mod1, "trt")
contrast(mod1emm, list(interaction=c(1, -1, 0, 0, -1, 1)),
    infer=c(T,T), level=0.95, side="two-sided")
    contrast estimate SE df lower.CL upper.CL t.ratio p.value
    interaction 14.2 4.24 18 14 5.34 
```

Confidence level used: 0.95

Inference for Contrasts in R

Contrast $C=\frac{\mu_{1 \mathrm{~N}}-2 \mu_{2 \mathrm{~N}}+\mu_{3 \mathrm{~N}}}{200}$
contrast (mod1emm, list (lin123 $=c(1,0,-2,1,0,0) / 200)$,
infer $=c(T, T)$, level $=0.95$, side="two-sided")
contrast estimate
SE df lower.CL upper.CL t.ratio p.value
lin123 0.00125

Confidence level used: 0.95

Contrast $C=\frac{\mu_{2 N}-2 \mu_{3 N}+\mu_{4 N}}{200}$

```
contrast(mod1emm, list(lin234=c(0, 0, 1, -2, 1, 0)/200),
    infer=c(T,T), level=0.95, side="two-sided")
    contrast estimate SE df lower.CL upper.CL t.ratio p.value
    lin234 -0.0225 0.026 18 -0.077 0.032 -0.867 0.3975
```

Confidence level used: 0.95

