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Two-Sample t-Test when σ2
1 = σ2

2 (Review)
Two-Sample Data:

yij = µi + εij , εij ’s are i.i.d. ∼ N(0, σ2i )

for i = 1, 2, j = 1, . . . , ni

To test H0: µ1 = µ2 v.s. Ha: µ1 6= µ2, assuming σ21 = σ22, the
t-statistic is

t =
y1• − y2•√
s2p

(
1
n1

+ 1
n2

) ∼ tn1+n2−2 under H0,

where

s2p =

∑n1
j=1(y1j − y1•)

2 +
∑n2

j=1(y2j − y2•)
2

n1 + n2 − 2
= MSE ,

called the “pooled sample variance”, is an estimate of the common
variance σ2 = σ21 = σ22.
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Welch t-Test when σ2
1 6= σ2

2 (Review)
When σ21 6= σ22, we use the Welch t-statistic

t =
y1• − y2•√
s21/n1 + s22/n2

,

where σ21 and σ22 are estimated separately using the sample
variances, s21 and s22 , of the 2 groups,

s21 =

∑n1
j=1(y1j − y1•)

2

n1 − 1
and s22 =

∑n2
j=1(y2j − y2•)

2

n2 − 1

The Welch t-statistic has an approximate (not exact) t-distribution
with df = ν where

ν =

( s21
n1

+
s22
n2

)2
1

n1 − 1

( s21
n1

)2
+

1

n2 − 1

( s22
n2

)2 .
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Limitations of Two-Sample t-test and Welch t-test

When can the two-sample t-test or the Welch t-test be used?

I First of all, the observations must be independent

I Conditions on normality and sample size:

Normal Data?
Yes No

Large sample X X
Small sample X No!

I Large experiments are often time-consuming and expensive
and hence may not be affordable.
Need tools for small-sample data

I Practically, we are almost never certain about the normality of
data.
Need at least a moderate sample size to check normality
Hard to check normality when the sample size is small
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Permutation Test
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Example: Rat’s Diet Experiment

I Objective: to investigate the effect of high protein diet on
weight gain.

I 8 rats available, randomly choose 4 to be fed with beef, the
remaining 4 fed with cereal.

I Response: weight gain (in grams) over a period of time.

I Results:
Protein source Weight gain Mean SD

Cereal 111 56 86 92 86.25 22.81
Beef 104 118 117 111 112.50 6.54

I Questions: Does beef diet yield higher weight gain than cereal
diet?

I t-tests is not reliable as the sample size is very small
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Permutation Test
Under the H0 that beef or cereal diet makes no difference, the
weight gain of 8 rats would remain to be

{111, 56, 86, 92, 104, 118, 117, 111}

no matter they were given beef or cereal. The variation in
weight gain is simply the natural rat-to-rat variation. Some rats
grow faster, some slower.

As the 8 rats were randomly allocated to the beef group or the
cereal group (4 rats each), one possible allocation and outcome
could be1

111a 86 92 11856 104 117 111b

111a 86 92 118 56 104 117 111b
beef cereal

1To distinguish the two rats of the same weight gain 111 g, we write their
weight gains as 111a and 111b.
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Another possible allocation/outcome:

111a 86 118 11756 92 104 111b

111a 86 118 117 56 92 104 111b
beef cereal

D = ybeef − y cereal

= 111+86+118+117
4 − 56+92+104+111

4

= −17.25

One more possible allocation/outcome:

56 86 118 117111a 92 104 111b

56 86 118 117 111a 92 104 111b
beef cereal

D = ybeef − y cereal

= 56+86+118+117
4 − 111+92+104+111

4

= −10.25

I In total, there are

(
8

4

)
=

8!

4!4!
= 70 possible allocations,

shown in the next page.

I For each allocation, we calculate the test statistic

D = ybeef − y cereal
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if 2 groups swapped
beef diet cereal diet ybeef−ycereal ybeef−ycereal

118 117 111a 111b 104 92 86 56 29.75 −29.75
118 117 111a 104 111b 92 86 56 26.25 −26.25
118 117 111a 92 111b 104 86 56 20.25 −20.25
118 117 111a 86 111b 104 92 56 17.25 −17.25
118 117 111a 56 111b 104 92 86 2.25 −2.25
118 117 111b 104 111a 92 86 56 26.25 −26.25
118 117 111b 92 111a 104 86 56 20.25 −20.25
118 117 111b 86 111a 104 92 56 17.25 −17.25
118 117 111b 56 111a 104 92 86 2.25 − 2.25
118 117 104 92 111a 111b 86 56 16.75 −16.75
118 117 104 86 111a 111b 92 56 13.75 −13.75
118 117 104 56 111a 111b 92 86 −1.25 1.25
118 117 92 86 111a 111b 104 56 7.75 −7.75
118 117 92 56 111a 111b 104 86 −7.25 7.25
118 117 86 56 111a 111b 104 92 −10.25 10.25
118 111a 111b 104 117 92 86 56 23.25 −23.25
118 111a 111b 92 117 104 86 56 17.25 −17.25
118 111a 111b 86 117 104 92 56 14.25 −14.25
118 111a 111b 56 117 104 92 86 −0.75 0.75
118 111a 104 92 117 111b 86 56 13.75 −13.75
118 111a 104 86 117 111b 92 56 10.75 −10.75
118 111a 104 56 117 111b 92 86 −4.25 4.25
118 111a 92 86 117 111b 104 56 4.75 −4.75
118 111a 92 56 117 111b 104 86 −10.25 10.25
118 111a 86 56 117 111b 104 92 −13.25 13.75
118 111b 104 92 117 111a 86 56 13.75 −13.75
118 111b 104 86 117 111a 92 56 10.75 −10.75
118 111b 104 56 117 111a 92 86 −4.25 4.25
118 111b 92 86 117 111a 104 56 4.75 −4.75
118 111b 92 56 117 111a 104 86 −10.25 10.25
118 111b 86 56 117 111a 104 92 −13.25 13.25
118 104 92 86 117 111a 111b 56 1.25 −1.25
118 104 92 56 117 111a 111b 86 −13.75 13.75
118 104 86 56 117 111a 111b 92 −16.75 16.75
118 92 86 56 117 111a 111b 104 −22.75 22.75

These are 35 of the 70
possible allocations.
The remaining 35 can
be obtained by
swapping the beef and
cereal group of these
35 allocations, and the
corresponding
test-statistic
D = ybeef − y cereal are
of the opposite sign.
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118 117 111b 104 111a 92 86 56 26.25 −26.25
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118 111b 104 92 117 111a 86 56 13.75 −13.75
118 111b 104 86 117 111a 92 56 10.75 −10.75
118 111b 104 56 117 111a 92 86 −4.25 4.25
118 111b 92 86 117 111a 104 56 4.75 −4.75
118 111b 92 56 117 111a 104 86 −10.25 10.25
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118 104 86 56 117 111a 111b 92 −16.75 16.75
118 92 86 56 117 111a 111b 104 −22.75 22.75

As the 70 possible
allocations were equally
likely to occur, we can
obtain the sampling
distribution of

D = ybeef − y cereal

as follows.

Value of D Prob. Value of D Prob.
−29.75 1/70 29.75 1/70
−26.25 2/70 26.25 2/70
−23.25 1/70 23.25 1/70
−22.75 1/70 22.75 1/70
−20.25 2/70 20.25 2/70
−17.25 3/70 17.25 3/70
−16.75 2/70 16.75 2/70
−14.25 1/70 14.25 1/70
−13.75 4/70 13.75 4/70
−13.25 2/70 13.25 2/70
−10.75 2/70 10.75 2/70
−10.25 3/70 10.25 3/70
−7.75 1/70 7.75 1/70
−7.25 1/70 7.25 1/70
−4.75 2/70 4.75 2/70
−4.25 2/70 4.25 2/70
−2.25 2/70 2.25 2/70
−1.25 2/70 1.25 2/70
−0.75 1/70 0.75 1/70
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Plot of the Sampling Distribution of D = ybeef − y cereal
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Observe the sampling distribution of D doesn’t look normal.
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To test against a one-sided alternative

Ha: Rats given beef diet had a higher mean weight gain

Larger values of D = ybeef − y cereal are evidence for Ha.

For the observed allocation, the D value is

D =
104 + 118 + 117 + 111

4
− 111 + 56 + 86 + 92

4
= 112.5− 86.25 = 26.25

Only 3 of the 70 possible allocations give a D as high or higher the
observed D = 26.25. Hence the one-sided P-value is 3/70.

beef diet cereal diet D = ybeef − y cereal

118 117 111a 111b 104 92 86 56 29.75
118 117 111a 104 111b 92 86 56 26.25
118 117 104 111b 111a 92 86 56 26.25 ← observed

Practically, there is no need to check all 70 allocations. One
just needs to count the number of allocations that gives a D-value
≥ the observed D.
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Ha: Rats given beef diet had a higher mean weight gain

Larger values of D = ybeef − y cereal are evidence for Ha.

For the observed allocation, the D value is
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Two-Sided Permutation Test
For a two-sided test

H0 : beef or cereal diet makes no difference on rats’ weight gain

Ha : the two diets make some difference on rats’ weight gain

a reasonable test statistic is |D| = |ybeef − y cereal |. Larger values of
|D| are evidence for Ha.

By swapping rats in the two groups, we get allocations in the other
extreme.

beef diet cereal diet D = ybeef − y cereal

118 117 111a 111b 104 92 86 56 29.75
118 117 111a 104 111b 92 86 56 26.25
118 117 104 111b 111a 92 86 56 26.25 ← observed
111a 92 86 56 118 117 104 111b −26.25
111b 92 86 56 118 117 111a 104 −26.25
104 92 86 56 118 117 111a 111b −29.75

The two-sided P-value is thus 6/70 = 6/70 ≈ 8.6%.
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Test Procedures of a Permutation Test (1)

Data: Sample 1 (Treatment 1) y11, y12, . . . , y1n1
Sample 2 (Treatment 2) y21, y22, . . . . . . . . . , y2n2

For randomized experiments

H0: the treatments make no difference

For observational studies

H0: The two populations have an identical distributions

Under H0, any n1 of the total of n1 + n2 observations is as likely to
be our observations in Sample 1/ Treatment group 1.

page 14



Test Procedures of a Permutation Test (2)
1. Find the observed difference in means: Dobserved = ȳ1 − ȳ2.

2. For one-sided tests, list all the possible allocations of units to
a group of size n1 and another group of size n2 that the
difference in means

Dnew = ȳ1,new − ȳ2,new

is ≥ the observed difference in means Dobserved . The
one-sided P-value is the count of such allocations over

(n1+n2
n1

)
3. If two-sided, list all the possible allocations of units to a

group of size n1 and another group of size n2 that the
absolute difference in means

|Dnew | = |ȳ1,new − ȳ2,new |

is ≥ the observed absolute difference in means |Dobserved |.
The two-sided P-value is the number of such allocations over(n1+n2

n1

)
.
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Two-Sided P-value is Not Always 2x One-Sided P-value
I When the size of the two groups are equal n1 = n2, the

two-sided P-value is twice the one-sided P-value, since one
can obtain allocations in the other extreme by swapping the
cases in the two groups

I When two groups are of different sizes n1 6= n2, the
two-sided P-value may NOT be 2x the one-sided P-value,
e.g., when n1 = 2, n2 = 3,

Group 1 Group 2 D = y 1 − y 2

1 2 3 4 6 (1 + 2)/2− (3 + 4 + 6)/3 ≈ −2.83
1 3 2 4 6 (1 + 3)/2− (2 + 4 + 6)/3 ≈ −2
1 4 2 3 6 (1 + 4)/2− (2 + 3 + 6)/3 ≈ −1.17
2 3 1 4 6 (2 + 3)/2− (1 + 4 + 6)/3 ≈ −0.33
2 4 1 3 6 (2 + 4)/2− (1 + 3 + 6)/3 ≈ −0.33
1 6 2 3 4 (1 + 6)/2− (2 + 3 + 4)/3 ≈ 0.5
3 4 1 2 6 (3 + 4)/2− (1 + 2 + 6)/3 ≈ 0.5
2 6 1 3 4 (2 + 6)/2− (1 + 3 + 4)/3 ≈ 1.33 → observed
3 6 1 2 4 (3 + 6)/2− (1 + 2 + 4)/3 ≈ 2.17
4 6 1 2 3 (4 + 6)/2− (1 + 2 + 3)/3 ≈ 3

One-sided P-value = 3/10; Two-sided P-value = 5/10
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Approximate P-value for Permutation Test

When the sample sizes n1 and n2 are large, it is labor-intensive to
to find the exact P-value by counting the extreme cases.
Nonetheless, one can estimate the exact P-value by sampling from
the possible permutations. We will demonstrate using the Rats’
diet experiment.

1. Sample n1 = 4 observations without replacement from the set
of all observations {111, 56, 86, 92, 104, 118, 117, 111} as
the beef group, and the rest as the cereal group. Find the
mean differences of the two groups Dnew = ȳ1,new − ȳ2,new .

2. Repeat the first step a huge number M of times and get a
mean difference Dnew for every repetition.

3. Count the number k of repetitions that produce mean
difference Dnew ≥ the mean difference of the original
grouping.

4. When M is large enough, k/M is an approximate P-value.
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Permutation Test in R

There is no build-in R function to do the permutation test (at least
to my knowledge), but it’s not hard to write our own code to find
an approximate P-value.

The sample() function in R can randomly permute the
observations.

> wtgain = c(104, 118, 117, 111, 111, 56, 86, 92)

> newwtgain = sample(wtgain); newwtgain

[1] 111 118 86 56 104 117 111 92

After permutation, regard the first n1 = 4 observations,
newwtgain[1:4], as the beef group, and the rest newwtgain[5:8]

as the cereal group, and then compute the mean difference of the
two group.

> D = mean(newwtgain[1:4])-mean(newwtgain[5:8]); D

[1] -13.25
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Permutation Test in R

Let’s repeat the previous step M = 10000 times.

M = 10000

D = vector("numeric",length=M)

for(i in 1:M){

newwtgain = sample(wtgain)

D[i] = mean(newwtgain[1:4])-mean(newwtgain[5:8])

}
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Let’s take a look at the frequencies of the values of the mean
difference D we obtained. (The result may vary from simulation to
simulation).

> table(D)

D

-29.75 -26.25 -23.25 -22.75 -20.25 -17.25 -16.75 -14.25 -13.75 -13.25

147 275 125 143 277 399 296 138 540 297

-10.75 -10.25 -7.75 -7.25 -4.75 -4.25 -2.25 -1.25 -0.75 0.75

265 455 144 131 302 309 302 273 138 134

1.25 2.25 4.25 4.75 7.25 7.75 10.25 10.75 13.25 13.75

299 264 267 298 133 144 413 308 317 631

14.25 16.75 17.25 20.25 22.75 23.25 26.25 29.75

144 282 451 257 120 150 283 149

> D.obs = mean(wtgain[1:4])-mean(wtgain[5:8]); D.obs

[1] 26.25 # observed mean difference

> sum(abs(D) >= D.obs)

[1] 854

Among the 10000 mean differences, we see 147 + 275 + 283 + 149 = 854

of them have absolute values ≥ the observed mean difference 26.25. So

the 2-sided P-value is estimated to be 854/10000 = 0.0854, not far from

the exact P-value, 6/70 ≈ 0.0857.
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> plot(table(D), ylab="Frequency", xlab="Mean Difference")
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Remarks on Permutation Tests

I Permutation tests applied on randomized experiments are
called the randomization tests. This is the name used Chapter
2 in Oehlert’s textbook.

I The test statistic of permutation tests can also be difference
in medians, 25th percentiles, etc, between the 2 groups, not
necessarily the means.

I The sampling distribution of the test statistic of a
permutation test is obtained by considering all possible
random allocations of units to groups, making no assumption
on the form of the population distribution.

page 22



When to Use Permutation Test?
I When sample sizes are very small, and hence it’s hard to

check the normality assumption, permutation test is a nice
alternative to the conventional t-test or Welch t-test.

I When sample sizes are large, P-values of permutation tests
are usually close to P-values of t-tests

I Permutation test is still subject to the effect of outliers.

I When applied on observational studies, the H0 of the
permutation test assumes the two population have identical
distributions, which implies they have identical SDs, even
though it makes no assumption on the form of the population
distribution

I When one group appear to have greater variabilities than the
other group, comparison of two groups is not simply the
comparison of the two means. One may transform the data to
mitigate the unequal variance problem before applying the
permutation test
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Rank-Sum Test
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Example: Cognitive Load Theory in Teaching
— A Randomized Experiment

Consider the following problem in coordinate geometry.

Point A has coordinates (2, 1), point B has (8, 3), and
point C has (4, 6). What is the slope of the line that
connects C to the midpoint between A and B?

Presenting the solution as a worked problem, a conventional
textbook shows a picture of the layout, gives a discussion in the
text, and then provides the lines of algebraic manipulation leading
to the right answer. (See the next slide). Recent theoretical
developments in cognitive science suggest that splitting the
presentation into the 3 distinct units of diagram, text, and algebra
imposes a heavy, extraneous cognitive load on the student. The
requirement that the student organize and process the separate
elements constitutes a cognitive load.
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In a test of this theory, researchers compared the effectiveness of
conventional textbook worked examples to modified worked
examples, which present the algebraic manipulations and
explanation as part of the graphical display.
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Example: Cognitive Load Theory in Teaching — Study
Design

I Subjects: 28 ninth-year students in Sydney, Australia, with no
previous exposure to coordinate geometry but have adequate
math to deal with the problems given

I The 28 subjects were randomized to self-study one of two
instructional materials. The two materials covered exactly the
same problems, presented differently. Students were given as
much time as they wished to study the material, but not
allowed to ask questions.

I Following the instructional phase, all students were tested with
a common examination over 3 problems of different difficulty.

I Response: the time (in seconds) required to arrive at a
solution to the moderately difficult problem.
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Example: Cognitive Load Theory in Teaching — Data

Modified Group:
68, 70, 73, 75, 77, 80, 80, 132, 148, 155, 183, 197, 206,
210

Conventional Group:

130, 139, 146, 150, 161, 177, 228, 242, 265, 300∗,
300∗,300∗,300∗,300∗

Note the response is censored at 300 seconds because the time
allotment for the problem is 5 minutes Five students did not
complete the problem in the 5-minute (300 seconds) time
allotment.
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The Rank Transformation
I Whenever the data contains outliers, it’s a headache

considering whether to remove the outlier(s).

I If transformations cannot make outliers less extreme, an
effective and widely used approach is to work with the ranks
of the data rather than the original values.

I By ranking the data, the impact of outliers is mitigated:
regardless of how extreme an outlier is, it receives the same
rank as if it were just slightly larger than the second-largest
observation, e.g.,

value 0.04 0.86 1.3 2.2 3.8 8.0 10.7 11.6 61.8
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

rank 1 2 3 4 5 6 7 8 9

I Skewness also is mitigated, sine all ranks are equally far
apart from each other.

I Another attractive feature of the rank transformation is its
ability to deal with censored observations as in the cognitive
load experiment.
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The Rank Sum Statistic

First transform the data to their ranks.

1. List all observations from both samples in increasing order.

2. Identify which sample each observation came from.

3. Create a new column labeled “order”, as a straight sequence
of numbers from 1 to n1 + n2.

4. Search for ties — that is, duplicated values — in the
combined data set. The ranks for tied observations are taken
to be the average of the orders for those cases.

The rank-sum statistic, T , is the sum of all the ranks in one group,
called “group 1.” Group 1 is conventionally the group with the
smaller sample size (because that requires less computation). The
choice, however, is arbitrary.
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Rank Sum Test = Permutation Test Performed on Ranks
Recall the permutation test uses the diff. in means as the test statistic.
Performed on ranks, the test statistic would be(

Mean ranks

for group 1

)
−
(

Mean ranks

for group 2

)
=

T1

n1
− T2

n2

where ni = sizes of Group i , and Ti = rank-sum for Group i , i = 1, 2

I Observe that T1 + T2 equals the rank-sum of all observations

1+2+3+· · ·+(n1+n2) =
(n1 + n2)(n1 + n2 + 1)

2
= rank sum of all

which doesn’t change from permutation to permutation

So diff. in mean ranks equals

T1

n1
− T2

n2
=

T1

n1
− (rank sum of all)− T1

n2
=

T1

n1
+

T1

n2
− rank sum of all

n2︸ ︷︷ ︸
not change w/ permutation

Thus large value of T1 ⇐⇒ large diff. in mean ranks

⇐⇒ stronger evidence against H0

Using T1 as the test-statistic is equivalent to using the diff in mean ranks
as the test-statistic

page 33



Rank Sum Test = Permutation Test Performed on Ranks
Recall the permutation test uses the diff. in means as the test statistic.
Performed on ranks, the test statistic would be(

Mean ranks

for group 1

)
−
(

Mean ranks

for group 2

)
=

T1

n1
− T2

n2

where ni = sizes of Group i , and Ti = rank-sum for Group i , i = 1, 2

I Observe that T1 + T2 equals the rank-sum of all observations

1+2+3+· · ·+(n1+n2) =
(n1 + n2)(n1 + n2 + 1)

2
= rank sum of all

which doesn’t change from permutation to permutation

So diff. in mean ranks equals

T1

n1
− T2

n2
=

T1

n1
− (rank sum of all)− T1

n2
=

T1

n1
+

T1

n2
− rank sum of all

n2︸ ︷︷ ︸
not change w/ permutation

Thus large value of T1 ⇐⇒ large diff. in mean ranks

⇐⇒ stronger evidence against H0

Using T1 as the test-statistic is equivalent to using the diff in mean ranks
as the test-statistic

page 33



Rank Sum Test = Permutation Test Performed on Ranks
Recall the permutation test uses the diff. in means as the test statistic.
Performed on ranks, the test statistic would be(

Mean ranks

for group 1

)
−
(

Mean ranks

for group 2

)
=

T1

n1
− T2

n2

where ni = sizes of Group i , and Ti = rank-sum for Group i , i = 1, 2

I Observe that T1 + T2 equals the rank-sum of all observations

1+2+3+· · ·+(n1+n2) =
(n1 + n2)(n1 + n2 + 1)

2
= rank sum of all

which doesn’t change from permutation to permutation

So diff. in mean ranks equals

T1

n1
− T2

n2
=

T1

n1
− (rank sum of all)− T1

n2
=

T1

n1
+

T1

n2
− rank sum of all

n2︸ ︷︷ ︸
not change w/ permutation

Thus large value of T1 ⇐⇒ large diff. in mean ranks

⇐⇒ stronger evidence against H0

Using T1 as the test-statistic is equivalent to using the diff in mean ranks
as the test-statistic page 33



Example: Rat’s Diet Revisit

The rank sum test is equivalent to a permutation test performed
on the ranks of the data.

beef diet cereal diet Rank Sum Statistic

Data 118 117 104 111 111 92 86 56
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Ranks 8 7 4 5.5 5.5 3 2 1 T = 8 + 7 + 4 + 5.5 = 24.5

One can find the rank-sum P-value by counting the permutations
of ranks in the two groups that give a rank-sum ≥ the observed
rank-sum statistic, and divide it by

(n1+n2
n1

)
beef diet cereal diet Rank Sum Statistic

8 7 5.5a 5.5b 4 3 2 1 T = 8 + 7 + 5.5 + 5.5 = 26
8 7 5.5a 4 5.5b 3 2 1 T = 8 + 7 + 5.5 + 4 = 24.5
8 7 5.5b 4 5.5a 3 2 1 T = 8 + 7 + 5.5 + 4 = 24.5

The one-sided P-value for the Rank-Sum test is 3/70 as there are
only 3 permutations with a rank-sum T ≥ the observed T = 24.5
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Normal Approximation to the Rank-Sum Statistic

I When n1 and n2 are small, one can compute the exact
P-value for a rank-sum test by counting the number of
permutations of ranks in the two groups that give a rank-sum
≥ the observed rank-sum statistic, and dividing it by

(n1+n2
n1

)
.

I However, when n1 and n2 get moderately large, computation
of the exact P-value of permutation tests is labor-intensive.

I Fortunately, because conversion to ranks avoids absurd
distributional anomalies, the sampling distribution of rank
sum statistic can be approximated accurately by a
normal distribution, unless
I when at least one sample is small (say, under 5),
I or when large numbers of ties occur.

See next page.
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Normal Approximation to the Rank-Sum Statistic

The rank sum statistic T is approximately Normal

T is approx. ∼ N

(
n1R, sR

√
n1n2

n1 + n2

)
where R and sR , are the average and the sample SD, respectively,
for the combined set of n1 + n2 ranks.

I In fact, R = (1 + n1 + n2)/2

I If no ties, sR =

√
(n1 + n2)(n1 + n2 + 1)

12
.

Do NOT use this approximation when

I at least one sample is small (say, under 5), or

I large numbers of ties occur.

In those cases, find the P-value by listing the extreme
permutations or by simulation.
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Example: Cognitive Load Theory in Teaching
First we find the ranks of the data

> Time = c(68,70,73,75,77,80,80,132,148,155,183,197,206,210,

130,139,146,150,161,177,228,242,265,300,300,300,300,300)

> Treatment = c(rep("Modified", 14), rep("Conventional",14))

> obsrank = rank(Time, ties.method = "average")

> obsrank

[1] 1.0 2.0 3.0 4.0 5.0 6.5 6.5 9.0 12.0 14.0 17.0 18.0

[13] 19.0 20.0 8.0 10.0 11.0 13.0 15.0 16.0 21.0 22.0 23.0 26.0

[25] 26.0 26.0 26.0 26.0

The rank sum statistic T is

> T = sum(obsrank[1:14]); T

[1] 137

The average R and the sample standard deviation sR , respectively,
for the combined set of n1 + n2 ranks are

> meanR = mean(obsrank); meanR

[1] 14.5

> SR = sd(obsrank); SR

[1] 8.202303
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Example: Cognitive Load Theory in Teaching

As both groups have 14 observations, n1 = n2 = 14. The mean
and SD of the rank sum statistic is

> n1=14

> n2=14

> n1*meanR

[1] 203

> sqrt(n1*n2/(n1+n2))*SR

[1] 21.70125

The P-value is hence

> 2*pnorm(137, mean=203, sd=21.70125)

[1] 0.002355599
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Rank-Sum Test in R — Cognitive Load Experiment
> wilcox.test(Time ~ Treatment)

Wilcoxon rank sum test with continuity correction

data: Time by Treatment

W = 164, p-value = 0.002542

alternative hypothesis: true location shift is not equal to 0

Warning message:

In wilcox.test.default(x = c(130, 139, 146, 150, 161, 177, 228, :

cannot compute exact p-value with ties

> wilcox.test(Time ~ Treatment, correct=F)

Wilcoxon rank sum test

data: Time by Treatment

W = 164, p-value = 0.002356

alternative hypothesis: true location shift is not equal to 0

Warning message:

In wilcox.test.default(x = c(130, 139, 146, 150, 161, 177, 228, :

cannot compute exact p-value with tiespage 39



Rank-Sum Test in R — Rat’s Diet Experiment

> beef = c(104, 118, 117, 111)

> cereal = c(111, 56, 86, 92)

> wilcox.test(beef, cereal, alternative = "greater")

Wilcoxon rank sum test with continuity correction

data: beef and cereal

W = 14.5, p-value = 0.04071

alternative hypothesis: true location shift is greater than 0

Warning message:

In wilcox.test.default(beef, cereal, alternative = "greater") :

cannot compute exact p-value with ties

Note that R calculate the P-value using normal approximation
when there are ties. Hence the P-value 0.04071 given is not equal
to the exact P-value 3/70 ≈ 0.04286.
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Comparisons of the 3 Tests

The rank-sum test, just like the permutation test, is a
nonparametric or distribution-free statistical tool, meaning there
are no specific distributional assumptions required.

Two-Sample t-test Permutation Rank-Sum
Welch t-test Test Test

Requires Yes for small samples
No No

Normality? No for large samples

Robust to
No No Yes

Outliers?

When the sample sizes are large, the 3 tests usually give similar
p-values and hence will give the same conclusion.
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Other names for the rank-sum test are the Wilcoxon test and the
Mann-Whitney test. The different names refer to originators of
different forms of the test statistic.
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Permutation Test for One-Way ANOVA Data
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Permutation Test for One-Way ANOVA

Permutation tests for two-sample data can be extended to
multi-sample data.

The test-statistic can be the F -statistic or SStrt , which are actually
equivalent since

F =
SStrt/(g − 1)

SSE/(N − g)
=

SStrt/(g − 1)

(SST− SStrt)/(N − g)
.

as SST doesn’t change with permutation. Thus

large value of SStrt ⇐⇒ large value of F -statistic

⇐⇒ stronger evidence against H0: all µi ’s are equal

So we just use SStrt as the test-statistic.
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Permutation Test for One-Way ANOVA

1. Compute the observed SStrt .

2. Permutate the observations among groups, while keeping the
size of each group as in the original data. For each
permutation, compute the SStrt for that permutation.

3. If the size of the groups are: n1, n2, . . . , ng , the total number

of possible permutations are M =
(n1 + n2 + · · ·+ ng )!

n1!n2! · · · ng !
. If k

out of the M permutations have SStrt greater or equal to the
SStrt of the original data set, then the exact P-value is k/M.
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Permutation Test in R for One-Way ANOVA Data
Just like two-sample data, it is labor-intensive to to find the exact
P-value of permutation test by counting of more extreme cases.
Usually we can only estimate the exact P-value by sampling from
the possible permutations. We will demonstrate using the
Hodgkin’s disease data.

First we compute the observed SStrt .

> hodgkins = read.table("Hodgkins.txt", header=T)

> anova(lm(BradyLevel ~ Hodgkins, data=hodgkins))

Analysis of Variance Table

Response: BradyLevel

Df Sum Sq Mean Sq F value Pr(>F)

Hodgkins 2 65.893 32.946 10.67 0.0001042 ***

Residuals 62 191.449 3.088

Note the (1,2) entry of the ANOVA output is the value of SStrt .

> obsSStrt = anova(lm(BradyLevel ~ Hodgkins, data=hodgkins))[1,2]

> obsSStrt

[1] 65.8928

page 46



Permutation Test in R for One-Way ANOVA Data

Next we permute the response BradyLevel using the sample()

function, and then compute the SStrt for the permuted data.

> anova(lm(sample(BradyLevel) ~ Hodgkins, data=hodgkins))[1,2]

[1] 4.580726

Next, we repeat the previous step a huge number of times. For
each repetition, we permute the response and then obtain the SStrt

for the permuted data.

M = 10000

SStrt = vector("numeric",length=M)

for(i in 1:M){

SStrt[i]=anova(lm(sample(BradyLevel)~Hodgkins, data=hodgkins))[1,2]

}
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Permutation Test in R for One-Way ANOVA Data
Now let’s take a look at the frequencies of the values of the SStrt

we obtained. (The result may vary from simulation to simulation).

> hist(SStrt, nclass=50, xlab="SStrt",main="")

> abline(v=obsSStrt, col=2)

> sum(SStrt >= obsSStrt)

[1] 2

SStrt

F
re

qu
en

cy

0 20 40 60

0
50

0
15

00

Among the 10000 SStrt ’s, we see only 2 of them are ≥ the observed
SStrt . So the P-value is estimated to be 2/10000 = 0.0002.
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Kruskal-Wallis test for One-Way ANOVA
Kruskal-Wallis test is simply the rank-sum test extended to
one-way ANOVA data.

I First, convert the original data values with their ranks in the
entire data set. The smallest value gets a rank of 1, the
second-smallest gets a rank of 2, etc. Tied observations get
average ranks.

I Though omputation of the exact sampling distribution and
the exact P-value of permutation tests are labor-intensive,
since ranks are more well-behaved than the original data
(unless there are a large number of ties), an accurate
approximation of the permutation distribution is

SStrt

σ2R
∼ χ2

g−1

where σ2R is the sample variance of all N ranks and where N is
the total number of observations in all groups.
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> hodgkins = read.table("Hodgkins.txt", header=T)

> obsrank = rank(hodgkins$BradyLevel, ties.method = "average")

> anova(lm(obsrank ~ Hodgkins, data=hodgkins))

Analysis of Variance Table

Response: obsrank

Df Sum Sq Mean Sq F value Pr(>F)

Hodgkins 2 6840.2 3420.1 13.222 1.649e-05 ***

Residuals 62 16036.8 258.7

We obtained SStrt = 6840.2.

The sample variance of the ranks σ2R = 357.4531 can be obtained

> var(obsrank)

[1] 357.4531

The Kruskal-Wallis test statistic is

SStrt

σ2R
=

6840.2

357.4531
= 19.1359 ∼ χ2

3−1

The approximate P-value is 6.99× 10−5.

> pchisq(6840.2/357.4531, df=2, lower.tail=F)

[1] 6.993331e-05
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> hodgkins = read.table("Hodgkins.txt", header=T)

> obsrank = rank(hodgkins$BradyLevel, ties.method = "average")

> anova(lm(obsrank ~ Hodgkins, data=hodgkins))

Analysis of Variance Table

Response: obsrank

Df Sum Sq Mean Sq F value Pr(>F)

Hodgkins 2 6840.2 3420.1 13.222 1.649e-05 ***

Residuals 62 16036.8 258.7

We obtained SStrt = 6840.2.
The sample variance of the ranks σ2R = 357.4531 can be obtained

> var(obsrank)

[1] 357.4531

The Kruskal-Wallis test statistic is

SStrt

σ2R
=

6840.2

357.4531
= 19.1359 ∼ χ2

3−1

The approximate P-value is 6.99× 10−5.

> pchisq(6840.2/357.4531, df=2, lower.tail=F)

[1] 6.993331e-05

page 50
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Kruskal-Wallis test in R

> kruskal.test(BradyLevel~Hodgkins, data=hodgkins)

Kruskal-Wallis rank sum test

data: BradyLevel by Hodgkins

Kruskal-Wallis chi-squared = 19.136, df = 2, p-value =

6.994e-05
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Matched-Pair Designs

I Matched-pair designs

I t-test for matched-pair designs

I Randomization test for matched-pair designs

I Wilcoxon signed-rank test
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Example: Coffee & Blood Flow During Exercise

Doctors studying healthy men measured myocardial blood flow
(MBF)2 during bicycle exercise after giving the subjects a placebo
or a dose of 200 mg of caffeine that was equivalent to drinking two
cups of coffee.

Two possible designs:

I Completely Randomized Design: 16 subjects. Randomly
choose 8 subjects to be given caffeine, the other 8 placebo

I Matched Pairs Design: 8 subjects, each is tested twice.
Randomly choose 4 subjects to receive caffeine in the first test
and placebo in the second test; the other 4 receive placebo
first and caffeine second. There is a 24-hour gap between the
two tests.

Both designs will result in 16 measurements, 8 for caffeine and 8
for placebo. Which design would be more efficient?

2MBF was measured by taking positron emission tomography (PET) images
after oxygen-15 labeled water was infused in the patients.
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Data for Matched-Pair Design
MBF (ml/min/g)

Subject Placebo Caffeine

1 6.37 4.52
2 5.44 5.69
3 5.58 4.70
4 5.27 3.81
5 5.11 4.06
6 4.89 3.22
7 4.70 2.96
8 3.20 3.53
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Matched-pair data cannot be analyzed like 2 independent samples
since the 2 measurements on the same subject are dependent.

Method: take differences and analyze like one-sample data.

MBF (ml/min/g)
Subject Placebo Caffeine Difference

j y2j y1j dj = y2j − y1j
1 6.37 4.52 1.85
2 5.44 5.69 −0.25
3 5.58 4.70 0.88
4 5.27 3.81 1.46
5 5.11 4.06 1.05
6 4.89 3.22 1.67
7 4.70 2.96 1.74
8 3.20 3.53 −0.33

Mean 5.07 4.06 1.01
SD 0.91 0.89 0.87

To test H0: µ1 = µ2, the
test statistic is

t =
d̄

sd/
√
n
∼ tn−1

where

sd =

√√√√ 1

n − 1

n∑
j=1

(dj − d̄)2

In this example, d̄ = 1.01, sd = 0.87, t = 1.01−0
0.87/

√
8
≈ 3.28. The

2-sided P-value is

> 2*pt(-3.28,df=7)

[1] 0.01348706
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Permutation Test for Matched-Pair Data (1)

Under the H0 that treatments make no difference, if we had
reversed the order that Subject 1 received caffeine and placebo, the
measurement would be 4.52 for placebo and 6.37 for caffeine, and
the difference would become Placebo− Caffeine = −1.85 rather
than 1.85.

MBF (ml/min/g)
Subject Placebo Caffeine Difference

j y2j y1j dj =y2j−y1j
1 6.37

↔

4.52 1.85
2 5.44

↔

5.69 −0.25
3 5.58

↔

4.70 0.88
4 5.27

↔

3.81 1.46
5 5.11

↔

5.11 1.05
6 4.89 3.22 1.67
7 4.70

↔

2.96 1.74
8 3.20

↔

3.53 −0.33

Under H0, the two
measurements for each pair
would remain the same no
matter whether caffeine or
placebo was applied first.
Only the order could be
swapped. So the difference
between the pair would be of
the same magnitude but
could change sign.
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Permutation Test for Matched-Pair Data (2)
So for a permutation test, permutation of observations can only be
done within each pair. No cross-pair permutations are
allowed.

For all permutations, the magnitude of the differences
would remain the same, but the signs could change.

±1.85, ±0.25, ±0.88, ±1.46, ±1.05, ±1.67, ±1.74, ±0.33

There are 28 = 256 ways of changing the signs of d1, d2, . . . , d8.

Permutation
1.85 0.25 0.88 1.46 1.05 1.67 1.74 0.33
1.85 -0.25 0.88 1.46 1.05 1.67 1.74 0.33
1.85 0.25 0.88 1.46 1.05 1.67 1.74 -0.33
1.85 -0.25 0.88 1.46 1.05 1.67 1.74 -0.33 ← observed
1.85 -0.25 -0.88 1.46 1.05 1.67 1.74 0.33

...
...

...
-1.85 0.25 -0.88 -1.46 -1.05 -1.67 -1.74 0.33
-1.85 -0.25 -0.88 -1.46 -1.05 -1.67 -1.74 0.33
-1.85 0.25 -0.88 -1.46 -1.05 -1.67 -1.74 -0.33
-1.85 -0.25 -0.88 -1.46 -1.05 -1.67 -1.74 -0.33
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Permutation
1.85 0.25 0.88 1.46 1.05 1.67 1.74 0.33
1.85 -0.25 0.88 1.46 1.05 1.67 1.74 0.33
1.85 0.25 0.88 1.46 1.05 1.67 1.74 -0.33
1.85 -0.25 0.88 1.46 1.05 1.67 1.74 -0.33 ← observed
1.85 -0.25 -0.88 1.46 1.05 1.67 1.74 0.33

...
...

...
-1.85 0.25 -0.88 -1.46 -1.05 -1.67 -1.74 0.33
-1.85 -0.25 -0.88 -1.46 -1.05 -1.67 -1.74 0.33
-1.85 0.25 -0.88 -1.46 -1.05 -1.67 -1.74 -0.33
-1.85 -0.25 -0.88 -1.46 -1.05 -1.67 -1.74 -0.33
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Permutation Test for Matched-Pair Data (2)
So for a permutation test, permutation of observations can only be
done within each pair. No cross-pair permutations are
allowed.For all permutations, the magnitude of the differences
would remain the same, but the signs could change.

±1.85, ±0.25, ±0.88, ±1.46, ±1.05, ±1.67, ±1.74, ±0.33

There are 28 = 256 ways of changing the signs of d1, d2, . . . , d8.

Permutation
1.85 0.25 0.88 1.46 1.05 1.67 1.74 0.33
1.85 -0.25 0.88 1.46 1.05 1.67 1.74 0.33
1.85 0.25 0.88 1.46 1.05 1.67 1.74 -0.33
1.85 -0.25 0.88 1.46 1.05 1.67 1.74 -0.33 ← observed
1.85 -0.25 -0.88 1.46 1.05 1.67 1.74 0.33

...
...

...
-1.85 0.25 -0.88 -1.46 -1.05 -1.67 -1.74 0.33
-1.85 -0.25 -0.88 -1.46 -1.05 -1.67 -1.74 0.33
-1.85 0.25 -0.88 -1.46 -1.05 -1.67 -1.74 -0.33
-1.85 -0.25 -0.88 -1.46 -1.05 -1.67 -1.74 -0.33
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Test Statistic for the Permutation Test for Paired Data

We use the sum of the differences as the test statistic:∑8

j=1
dj = d1 + d2 + . . .+ d8

since the greater the sum of the differences, the stronger the
evidences against the H0.

For the observed randomization, the value of the test-statistic is

T =
∑8

j=1
dj

= 1.85− 0.25 + 0.88 + 1.46 + 1.05 + 1.67 + 1.74− 0.33

= 8.07
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One-Sided Permutation Tests for Matched-Pair Data
The one-sided P-value is the count of permutations that result in a
test statistics

∑8
j=1 dj that is at least as great as the test statistic

for the observed data, divided by 2n, where n = the number of
pairs.

Permutation test-statistic
∑

j dj
1.85 0.25 0.88 1.46 1.05 1.67 1.74 0.33 9.23
1.85 -0.25 0.88 1.46 1.05 1.67 1.74 0.33 8.73
1.85 0.25 0.88 1.46 1.05 1.67 1.74 -0.33 8.57
1.85 -0.25 0.88 1.46 1.05 1.67 1.74 -0.33 8.07 ← observed
1.85 -0.25 -0.88 1.46 1.05 1.67 1.74 0.33 7.47

...
...

...
-1.85 0.25 -0.88 -1.46 -1.05 -1.67 -1.74 0.33 −8.07
-1.85 -0.25 -0.88 -1.46 -1.05 -1.67 -1.74 0.33 −8.57
-1.85 0.25 -0.88 -1.46 -1.05 -1.67 -1.74 -0.33 −8.73
-1.85 -0.25 -0.88 -1.46 -1.05 -1.67 -1.74 -0.33 −9.23

As there are 4 permutations with
∑

j dj ≥ the observed∑
j dj = 8.07, the one-sided P-value is 4/28 = 0.015625.
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Two-Sided Permutation Tests for Matched-Pair Data
For a two-sided test, the test statistic would be |

∑
j dj |.

The two-sided P-value is the count of permutations that result in a
test statistics |

∑
j dj | that is at least as great as the observed

|
∑

j dj |, and then divide the count by 2n, where n = # of pairs.

Permutation test-statistic
∑

j dj
1.85 0.25 0.88 1.46 1.05 1.67 1.74 0.33 9.23
1.85 -0.25 0.88 1.46 1.05 1.67 1.74 0.33 8.73
1.85 0.25 0.88 1.46 1.05 1.67 1.74 -0.33 8.57
1.85 -0.25 0.88 1.46 1.05 1.67 1.74 -0.33 8.07 ← observed
1.85 -0.25 -0.88 1.46 1.05 1.67 1.74 0.33 7.47

...
...

...
-1.85 0.25 -0.88 -1.46 -1.05 -1.67 -1.74 0.33 −8.07
-1.85 -0.25 -0.88 -1.46 -1.05 -1.67 -1.74 0.33 −8.57
-1.85 0.25 -0.88 -1.46 -1.05 -1.67 -1.74 -0.33 −8.73
-1.85 -0.25 -0.88 -1.46 -1.05 -1.67 -1.74 -0.33 −9.23

There are 8 permutations with |
∑

j dj | ≥ the observed

|
∑

j dj | = 8.07, so the two-sided P-value is 8/28 = 0.03125.
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Only Count the Extreme Cases

Like permutation test for two-sample data, practically there is no
need to list all 2n possible permutations.
One just need to list all possible permutations (sign changes) that
resulted in a sum of differences

∑
j dj as large or larger than the

one for the observed data.

page 61



Permutation Test for Matched-Pair Data in R

As it is labor-intensive to count the more extreme cases, we can
estimate the exact P-value by sampling from the possible
permutations.

First we compute the difference for each pair.

> placebo = c(6.37,5.44,5.58,5.27,5.11,4.89,4.70,3.20)

> caffeine = c(4.52,5.69,4.70,3.81,4.06,3.22,2.96,3.53)

> diff = placebo - caffeine

We then select the set of pairs to swap (so the difference changes
sign).

> swap = rbinom(8, size=1, p=0.5); swap

[1] 1 0 0 1 0 0 1 0

The sum of differences after permutation is

> diffsum = sum(diff[swap==1]) - sum(diff[swap==0]); diffsum

[1] 2.03
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Permutation Test for Matched-Pair Data in R

We repeat the previous step a huge number of times. For each
repetition, we swap some of the pairs and then obtain the sum of
differences for the permuted data.

M = 10000

diffsum = vector("numeric",length=M)

for(i in 1:M){

swap = rbinom(8, size=1, p=0.5)

diffsum[i] = sum(diff[swap==1]) - sum(diff[swap==0])

}
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Let’s take a look at the frequencies of the sums of differences we
obtained, (which may vary from simulation to simulation).

> hist(diffsum, nclass=50,xlab="Sum of difference",main="")

> abline(v=sum(diff), col=2)

> abline(v=-sum(diff), col=2)

> sum(abs(diffsum)>= abs(sum(diff)))

[1] 320

Sum of differences
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Among the 10000 sums of differences, we see 320 of them are ≥
the observed

∑
i di = 8.07. So the two-sided P-value is estimated

to be 320/10000 = 0.032, close to the exact two-sided P-value
8/28 = 0.03125.
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Wilcoxon Signed-Rank Test

1. Compute the difference in each of the n pairs.

2. Drop zeros from the list (i.e., drop pairs with no difference).

3. Order the absolute differences from smallest to largest and
assign them their ranks 1, . . . , n (or average rank for ties).

4. The signed-rank statistic, S , is the sum of the ranks from the
pairs for which the difference is positive.

See the next slide for an example.
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Example: Wilcoxon Signed-Rank Test

MBF (ml/min/g)
Subject Placebo Caffeine Difference Rank Signed Rank

j y2j y1j dj = y2j − y1j
2 5.44 5.69 −0.25 1 −1
8 3.20 3.53 −0.33 2 −2
3 5.58 4.70 0.88 3 3
5 5.11 4.06 1.05 4 4
4 5.27 3.81 1.46 5 5
6 4.89 3.22 1.67 6 6
7 4.70 2.96 1.74 7 7
1 6.37 4.52 1.85 8 8

Signed-rank statistic S = Sum of ranks for positive differences

= 3 + 4 + 5 + 6 + 7 + 8 = 33
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Exact p-Value of the Wilcoxon Signed-Rank Test

An exact P-value for the signed-rank test is the proportion of all
permutations of outcomes within each pair that lead to a test
statistic as extreme as or more extreme than the one observed.

I Permutations refers to switching the group status of the two
observations within each pair. Within a single pair there are
two possible permutations, so with n pairs there are a total of
2n possible permutations

I The P-value is therefore the number of possible permutations
that provide a sum of positive ranks as extreme as or more
extreme than the observed one, divided by 2n
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Exact P-Value of the Wilcoxon Signed-Rank Test

Permutation Signed-Rank Statistic
1 2 3 4 5 6 7 8 36

-1 2 3 4 5 6 7 8 35
1 -2 3 4 5 6 7 8 34
1 2 -3 4 5 6 7 8 33

-1 -2 3 4 5 6 7 8 33 ← observed
...

...
...

-1 -2 3 -4 -5 -6 -7 -8 3
1 2 -3 -4 -5 -6 -7 -8 3

-1 2 -3 -4 -5 -6 -7 -8 2
1 -2 -3 -4 -5 -6 -7 -8 1

-1 -2 -3 -4 -5 -6 -7 -8 0

There are 5 permutations that result in a signed-rank statistic ≥
the one observed 33. So the one sided P-value is 5/28 ≈ 0.01953.
For a two-sided test, there are 10 permutations, P-value
= 10/28 ≈ 0.039.
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Wilcoxon Signed-Rank Test in R
> placebo = c(6.37,5.44,5.58,5.27,5.11,4.89,4.70,3.20)

> caffeine = c(4.52,5.69,4.70,3.81,4.06,3.22,2.96,3.53)

> wilcox.test(placebo, caffeine, paired=TRUE, alternative="greater")

Wilcoxon signed rank test

data: placebo and caffeine

V = 33, p-value = 0.01953

alternative hypothesis: true location shift is greater than 0

> wilcox.test(placebo, caffeine, paired=TRUE, alternative="two.sided", exact=TRUE)

Wilcoxon signed rank test

data: placebo and caffeine

V = 33, p-value = 0.03906

alternative hypothesis: true location shift is not equal to 0

By default, if there are no ties and the number of pairs n < 50, R
can produce the exact P-value. When there are ties or n ≥ 50, R
will use a normal approximation to calculate an approx. P-value.
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Wilcoxon Signed-Rank Test in R

The R command wilcox.test() can perform both the signed-rank
test for paired data and the rank-sum test for two-sample data.

Without specifying paired=TRUE, wilcox.test() will perform the
rank-sum test for two-sample data.

> wilcox.test(placebo, caffeine, alternative="greater", exact=TRUE)

Wilcoxon rank sum test with continuity correction

data: placebo and caffeine

W = 50.5, p-value = 0.02926

alternative hypothesis: true location shift is greater than 0

Warning message:

In wilcox.test.default(placebo, caffeine, alternative = "greater", :

cannot compute exact p-value with ties
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Normal Approximated P-value

Finding the exact P-value by counting of more extreme cases is
lots of work. A normal approximation for convenient computation
of an approximate P-value is available. Signed-rank statistic S is
approximately

N

µ =
n(n + 1)

4
, σ =

√∑
i R

2
i

4


where n is the number of pairs (excluding pairs with no difference).

I Ri ’s are the (unsigned) ranks of the absolute differences of the
pairs

I When there are no tie,
∑

i R
2
i = n(n + 1)(2n + 1)/6.

I This normal approximation works well for n ≥ 20.
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Example
Suppose for some matched-pair data, the signed-ranks are

1,−2,−3,−4.5, 4.5,−6,−7,−8,−9, 10, 11, 12, 13, 14, 15.

There are n = 15 pairs and the signed-rank statistic is

S = 1 + 4.5 + 7 + 10 + 11 + 12 + 13 + 14 + 15 = 87.5

The mean and SD of the normal approximation are

µ =
n(n + 1)

4
=

15× 16

4
= 60

σ =

√∑
i R

2
i

4
=

√
12+22+32+4.52 + 4.52 + 62 + · · ·+ 152

4
=

√
1239.5

4
≈ 17.60

So S is approx. N(µ = 60, σ ≈ 17.60). The one-sided P-value is
about

P(S ≥ 87.5) = P

(
Z ≥ 87.5− 60

17.60

)
= P(Z ≥ 1.56) ≈ 0.059.
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Wilcoxon Signed-Rank Test in R

When there are ties, Wilcoxon signed-rank test in R always uses a
normal approximation to calculate an approximate P-value.

> d = c(1,-2,-3,-4.5,4.5,-6,7,-8,-9,10,11,12,13,14,15)

> wilcox.test(d, alternative="greater", correct=F)

Wilcoxon signed rank test

data: d

V = 87.5, p-value = 0.05912

alternative hypothesis: true location is greater than 0

Warning message:

In wilcox.test.default(d, alternative = "greater", correct = F) :

cannot compute exact p-value with ties
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Parametric v.s. Nonparametric

I Permutation tests and rank-based tests require less
assumptions about the population distribution than t- or
F -tests, and hence are more reliable

I But there is no free lunch, permutation tests and rank-based
tests have less power than t- or F -tests, in particular when the
sample sizes are very small

I For example, consider the following made-up data: the
response is 1,2,3 in one group and 101,102,103 in the other
group.
I The t-test gives the two-sided P-value of 3× 10−8

I However, permutation test and rank-sum test only comes up
with a two-sided p-value of 2/

(
6
3

)
= 0.1.
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Parametric v.s. Nonparametric

I Don’t read too much into this, however

I The difference in power is far less dramatic when the sample
size is larger (for large sample sizes, the rank-sum test is
about 95% as powerful as the t-test, even when the outcome
is normally distributed)

I Furthermore, when outliers/skewness are present,
nonparametric methods can be much more powerful than
t-tests or F -tests

I Parametric vs. nonparametric:
I Parametric advantages: More powerful when parametric

assumptions hold, straightforward confidence intervals
I Nonparametric advantages: Minimal assumptions, more

powerful when parametric assumptions are wrong
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