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Block Designs

I A block is a set of experimental units that are homogeneous
in some sense. Hopefully, units in the same block will have
similar responses (if applied with the same treatment.)

I Block designs: randomize the units within each block to the
treatments.

Chapter 13 - 2



Randomized Complete Block Designs (RCBD)
We want to test g treatments. There are b blocks of units available,
each block contains k = rg units.

I Within each block, the k = rg units are randomized to the g
treatments, r units each.

I “Complete” means each of the g treatments appears the same
number of times (r) in every block.

I Mostly, block size k = # of treatments g , i.e., r = 1.

I Matched-Pair design is a special case of RCBD in which the block
size k = 2.

Block 1 Block 2 · · · Block b

Treatment 1 y11 y12 · · · y1b
Treatment 2 y21 y22 · · · y2b

...
...

... · · ·
...

Treatment g yg1 yg2 · · · ygb

Normally, data are shown arranged by block and treatment.
Cannot tell from the data what was/was not randomized.
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Things One Can Block On

I Block when you can identify a source of variation (e.g., age,
gender, medical history, etc)

I Block on machine/operator/batch (e.g., milk produced in a
day)

I Block spatially

I Block on time

I Block on . . .

Chapter 13 - 4



Advantages of Blocking

I Blocking is the second basic principle of experimental design
after randomization.

“Block what you can, randomize everything else.”

I If units are highly variable, grouping them into more similar
blocks can lead to a large increase in efficiency (more power
to detect difference in treatment effects).

I The choice of blocks is crucial
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Example 13.1 (Mealybugs on Cycads)

Mealybugs
A Cycad on a Cycad Branch
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Example 13.1 (Mealybugs on Cycads)
I Treatment: water (control), fungal spores, and horticultural oil

I 5 infested cycads, 3 branches are randomly chosen on each
cycad, and 2 patches (3 cm × 3 cm) are marked on each
branch

I 3 branches on each cycad are randomly assigned to the 3
treatments

I Response: difference of the # of mealybugs in the patches
before and 3 days after treatments are applied

13.2 The Randomized Complete Block Design 317

Table 13.1:Changes in mealybug counts on cycads after treatment.
Treatments are water,Beauveria bassianaspores, and horticultural oil.

Plant
1 2 3 4 5

Water -9 18 10 9 -6
-6 5 9 0 13

Spores -4 29 4 -2 11
7 10 -1 6 -1

Oil 4 29 14 14 7
11 36 16 18 15

branches on each cycad are randomly assigned to the three treatments. After
three days, the patches are counted again, and the response is the change in
the number of mealybugs (before− after). Data for this experiment are given
in Table 13.1 (data from Scott Smith).

How can we decode the experimental design from the description just
given?Follow the randomization!Looking at the randomization, we see that
the treatments were applied to the branches (or pairs of patches). Thus the
branches (or pairs) must be experimental units. Furthermore, the randomiza-
tion was done so that each treatment was applied once on each cycad. There
was no possibility of two branches from the same plant receiving the same
treatment. This is a restriction on the randomization, withcycads acting as
blocks. The patches are measurement units. When we analyze these data, we
can take the average or sum of the two patches on each branch asthe response
for the branch. To recap, there wereg = 3 treatments applied toN = 15
units arranged inr = 5 blocks of size3 according to an RCB design; there
were two measurement units per experimental unit.

Why did the experimenter block? Experience and intuition lead the ex-
perimenter to believe that branches on the same cycad will tend to be more
alike than branches on different cycads—genetically, environmentally, and
perhaps in other ways. Thus blocking by plant may be advantageous.

It is important to realize that tables like Table 13.1 hide the randomization
that has occurred. The table makes it appear as though the first unit in every
block received the water treatment, the second unit the spores, and so on.
This is not true. The table ignores the randomization for theconvenience of
a readable display. The water treatment may have been applied to any of the
three units in the block, chosen at random.

You cannot determine the design used in an experiment just bylooking at
a table of results, you have to know the randomization. Theremay be many
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Example 13.1 (Mealybugs on Cycads)

What are the experimental units, branches or patches? Why?

> cycad = read.table(

"http://www.stat.uchicago.edu/~yibi/s222/cycad.txt",h=T)

> cycad

trt plant change

1 1 1 -9

2 1 1 -6

3 2 1 -4

4 2 1 7

5 3 1 4

6 3 1 11

... (omitted) ...

25 1 5 -6

26 1 5 13

27 2 5 11

28 2 5 -1

29 3 5 7

30 3 5 15
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Example 13.1 (Mealybugs on Cycads)

As the patches are measurement units, we take the average of the
two patches on each branch as the response

> avechange = (cycad$change[2*(1:15)-1]+cycad$change[2*(1:15)])/2

> cycad = data.frame(trt = cycad$trt[2*(1:15)],

plant = cycad$plant[2*(1:15)],

avechange)

> cycad

trt plant avechange

1 1 1 -7.5

2 2 1 1.5

3 3 1 7.5

4 1 2 11.5

5 2 2 19.5

6 3 2 32.5

7 1 3 9.5

(... omitted ...)

14 2 5 5.0

15 3 5 11.0
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Example 13.1 (Mealybugs on Cycads)
cycad$trt = factor(cycad$trt,labels=c("Water","Spore", "Oil"))

interaction.plot(cycad$trt, cycad$plant, cycad$avechange,

type="b", xlab="Treatments",

ylab="Avg. changes in mealybug counts\n before and after treatment",

legend=FALSE,ylim=c(-10,32))

legend("top","Labels = Plant ID",bty="n",cex=.8)

1

1

1

−
10

0
10

20
30

Treatments

A
vg

. c
ha

ng
es

 in
 m

ea
ly

bu
g 

co
un

ts
 b

ef
or

e 
an

d 
af

te
r 

tr
ea

tm
en

t

2

2

2

3

3

3

4
4

4

5 5

5

Water Spore Oil

Labels = Plant ID

Chapter 13 - 10



Models for RCBDs

yij = µ + αi + βj + εij
(trt) (block)

in which
I yij = response of the unit receiving treatment i in block j
I µ = the grand mean
I αi = the treatment effects
I βj = the block effects
I εij = measurement errors, i.i.d. ∼ N(0, σ2)

Q: In an RCBD model, are we more interested in αi ’s or βj ’s?

Just like the models for factorial design, the model above is
over-parameterized. Need to impose constraints on parameters.
The commonly used constraints are∑g

i=1
αi = 0 and

∑b

j=1
βj = 0.
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Parameter Estimates for RCBD Models

The model for a RCBD

yij = µ+ αi + βj + εij εij ’s are i.i.d. N(0, σ2).

has the same format as the additive model for a balanced 2-way
factorial design. So the formulae for the parameter estimates are
identical

µ̂ = y••

α̂i = y i• − y•• for i = 1, . . . , g

β̂j = y•j − y•• for j = 1, . . . , b

Questions: Why not including treatment-block interactions?
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Fitted Values for RCBD
The fitted values for RCBD is then

ŷij = µ̂+ α̂i + β̂j

= y•• + (y i• − y••) + (y•j − y••)

= y i• + y•j − y••

= row mean + column mean − grand mean

just like in an additive model for a balanced two-way design.

Block 1 Block 2 · · · Block b row mean

Treatment 1 y11 y12 · · · y1b y1•
Treatment 2 y21 y22 · · · y2b y2•

...
...

... · · · ...
...

Treatment g yg1 yg2 · · · ygb yg•
column mean y•1 y•2 · · · y•b grand mean y••
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Sum of Squares and Degrees of Freedom
The sum of squares and degrees of freedom for RCBD are just like
those for the additive models:

SST = SStrt + SSblock + SSE

where

SST =
∑g

i=1

∑b

j=1
(yij − y••)

2

SStrt =
∑g

i=1

∑b

j=1
(y i• − y••)

2 = b
∑g

i=1
(y i• − y••)

2

SSblock =
∑g

i=1

∑b

j=1
(y•j − y••)

2 = g
∑b

j=1
(y•j − y••)

2

SSE =
∑g

i=1

∑b

j=1
(yij − y i• − y•j + y••)

2.

Total Treatment Block Error
dfT = bg − 1 dftrt = g − 1 dfblock = b − 1 dfE = (g − 1)(b − 1)
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Expected Values for the Mean Squares
Just like CRD, the mean squares for RCBD is the sum of squares
divided by the corresponding d.f.

MStrt =
SStrt

g − 1
, MSblock =

SSblock

b − 1
, MSE =

SSE

(g − 1)(b − 1)
.

Under the model for RCBD,

yij = µ+ αi + βj + εij εij ’s are i.i.d. N(0, σ2),

with the zero-sum constraints
∑g

i=1 αi =
∑b

j=1 βj = 0, one can
show that

E(MStrt) = σ2 +
b

g − 1

g∑
i=1

α2
i

E(MSblock) = σ2 +
g

b − 1

b∑
j=1

β2j

E(MSE) = σ2

Thus the MSE is again an unbiased estimator of σ2.
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ANOVA F -Test for Treatment Effect
To test whether there is an treatment effect

H0 : α1 = α2 = · · · = αg v.s. Ha : not all αi ’s are equal

is equivalent to testing whether all αi ’s are zero

H0 : α1 = α2 = · · · = αg = 0 v.s. Ha : not all αi ’s are zero

because of the constraint
∑g

i=1 αi = 0. This test is also equivalent
to a comparison between 2 models:

full model: yij = µ+αi +βj+εij reduced model: yij = µ+βj+εij

The test statistic is

Ftrt =
MStrt

MSE
∼ Fg−1, (g−1)(b−1)under H0.

The ANOVA table is given in the next slide
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ANOVA Table for RCBD

Sum of Mean
Source d.f. Squares Squares F

Treatment g − 1 SStrt MStrt Ftrt = MStrt

MSE

Block b − 1 SSblock MSblock (Fblock = MSblock

MSE )

Error (b − 1)(g − 1) SSE MSE

Total bg − 1 SST

I The F statistic Fblock for testing the block effect, which is not
interesting, and is often omitted.
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ANOVA Table for CRD and RCBD
If we ignore the block effect, and analyzed the experiment as a
CRD, the ANOVA table becomes

Sum of Mean
Source d.f. Squares Squares F

Treatment g − 1 SStrt MStrt Ftrt = MStrt

MSECRD

Error bg − g SSECRD MSECRD

Total bg − 1 SST

In the table SStrt and MStrt is the same in CRD and RCBD, but
the variability due to block is now in the error term

SSECRD = SSERCBD + SSblock .

If SSblock is large, by considering the block effect, one can
substantially reduce the size of noise. With a smaller MSE, it is
easier to detect difference in treatment effects.

RCBD can be a very effective noise-reducing technique if SSblock is
large.
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Example 13.1 (Mealybugs on Cycads)

> cycad$trt = factor(cycad$trt,labels=c("Water","Spore", "Oil"))

> anova(lm(avechange ~ trt + as.factor(plant), data=cycad))

Analysis of Variance Table

Response: avechange

Df Sum Sq Mean Sq F value Pr(>F)

trt 2 432.03 216.017 12.1871 0.003729 **

as.factor(plant) 4 686.40 171.600 9.6812 0.003708 **

Residuals 8 141.80 17.725

If we ignore the block effect . . .

> anova(lm(avechange ~ trt, data=cycad))

Analysis of Variance Table

Response: avechange

Df Sum Sq Mean Sq F value Pr(>F)

trt 2 432.03 216.017 3.1299 0.08056 .

Residuals 12 828.20 69.017

The treatment effect become less significant.
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Caution

Blocking must be done at the time of randomization; you can’t
group units into blocks when analyzing data to make treatments
more significant after the experiment is done.

Chapter 13 - 20



Model Diagnosis
Just like CRD, one should also do model checking after fitting a
RCBD model, including all kinds of residual plots, normal QQ plot,
time plot, Box-Cox, etc.
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For the Mealybug example, both the residual plot and the normal
QQ plot look fine.

Why not checking Box-Cox?
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A Blocking Factor is Not A Treatment Factor

It is sometimes easy to confuse blocking variables with treatment
factors. Remember that

I We can assign an experimental unit to any treatment, but
cannot assign an unit to any block.
Blocking variables are a property of the experimental units,
not something we can manipulate.
e.g., in the mealybug example, we can change treatment, but
cannot change the plant a branch comes from.

I Since we cannot experimentally manipulate the blocking
variable, block effects are “observational”. We cannot make
causal inference to a blocking variable as to a treatment
factor.
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Contrasts in RCBD (1)

A natural estimator of a contrast C =
∑g

i=1 wiαi is

Ĉ =

g∑
i=1

wi α̂i =

g∑
i=1

wi (y i• − y••) =

g∑
i=1

wiy i•,

which is identical to the estimator in CRD. (Note a contrast must
have

∑g
i=1 wi = 0). So is the SE of the estimator (group size ni

becomes b)

SE(Ĉ ) =

√√√√MSE×
g∑

i=1

w2
i

b

The (1− α)100% C.I. and test for C remain the same form, only
the degrees of freedom changes from N − g to (g − 1)(b − 1).

Ĉ ± tα/2,(g−1)(b−1) × SE(Ĉ )
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Contrasts in RCBD (2)
As for testing {

H0 : C =
∑g

i=1 wiαi = 0

Ha : C =
∑g

i=1 wiαi 6= 0

the test statistic remain the same form,

t0 =
Ĉ

SE(Ĉ )
=

∑g
i=1 wiy i•√

MSE×∑g
i=1

w2
i
b

∼ t(g−1)(b−1)

only the t−distribution changes its d.f. form N − g to
(g − 1)(b − 1). At test level of α, reject H0 when

|t0| > tα/2, (g−1)(b−1)

For one-sided alternative, we reject H0 at level α when

t0 > tα, (g−1)(b−1), if Ha : C > 0,

t0 < −tα, (g−1)(b−1), if Ha : C < 0.
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Example 13.1 (Mealybugs on Cycads)
> library(mosaic)

> mean(avechange ~ trt, data = cycad)

Water Spore Oil

4.3 5.9 16.4

Recall the MSE we obtained from the ANOVA table is 17.725.
To test whether two treatments, Water and Spore, have the same
mean, H0: µwater = µspore , the t-statistic is

t =
ywater − y spore√

MSE
(
1
b + 1

b

) =
5.9− 4.3√

17.725× (15 + 1
5)
≈ 0.60 ∼ t8

which is not significant.
We can perform pairwise comparisons between the 3 treatments,
and found that the mean change after applying Oil is significantly
higher than the other two treatments, but Water and Spore are
not significantly different effect. Here is the underline diagram:

Water Spore Oil
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Coming Up Next...

There are several extensions of RCBD

I 13.2 RCBD (done!) . . . . . . . . . . . . . . . . . . . . . 1 blocking variable

I 13.3 Latin Square Design . . . . . . . . . . . . . . . 2 blocking variables

I 13.4 Graeco-Latin Square Design . . . . . . . . 3 blocking variables

I Chapter 14 Incomplete Block Design
(what if block size 6= number of treatments?)
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13.3 Latin Square Designs — Blocking Two Variations Simultaneously

Sometimes there are more than one source of variations or
disturbance that can be eliminated by blocking.

Example Suppose in a farm there is a north-south variation in
sunlight and east-west variation in soil humidity. It is natural to
block on row and column position of plots. Suppose the treatments
are 5 fertilizers A, B, C, D, E. One can consider the design

(dry) ↔ (humid)
West ←→ East

Column
Row 1 2 3 4 5

(less sunlight) North I A B C D Exy II C D E A B
III E A B C D
IV B C D E A

(more sunlight) South V D E A B C

Each treatment occurs once in each row and in each column.
This is called a Latin square. When we estimate treatment
effects, the row and column effects will cancel out.
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Example — Automobile Emissions

Variables

Additives: A, B, C, D (chemicals aimed at reducing pollution)

Drivers: I, II, III, IV

Cars: 1, 2, 3, 4

Response: Emission reduction index measured for each test
drive

The experiment

Additives as treatments (i = 1, 2, 3, 4)

Drivers as a block variable (row block j = 1, 2, 3, 4)

Cars as another block variable (column block k = 1, 2, 3, 4)

The combination (driver, car) as experimental units

Latin square of order 4 as the design of the experiment
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Data and Design for the Automobile Emissions Example

Cars
Drivers 1 2 3 4 driver average

I A B D C
19 24 23 26 23

II D C A B
23 24 19 30 24

III B D C A
15 14 15 16 15

IV C A B D
19 18 19 16 18

average grand mean
per car 19 20 19 22 20

Treatment means

A: 18, B: 22, C: 21, D: 19
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Data Set of the Automobile Emissions Example

driver car trt reduct

1 1 1 A 19

2 1 2 B 24

3 1 3 D 23

4 1 4 C 26

5 2 1 D 23

6 2 2 C 24

7 2 3 A 19

8 2 4 B 30

9 3 1 B 15

10 3 2 D 14

11 3 3 C 15

12 3 4 A 16

13 4 1 C 19

14 4 2 A 18

15 4 3 B 19

16 4 4 D 16
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Are there driver effects? Car effects?
Which block effect is stronger?
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Model For a Latin Square Design
If we label the two blocking variables j and k and the treatment i
with 1 ≤ i , j , k ≤ g , we write

yijk = µ + αi + βj + γk + εijk
(trt) (row) (column)

where∑
i
αi =

∑
j
βj =

∑
k
γk = 0, εijk ∼ i .i .d . N(0, σ2)

We have g2 experimental units. For given j and k we only have
one value i(j , k) corresponding to Treatment i .

The design is balanced, so we have the usual estimates:

µ̂ = ȳ•••, α̂i = ȳi•• − ȳ•••

β̂j = ȳ•j• − ȳ•••

γ̂k = ȳ••k − ȳ•••

Statistical analysis can be done using familiar R commands.
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How Do Latin-Square Designs Work?
Q: What is the mean for ȳA••?

For the automobile emission example,

yA•• =
1

4
(yA11 + yA32 + yA43 + yA24).

Based on the model, we know

E(yijk) = µ + αi + βj + γk
(trt) (car) (driver)

car
driver 1 2 3 4

I A B D C
II D C A B
III B D C A
IV C A B D

Thus

E[yA••] =
1

4


µ+ αA + β1 + γ1

+µ+ αA + β3 + γ2
+µ+ αA + β4 + γ3
+µ+ αA + β2 + γ4


=

1

4

(
4µ+ 4αA +

∑4

j=1
βj︸ ︷︷ ︸

=0

+
∑4

k=1
γk︸ ︷︷ ︸

=0

)
= µ+ αA
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ANOVA Table for a Latin Square — (w/o Replicates)

Source d.f. SS MS F -value

Row-Block g − 1 SSrow SSrow/(g − 1) MSrow/MSE

Column-Block g − 1 SScol SScol/(g − 1) MScol/MSE

Treatment g − 1 SStrt SStrt/(g − 1) MStrt/MSE

Error (g−2)(g−1) SSE SSE/[(g−2)(g−1)]

Total g2 − 1 SST

where (g − 2)(g − 1) = g2 − 1− 3(g − 1).

SSrow =
∑

ijk
β̂2
j =

∑
ijk

(ȳ•j• − ȳ•••)2 = g
∑

j
(ȳ•j• − ȳ•••)2,

SScol =
∑

ijk
γ̂2k =

∑
ijk

(ȳ••k − ȳ•••)2 = g
∑

k
(ȳ••k − ȳ•••)2,

SStrt =
∑

ijk
α̂2
i =

∑
ijk

(ȳi•• − ȳ•••)2 = g
∑

i
(ȳi•• − ȳ•••)2,

SSE =
∑

ijk
(yijk − y i•• − y•j• − y••k + 2y•••)2

= SST − SSrow − SScol − SStrt ,

SST =
∑

ijk
(yijk − ȳ•••)2
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Decomposition of the Latin Square (Automobile Emissions)
1 2 3 4

I A B D C
19 24 23 26

II D C A B
23 24 19 30

III B D C A
15 14 15 16

IV C A B D
19 18 19 16

=

ȳ•••

20 20 20 20

20 20 20 20

20 20 20 20

20 20 20 20

+

yijk − ȳ•••

-1 4 3 6

3 4 -1 10

-5 -6 -5 -4

-1 -2 -1 -4

yijk − ȳ•••
-1 4 3 6
3 4 -1 10

-5 -6 -5 -4
-1 -2 -1 -4

Y− Ȳ
SST = 312
d .f . = 15

=

y•j• − ȳ•••
3 3 3 3
4 4 4 4
-5 -5 -5 -5
-2 -2 -2 -2

D
SSDriver = 216

d .f . = 3

+

y••k − ȳ•••
-1 0 -1 2
-1 0 -1 2
-1 0 -1 2
-1 0 -1 2

C
SSCar = 24
d .f . = 3

+

yi•• − ȳ•••
-2 2 -1 1
-1 1 -2 2
2 -1 1 -2
1 -2 2 -1

T
SStrt = 40
d .f . = 3

+

residuals

-1 -1 2 0
1 -1 -2 2

-1 0 0 1
1 2 0 -3

R
SSE = 32
d .f . = 6
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Example: ANOVA Table for Automobile Emissions Data

> emis = read.table(

"http://www.stat.uchicago.edu/~yibi/s222/emission.txt", h=T)

> lm1 = lm(reduct ~ as.factor(driver)+as.factor(car)+as.factor(trt),

data=emis)

> anova(lm1)

Analysis of Variance Table

Response: reduct

Df Sum Sq Mean Sq F value Pr(>F)

as.factor(driver) 3 216 72.000 13.5 0.004466 **

as.factor(car) 3 24 8.000 1.5 0.307174

as.factor(trt) 3 40 13.333 2.5 0.156490

Residuals 6 32 5.333

Chapter 13 - 35



13.3.1 Crossover Design (A Special Latin-Square Design)

When a sequence of treatments is given to a subject over several
time periods,

I need to block on subjects,
because each subject tends to respond differently, and

I need to block on time period,
because there may consistent differences over time due to
growth, aging, disease progression, or other factors.

Such a design is called a crossover design, which is a common
application of the Latin Square designs.
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Example 13.5 — Bioequivalence of Drug Delivery (p.326)

I Objectives — Investigate whether different drug delivery
systems have similar biological effects.

I Response variable — Average blood concentration of the drug
during certain time interval after the drug has been
administered.

I Treatments — 3 different drug delivery systems:

A – solution, B – tablet, C – capsule

I Blocking on both subjects and time period

I Data & design:

subject
period 1 2 3

1 1799A 2075C 1396B
2 1846C 1156B 868A
3 2147B 1777A 2291C
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Advantages of Latin Squares

I For the same number of experimental units as a randomized
complete block design (RCBD) with g treatments and g
blocks, we can simultaneously block for a second variable.

I Provide an elegant and efficient use of limited resources for a
small experiment.

Disadvantages of Latin Squares

I Cannot identify block-treatment interactions.

I There may be few d .f . left to estimate σ once both block and
treatment effects are estimated.
E.g., in a 3× 3 square, block and treatment effects taken up
3× 2 d .f ., allowing 1 d .f . for the grand mean leaves 2 d .f .
for estimating σ2, and this includes all the treatments.

I One can (and should) replicate Latin square.
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13.3.4 Replicated Latin Square Designs

In Example 13.5, with a single 3× 3 Latin square, there are only 2
degrees of freedom left for estimating the error. One can increase
the d.f. for errors by replicating more Latin squares.

Example 13.6 is a continuation of Example 13.5.

I There are 12 subjects, instead of 3

I The 12 subjects are divided into 4 groups of 3 each, and a
Latin square design is arranged for each group

I Data are shown on the next page and the data file is available
at

http://users.stat.umn.edu/~gary/book/fcdae.data/exmpl13.10
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Data and Design for Example 13.6

square 1 square 2
subject

period 1 2 3 4 5 6
1 1799A 2075C 1396B 3100B 1451C 3174A
2 1846C 1156B 868A 3065A 1217B 1714C
3 2147B 1777A 2291C 4077C 1288A 2919B

square 3 square 4
subject

period 7 8 9 10 11 12
1 1430C 1186A 1135B 873C 2061A 1053B
2 836A 642B 1305C 1426A 2433B 1534C
3 1063B 1183C 984A 1540B 1337C 1583A

I Each (subject, treatment) combination appears exactly once

I Each (period, treatment) combination appears exactly 4 times

I Note the 4 Latin-squares have a common row block (period).
In this case, we say the row block is reused.
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A Model for the Replicated Latin Square Design
— with row block reused

When Latin squares are replicated (each one separately
randomized), the appropriate linear model will depend on which
blocks (if any) are reused.
In Example 13.6, the row variable, period, is reused. An
appropriate model would be

yijk = µ + αi + βj + γk + εijk
(trt) (period) (subject)

with the constraints∑3

i=1
αi =

∑3

j=1
βj =

∑12

k=1
γk = 0.

The parameter estimates are again

µ̂ = ȳ•••, α̂i = ȳi•• − ȳ•••

β̂j = ȳ•j• − ȳ•••

γ̂k = ȳ••k − ȳ•••
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How Do Replicated Latin-Square Designs Row-Block Reused Work? (1)
For the Drug Delivery Study, we can show that E[yB••] = µ+ αB .

Subject 1 2 3 4 5 6 7 8 9 10 11 12
1 A C B B C A C A B C A B

period 2 C B A A B C A B C A B C
3 B A C C A B B C A B C A

yB•• =
1

12
(yB31 + yB22 + yB13 + yB14 + yB25 + yB36

+ yB37 + yB28 + yB19 + yB3,10 + yB2,11 + yB1,12).

Since E(yijk) = µ + αi + βj + γk
(trt) (period) (subject)

we know

E[yB••]=
1

12


µ+ αB + β3 + γ1

+ µ+ αB + β2 + γ2

+
...

...
...

...
+ µ+ αB + β1 + γ12

=
1

12
(12µ+12αB +4

3∑
j=1

βj︸ ︷︷ ︸
=0

+
12∑
k=1

γk︸ ︷︷ ︸
=0

)

= µ+ αB

This is because each treatment shows up in each row 4 times and each
column once. Hence each βj comes up 4 times and each γk once in the
sum.
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How Do Replicated Latin-Square Designs Row-Block Reused Work? (2)
Similar, for the period block effect, we can show that E[y•1•] = µ+ β1.

Subject 1 2 3 4 5 6 7 8 9 10 11 12
1 A C B B C A C A B C A B

period 2 C B A A B C A B C A B C
3 B A C C A B B C A B C A

y•1• =
1

12
(yA11 + yC12 + yB13 + yB14 + yC15 + yA16

+ yC17 + yA18 + yB19 + yC1,10 + yA1,11 + yB1,12).

Since E(yijk) = µ + αi + βj + γk
(trt) (period) (subject)

we know

E[y•1•]=
1

12


µ+ αA + β1 + γ1

+ µ+ αC + β1 + γ2

+
...

...
...

...
+ µ+ αB + β1 + γ12

=
1

12
(12µ+4

3∑
j=1

αj︸ ︷︷ ︸
=0

+12β1+
12∑
k=1

γk︸ ︷︷ ︸
=0

)

= µ+ β1

This is because each treatment shows up in each row 4 times and hence
each αi comes up 4 times in the sum.
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How Do Replicated Latin-Square Designs Row-Block Reused Work? (3)

Similar, for the subject block effect, we can show that E[y••3] = µ+ γ3.

Subject 1 2 3 4 5 6 7 8 9 10 11 12
1 A C B B C A C A B C A B

period 2 C B A A B C A B C A B C
3 B A C C A B B C A B C A

y••3 =
1

3
(yB13 + yA23 + yC33)

Since E(yijk) = µ + αi + βj + γk
(trt) (period) (subject)

we know

E[y••3]=
1

3

 µ+ αB + β1 + γ3
+ µ+ αA + β2 + γ3
+ µ+ αC + β3 + γ3

 =
1

3
(3µ+

3∑
i=1

αi︸ ︷︷ ︸
=0

+
3∑

j=1

βj︸ ︷︷ ︸
=0

+3γ3)

= µ+ γ3

This is because each treatment shows up in each column exactly once
and hence each αi comes up once in the sum.
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ANOVA Table for Latin Square w/ m Replicates, Row Block Reused

Number of Latin Squares = m
Source d.f. SS MS F -value

Row-Block g − 1 SSrow SSrow/(g − 1) MSrow/MSE
Column-Block mg − 1 SScol SScol/(mg − 1) MScol/MSE

Treatment g − 1 SStrt SStrt/(g − 1) MStrt/MSE
Error (mg−2)(g−1) SSE SSE/[(mg−2)(g−1)]
Total mg2 − 1 SST

where

SSrow =
∑

ijk
(ȳ•j• − ȳ•••)2 = mg

∑g

j=1
(ȳ•j• − ȳ•••)2,

SScol =
∑

ijk
(ȳ••k − ȳ•••)2 = g

∑mg

k=1
(ȳ••k − ȳ•••)2,

SStrt =
∑

ijk
(ȳi•• − ȳ•••)2 = mg

∑g

i=1
(ȳi•• − ȳ•••)2,

SST =
∑

ijk
(yijk − ȳ•••)2

SSE = SST − SSrow − SScol − SStrt

Don’t try to memorize the formula for dferror . Just keep in mind that

dferror = dftotal − dfrow − dfcol − dftrt
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Response: area

Df Sum Sq Mean Sq F value Pr(>F)

as.factor(period) 2 737751 368875 1.7965 0.1916

as.factor(subject) 11 16385060 1489551 7.2546 7.475e-05 ***

as.factor(trt) 2 81458 40729 0.1984 0.8217

Residuals 20 4106500 205325

There is no evidence that the 3 drug delivery systems have
different biological effects.
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Latin Square w/ Replicates, Neither Row nor Column Reused

Automobile Emissions Example Revisited
Suppose there were 8 cars and 8 drivers available.
We can from 2 Latin Squares.

Cars
Drivers 1 2 3 4

I A B D C
II D C A B
III B D C A
IV C A B D

Cars
Drivers 5 6 7 8

V A B C D
VI C D A B
VII D C B A
VIII B A D C

Note the two squares have neither rows (drivers) in common nor
columns (cars) in common. That is, neither rows nor columns
are reused.
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Models for Replicated Latin Squares, w/o reusing rows or columns

In this case, it will be problematic to use the conventional model
below

yijk = µ + αi + βj + γk + εijk
(trt) (driver) (car)

with constraints
∑4

i=1 αi =
∑8

j=1 βj =
∑8

k=1 γk = 0 since in this
case, even though E[ȳi••] = µ+ αi but

E[ȳ•j•] 6= µ+ βj , E[ȳ••k ] 6= µ+ γk .

Observe that ȳ•2• = (yD21 + yC22 + yA23 + yB24)/4

E[ȳ•2•] =
1

4


µ+ αD + β2 + γ1

+µ+ αC + β2 + γ2
+µ+ αA + β2 + γ3
+µ+ αB + β2 + γ4


=

1

4

(
4µ+

∑4

i=1
αi︸ ︷︷ ︸

=0

+4β2 +
∑4

k=1
γk︸ ︷︷ ︸

6=0

)
6= µ+ β2
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Models for Replicated Latin Squares, w/o reusing rows or columns

A better model for replicated Latin squares w/o reusing rows or
columns is

yijk` = µ + αi + βj(`) + γk(`) + δ` + εijk`
(trt) (driver) (car) (square)

with constraints
∑4

i=1 αi =
∑2

`=1 δ` = 0 and

4∑
j=1

βj(1) =
8∑

j=5

βj(2) =
4∑

k=1

γk(1) =
8∑

k=5

γk(2) = 0.

The parameter estimates are again

µ̂ = ȳ••••, α̂i = ȳi••• − ȳ••••

δ̂` = ȳ•••` − ȳ••••

β̂j(`) = ȳ•j•` − ȳ•••`

γ̂k(`) = ȳ••k` − ȳ•••`
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ANOVA Table for Latin Square w/o reusing rows or columns

Number of Latin Squares = m
Source d.f. SS MS F -value
Square m − 1 SSsqr SSsqr/(m − 1) MSsqr/MSE

Row-Block m(g − 1) SSrow SSrow/[m(g − 1)] MSrow/MSE
Column-Block m(g − 1) SScol SScol/[m(g − 1)] MScol/MSE

Treatment g − 1 SStrt SStrt/(g − 1) MStrt/MSE
Error (mg+m−3)(g−1) SSE SSE/dfE
Total mg2 − 1 SST

where dferror = dftotal − dfsqr − dfrow − dfcol − dftrt

= mg 2 − 1 − (m − 1) − 2m(g − 1) = (mg + m − 3)(g − 1)

SSsqr =
∑

ijk`
(ȳ•••` − ȳ••••)2 = g 2

∑m

`=1
(ȳ•••` − ȳ••••)2,

SSrow =
∑

ijk`
(ȳ•j•` − ȳ•••`)2 = g

∑
j`

(ȳ•j•` − ȳ•••`)2,

SScol =
∑

ijk`
(ȳ••k` − ȳ•••`)

2 = g
∑

j`
(ȳ••k` − ȳ•••`)2,

SStrt =
∑

ijk
(ȳi••• − ȳ••••)2 = mg

∑g

i=1
(ȳi••• − ȳ••••)2,

SST =
∑

ijk
(yijk` − ȳ••••)2

SSE = SST − SSsqr − SSrow − SScol − SStrt
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Skeleton ANOVA for Latin Square Designs with Replicates

Number of Latin Squares = m

row and col. row not column neither
both reused reused not reused reused

Source d.f. d.f. d.f. d.f.

Square m − 1

Row-Block g − 1 mg − 1 g − 1 m(g − 1)

Column-Block g − 1 g − 1 mg − 1 m(g − 1)

Treatment g − 1 g − 1 g − 1 g − 1

Error mg2 − 1− (sum of the above)

total mg2 − 1 mg2 − 1 mg2 − 1 mg2 − 1
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13.4 Graeco-Latin Squares — Blocking Three Variations Simultaneously

A Graeco-Latin square is a g × g table where each entry has a
Greek and a Latin letter, so that
I the Greek letters form a Latin square
I the Latin letters form a Latin square
I each Greek letter appears exactly once with each Latin letter.

Example:

Aα Bβ Cγ
Bγ Cα Aβ
Cβ Aγ Bα

Aα Bβ Cγ Dδ
Dγ Cδ Bα Aβ
Bδ Aγ Dβ Cα
Cβ Dα Aδ Bγ

I Graeco-Latin square designs can block 3 variables
simultaneously — corresponding to rows, columns and Greek
letters.

I The design is balanced, in that row, column, Latin and Greek
effects are all orthogonal. A Graeco-Latin square can be
produced from any orthogonal pair of Latin squares.
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Exercise 13.5 — Disk Drive

I Objectives: Investigate whether different materials of disk
drive substrates may affect the amplitude of the signal
obtained during readback.

I Response variable: Amplitudes of the signals during readback
measured in microvolts ×0.01.

I Treatments — 4 types of substrate materials:

(A) aluminum (C) glass type I
(B) nickle-plated aluminum (D) glass type II

I Blocking variables
I Machines: Four machines
I Operators: Four operators
I Days: Four different days

I Design: Graeco-Latin Square
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Data and the Design Structure
Operator Row

Machine 1 2 3 4 Mean
I A C D B (treatments)

α γ δ β (days)

8 11 2 8 (responses) 7.25
II C A B D

δ β α γ
7 5 2 4 4.5

III D B A C
β δ γ α
3 9 7 9 7

IV B D C A
γ α β δ
4 5 9 3 5.25

Column Mean 5.5 7.5 5 6 6

treatment A B C D
mean 5.75 5.75 9 3.5

,
day α β γ δ

mean 6 6.25 6.5 5.25

Data file: http://users.stat.umn.edu/~gary/book/fcdae.data/ex13.5
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Models for Graeco-Latin Square Designs
The model for the example of Graeco-Latin design is

yijk` = µ+ θi + τj + ωk + φ` + εijk`
(trt) (machine) (operator) (day)

with
4∑

i=1

θi =
4∑

j=1

τj =
4∑

k=1

ωk =
4∑
`=1

φ` = 0.

The design is balanced, so we have the usual estimates:

µ̂ = y••••, θ̂i = y i••• − y••••

τ̂j = y•j•• − y••••

ω̂k = y••k• − y••••

φ̂` = y•••` − y••••

Statistical analysis can be done using familiar R commands.
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Why Do Graeco-Latin Square Designs Work?
What is the mean for yC•••?
For the design of the disk drive example,

yC••• =
1

4
(yC123 + yC214 + yC341 + yC432).

Based on the model, we know E[yijk`] = µ+ θi + τj + ωk + φ`.
Thus

E[yC•••] =
1

4


µ+ θC + τ1 + ω2 + φ3

+µ+ θC + τ2 + ω1 + φ4
+µ+ θC + τ3 + ω4 + φ1
+µ+ θC + τ4 + ω3 + φ2


=

1

4

(
4µ+ 4θC +

∑4

j=1
τj︸ ︷︷ ︸

=0

+
∑4

k=1
ωk︸ ︷︷ ︸

=0

+
∑4

`=1
φ`︸ ︷︷ ︸

=0

)
= µ+ θC
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ANOVA Table for Graeco-Latin Square Designs
Source d.f. SS MS F -value

Row-Block g − 1 SSrow SSrow/(g − 1) MSrow/MSE

Column-Block g − 1 SScol SScol/(g − 1) MScol/MSE

Greek-Block g − 1 SSgrk SSgrk/(g − 1) MSgrk/MSE

Treatment g − 1 SStrt SStrt/(g − 1) MStrt/MSE

Error (g−3)(g−1) SSE SSE/[(g−3)(g−1)]

Total g2 − 1 SST

where (g − 3)(g − 1) = g2 − 1− 4(g − 1).

SSrow =
∑

ijk`
(y•j•• − y••••)2 = g

∑
j
(y•j•• − y••••)2,

SScol =
∑

ijk`
(y••k• − y••••)2 = g

∑
k
(y••k• − y••••)2,

SSgrk =
∑

ijk`
(y•••` − y••••)2 = g

∑
`
(y•••` − y••••)2,

SStrt =
∑

ijk`
(y i••• − y••••)2 = g

∑
i
(y i••• − y••••)2,

SST =
∑

ijk`
(yijk − y••••)2,

SSE = SST − SSrow − SScol − SSgrk − SStrt
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ANOVA Table For the Disk Drive Example

> diskd =

read.table("http://users.stat.umn.edu/~gary/book/fcdae.data/ex13.5",

header=T)

> diskd$machine = as.factor(diskd$machine)

> diskd$operator = as.factor(diskd$operator)

> diskd$day = as.factor(diskd$day)

> diskd$trt = as.factor(diskd$trt)

> mylm1 = lm(y ~ machine + operator + day + trt, data = diskd)

> anova(mylm1)

Df Sum Sq Mean Sq F value Pr(>F)

machine 3 21.5 7.1667 1.0000 0.5000

operator 3 14.0 4.6667 0.6512 0.6335

day 3 3.5 1.1667 0.1628 0.9149

trt 3 61.5 20.5000 2.8605 0.2055

Residuals 3 21.5 7.1667

Just like RCBD and Latin-square designs, Graeco-Latin square
designs are “balanced”, that switching the order of terms will not
change the SS.
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When one blocking variable is found unimportant, it can be
removed and a Graeco-Latin square design becomes a Latin-square
design. The d.f.s and SS for the blocking variable being removed
are simply “pooled” into the errors.

After removing the day block variable:

> mylm2 = lm(y ~ machine + operator + trt, data = diskd)

> anova(mylm2)

Df Sum Sq Mean Sq F value Pr(>F)

machine 3 21.5 7.1667 1.72 0.26166

operator 3 14.0 4.6667 1.12 0.41241

trt 3 61.5 20.5000 4.92 0.04671 *

Residuals 6 25.0 4.1667

Similarly, when two blocking variable are found unimportant and
are removed, a Graeco-Latin square design becomes a RCBD.
Their d.f.s and SS are again “pooled” into the errors.
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Pairwise Comparisons in Balanced Block Designs

No matter it’s RCBD, Latin-squares (w/ replicates or not), or
Graeco-Latin squares, one can always do pairwise comparison of
treatment effects αi1 − αi2 by comparing the “treatment means”

y i1• − y i2•, y i1•• − y i2••, or y i1••• − y i2•••

and the SE is

SE =

√
MSE

(
1

r
+

1

r

)
here r is the total # of replicates for a treatment in all blocks,
e.g., r = mg in a g × g Latin-square design with m replicates.
The t-statistic has a t distribution, and d.f. = (d.f. for MSE)

t =
diff of 2 trt means

SE
∼ tdf of MSE

using which can construct C.I. or do t-test on αi1 − αi2 .
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Contrasts in Balanced Block Designs
Like RCBD, a contrast C =

∑g
i=1 wiαi of treatment effects in any

Latin-square (w/ replicates or not), or Graeco-Latin square designs
can be estimated by

Ĉ =

g∑
i=1

wi (sample mean for trt i)

Here the “sample mean for trt i” means y i•, y i•• or y i•••. The SE
is

SE(Ĉ ) =

√
MSE×

∑g

i=1
w2
i /r

where r is the total # of replicates for a treatment in all blocks,
e.g., r = mg in a g × g Latin-square design with m replicates.
I The (1− α)100% C.I. for C : Ĉ ± tα/2,df of MSE × SE(Ĉ ).
I Test statistic for testing H0 : C =

∑g
i=1 wiαi = 0:

t0 =
Ĉ

SE(Ĉ )
∼ tdf of MSE
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Combination of Factorial and Block Designs

The treatments in any block designs can also have factorial
structure. The SS and df for treatments can be broken down
according like what we have done in Chapter 8-10.

Example In a 4× 4 Latin square design (no replicates), the g = 4
treatments has a 2× 2 factorial structure.

Source d.f.
Row g − 1 = 3

Column g − 1 = 3
Treatment g − 1 = 3

Error (g − 2)(g − 1) = 6
Total g2 − 1 = 15

⇒

Source d.f.
Row g − 1 = 3

Column g − 1 = 3
A a− 1 = 1
B b − 1 = 1

AB (a− 1)(b − 1) = 1

Error (g − 2)(g − 1) = 6
Total g2 − 1 = 15
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Exercise 13.2

Grains or crystals adversely affect the sensory qualities of foods
using dried fruit pulp.
I Treatment factors:

I A, drying temperature (3 levels),
I B, acidity (pH) of pulp (2 levels), and
I C, sugar content (2 levels).

I Block: 2 batches of pulp, 12 observations per batach

I Response: a measure of graininess

This is a 3× 2× 2 design with 2 replicates in 2 different blocks,
RCBD with 12 treatments and 2 blocks.
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Source d.f.
Block 2− 1 = 1

Treatment 12− 1 = 11

Error = 11
Total 23

⇒

Source d.f.
Block 2− 1 = 1

A 3− 1 = 2
B 2− 1 = 1
C 2− 1 = 1

AB (3− 1)(2− 1) = 2
BC (2− 1)(2− 1) = 1
AC (3− 1)(2− 1) = 2

ABC (3− 1)(2− 1)(2− 1) = 2

Error 11
Total 23
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yibih
Typewriter
The SS for each effect (e.g., A main effects or AC interactions)
can be computed ignoring the blocking structure.
SSA = sum of (y_{i..}-y_{...})^2


