STAT22200 Chapter 10

Yibi Huang

10.1 Unbalanced Data

Chapter 10-1

What Happens If Factorial Data Become Unbalanced

With unbalanced data (but no empty cell), what are changed?

- no simple formulae for parameter estimates and SS.
- the parameter estimates and SS of a term will depend on the presence of other terms in the model, e.g., the estimates for α_{i} 's might be different in the following 3 models

$$
\begin{aligned}
& y_{i j k}=\mu+\alpha_{i}+\beta_{j}+\alpha \beta_{i j}+\varepsilon_{i j k} \\
& y_{i j k}=\mu+\alpha_{i}+\beta_{j}+\varepsilon_{i j k} \\
& y_{i j k}=\mu+\alpha_{i}+\varepsilon_{i j k}
\end{aligned}
$$

- need to rely on statistical software for computation
- there are 3 variations of SS

With unbalanced data (but no empty cell), what are unchanged?

- the means model and the main-effect-interaction model can still be used,
- for the means model (e.g., $y_{i j k}=\mu_{i j}+\varepsilon_{i j k}$), the estimate for $\mu_{i j}$ remains to be the sample group mean $\bar{y}_{i j \bullet}$ for that group
- one can still make interaction plots and using them the visualize the main effect and interactions
- one can check model assumptions as usual

Notation for Models

In the following, we denote various models by listing the included effect. For example,

- $(1, A, B, A B)$ denotes the model $y_{i j k}=\mu+\alpha_{i}+\beta_{j}+\alpha \beta_{i j}+\varepsilon_{i j k}$
- $(1, A, B)$ denotes the model $y_{i j k}=\mu+\alpha_{i}+\beta_{j}+\varepsilon_{i j k}$
- $(1, A, B, C, A B, A C)$ denotes the model

$$
y_{i j k l}=\mu+\alpha_{i}+\beta_{j}+\gamma_{k}+\alpha \beta_{i j}+\alpha \gamma_{i k}+\varepsilon_{i j k l}
$$

Here the " 1 " stands for the grand mean μ.
In the following SSE(model) denotes the SSE of that model, e.g., $\operatorname{SSE}(1, A, B, A B)$ means the SSE of the model

$$
y_{i j k}=\mu+\alpha_{i}+\beta_{j}+\alpha \beta_{i j}+\varepsilon_{i j k}
$$

For unbalanced data, there is no simple formula to compute the SSE. One must write the model as a regression model and use statistical software to compute the SSE.

Chapter 10-4

Adjusted Sum of Squares (1)

The adjusted sum of squares for main effects B adjusted for A is defined as

$$
\operatorname{SS}(B \mid 1, A)=\operatorname{SSE}(1, A)-\operatorname{SSE}(1, A, B)
$$

- $S S(B \mid 1, A) \geq 0$ since the model $(1, A)$ is nested in the model $(1, A, B)$ and hence the latter always has a smaller SSE
- $S S(B \mid 1, A)$ is the reduction in SSE after B is included in the model
- $\operatorname{SS}(B \mid 1, A)$ describes the effect of B adjusted for A since with consider two models that A is present in both and the two models only differ by B

Adjusted Sum of Squares (2)

Likewise, the adjusted sum of squares for main effects B adjusted for A, C, and AC is

$$
S S(B \mid 1, A, C, A C)=\operatorname{SSE}(1, A, C, A C)-\operatorname{SSE}(1, A, B, C, A C)
$$

In general, the adjusted sum of squares for a term adjusted for some other terms is

$$
\begin{aligned}
& S S(\text { a term } \mid \text { some other terms }) \\
= & \text { SSE(some other terms) - SSE(a term, some other terms) }
\end{aligned}
$$

For balanced data, the adjusted SS is identical to the unadjusted SS,

$$
S S(A \mid 1, B)=S S(A \mid 1, B, C)=S S(A \mid 1, B, C, B C)=S S(A \mid 1)
$$

Sequential Sum of Squares (aka. Type I SS)

For a specified model, the sequential SS for any term is adjusted for those terms that precede it in the model.

- E.g, the sequential SS's for the model (1, A, B, AB, C) are

Source	d.f.	Sequential SS
A	$a-1$	$\operatorname{SS}(A \mid 1)$
B	$b-1$	$\operatorname{SS}(B \mid 1, A)$
AB	$(a-1)(b-1)$	$\operatorname{SS}(A B \mid 1, A, B)$
C	$c-1$	$\operatorname{SS}(C \mid 1, A, B, A B)$

Sequential SS's depend on how the terms are ordered in a model:

- E.g, if the terms in the model $(1, A, B, A B, C)$ is reshuffled as ($1, C, A, B, A B$), then the sequential SS's become

Source	d.f.	Sequential SS
C	$c-1$	$S S(C \mid 1)$
A	$a-1$	$S S(A \mid 1, C)$
B	$b-1$	$S S(B \mid 1, A, C)$
AB	$(a-1)(b-1)$	$S S(A B \mid 1, A, B, C)$

Chapter 10-7

Sequential Sum of Squares and SSE Add Up to SST (1)

Source	Sequential SS	
A	$\operatorname{SS}(A \mid 1)$	$=\operatorname{SSE}(1)-\operatorname{SSE}(1, A)$
B	$\operatorname{SS}(B \mid 1, A)$	$=\operatorname{SSE}(1, A)-\operatorname{SSE}(1, A, B)$
$A B$	$\operatorname{SS}(A B \mid 1, A, B)=\operatorname{SSE}(1, A, B)-\underline{\operatorname{SSE}(1, A, B, A B)}$	
C	$\operatorname{SS}(C \mid 1, A, B, A B)=\operatorname{SSE}(1, A, B, A B)-\operatorname{SSE}(1, A, B, A B, C)$	
Error	$\operatorname{SSE}(1, A, B, A B, C)$	
Sum	$\operatorname{SSE}(1)=\operatorname{SST}$	

$\operatorname{SSE}(1)$ is the SSE for the model $y_{i j k \ell}=\mu+\varepsilon_{i j k \ell}$, of which the optimal (least square) estimate for μ is the overall mean $\bar{y}_{\bullet . . .}$. Hence,

$$
\operatorname{SSE}(1)=\sum_{i j k \ell}\left(y_{i j k \ell}-\bar{y}_{\bullet \ldots \bullet}\right)^{2}=\operatorname{SST}
$$

Chapter 10-8

Sequential Sum of Squares and SSE Add Up to SST (2)

If the order of terms in the model $(1, A, B, A B, C)$ is changed to (1, $C, A, B, A B)$,

- the sequential SS 's are changed;
- $\operatorname{SSE}(1, A, B, A B, C)=\operatorname{SSE}(1, C, A, B, A B)$ is not affected by the order of terms;
- the sequential SS's and the SSE always add up to SST.

Source	Sequential SS	
C	$\operatorname{SS}(C \mid 1)$	$=\operatorname{SSE}(1)-\underline{\operatorname{SSE}(1, C)}$
A	$\operatorname{SS}(A \mid 1, C)$	$=\operatorname{SSE}(1, C)-\operatorname{SSE}(1, C, A)$
B	$\operatorname{SS}(B \mid 1, C, A)=\operatorname{SSE}(1, C, A)-\underline{\operatorname{SSE}(1, C, A, B)}$	
$A B$	$\operatorname{SS}(A B \mid 1, A, B, C)=\underline{\operatorname{SSE}(1, C, A, B)-\operatorname{SSE}(1, A, B, C, A B)}$	
Error	$\operatorname{SSE}(1, C, A, B, A B)$	
Sum	$\operatorname{SSE}(1)=\operatorname{SST}$	

Chapter 10-9

Example 8.10 Amylase data Revisit

$8 \times 2 \times 2$ design with 3 replicates \Rightarrow Balanced Data!

		Analysis Temperature							
GT	Var.	40	35	30	25	20	15	13	10
25	B73	391.8	427.7	486.6	469.2	383.1	338.9	283.7	269.3
		311.8	388.1	426.6	436.8	408.8	355.5	309.4	278.7
		367.4	468.1	499.8	444.0	429.0	304.5	309.9	313.0
	O43	301.3	352.9	376.3	373.6	377.5	308.8	234.3	197.1
		271.4	296.4	393.0	364.8	364.3	279.0	255.4	198.3
		300.3	346.7	334.7	386.6	329.2	261.3	239.4	216.7
13	B73	292.7	422.6	443.5	438.5	350.6	305.9	319.9	286.7
		283.3	359.5	431.2	398.9	383.9	342.8	283.2	266.5
		348.1	381.9	388.3	413.7	408.4	332.2	287.9	259.8
	O43	269.7	380.9	389.4	400.3	340.5	288.6	260.9	221.9
	284.0	357.1	420.2	412.8	309.5	271.8	253.6	254.4	
	235.3	339.0	453.4	371.9	313.0	333.7	289.5	246.7	

Chapter 10-10

```
read.table("amylaze.txt", h=T)
amyl$at = as.factor(amyl$atemp)
amyl$gt = as.factor(amyl$gtemp)
amyl$v = as.factor(amyl$variety)
```

> anova(lm(log(y) ~ at+gt+v+gt:v, data = amyl))

	Df	Sum Sq Mean Sq F value	$\operatorname{Pr}(>F)$			
at	7	3.01613	0.43088	72.3869	$<2.2 e-16$	$* * *$
gt	1	0.00438	0.00438	0.7358	0.3934347	
v	1	0.58957	0.58957	99.0475	$6.413 \mathrm{e}-16 \quad * * *$	
gt:v	1	0.08599	0.08599	14.4468	$0.0002704 \quad * * *$	
Residuals	85	0.50595	0.00595			

> anova(lm(log(y) ~ gt+v+at+gt:v, data = amyl))

	Df	Sum Sq Mean Sq F value	$\operatorname{Pr}(>F)$		
gt	1	0.00438	0.00438	0.7358	0.3934347
v	1	0.58957	0.58957	99.0475	$6.413 \mathrm{e}-16$

For balanced data, SS's are not affected by the order of the terms.
Chapter 10-11

If One Observation Is Missing...

Analysis Temperature																
GT	Var.	40	35	30	25	20	15	13	10							
25	B73	391.8	427.7	486.6	469.2	383.1	338.9	283.7	269.3							
		311.8	388.1	426.6	436.8	408.8	355.5	309.4	278.7							
		367.4	468.1	499.8	444.0	429.0	304.5	309.9	313.0							
	O43	301.3	352.9	376.3	373.6	377.5	308.8	234.3	197.1							
		271.4	296.4	393.0	364.8	364.3	279.0	255.4	198.3							
		300.3	346.7	334.7	386.6	329.2	261.3	239.4	216.7							
13	B73	292.7	422.6	443.5	438.5	350.6	305.9	319.9	286.7							
		283.3	359.5	431.2	398.9	383.9	342.8	283.2	266.5							
		348.1	381.9	388.3	413.7	408.4	332.2	287.9	259.8							
	O43	269.7	380.9	389.4	400.3	340.5	288.6	260.9	221.9							
		284.0	357.1	420.2	412.8	309.5	271.8	253.6	254.4							
	235.3	339.0	453.4	371.9	313.0	333.7	289.5	246.7								

Suppose the first observation (the number 391.8 in blue box) is missing. The data become unbalanced.

Chapter 10-12

When the first observation is removed amyl $[-1$,$] , the data$ become unbalanced, and R produces the ANOVA table using the sequential SS.
> anova(lm(log(y) ~ at+gt+v+gt:v, data = amyl[-1,]))

	Df	Sum Sq Mean Sq F value	$\operatorname{Pr}(>\mathrm{F})$	
at	7	3.06282	0.43755	76.2546

Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
gt $\quad 10.002440 .00244 \quad 0.4260 .5157603$
v $\quad 10.570610 .57061 \quad 99.444 \quad 6.605 \mathrm{e}-16$ ***
at $\quad 73.043990 .4348675 .786<2.2 e-16$ ***
gt:v $\quad 10.075540 .0755413 .1650 .0004888$ ***
Residuals 840.481990 .00574
For unbalanced data, the sequential SS's changes with the order of terms in the model.

Chapter 10-13

```
> anova(lm(log(y) ~ gt+v+at+gt:v, data = amyl[-1,]))
    Df Sum Sq Mean Sq F value Pr(>F)
gt 1 0.00244 0.00244 0.426 0.5157603
v 1 0.57061 0.57061 99.444 6.605e-16 ***
at 7 3.04399 0.43486 75.786 < 2.2e-16 ***
gt:v 1 0.07554 0.07554 13.165 0.0004888 ***
Residuals 84 0.48199 0.00574
```

How is the sequential $S S$ for v in the table above computed?

```
> lm1 = lm(log(y) ~ gt, data = amyl[-1,])
> lm2 = lm(log(y) ~ gt+v, data = amyl[-1,])
> anova(lm1,lm2)
Analysis of Variance Table
```

Model 1: $\log (y)$ ~ gt
Model 2: $\log (y) \sim g t+v$
Res.Df RSS Df Sum of Sq F $\operatorname{Pr}(>F)$
1934.1721
2923.6015100 .5706114 .5760 .000244 ***

Chapter 10-14

When the gt:v interaction is placed before at main effects in the model formula, R still includes at before $\mathrm{gt}: \mathrm{v}$.

```
> anova(lm(log(y) ~ gt+v+gt:v+at, data = amyl[-1,]))
    Df Sum Sq Mean Sq F value Pr(>F)
gt 1 0.00244 0.00244 0.426 0.5157603
v 1 0.57061 0.57061 99.444 6.605e-16 ***
at 7 3.04399 0.43486 75.786 < 2.2e-16 ***
gt:v 1 0.07554 0.07554 13.165 0.0004888 ***
Residuals 84 0.48199 0.00574
```

R always includes main effects before two-way interactions, and lower-order interactions before higher-order interactions, regardless how they are ordered in the model formula.

Chapter 10-15

Type I ANOVA table

The Type I ANOVA table for unbalanced data are identical to the ANOVA table for balanced data in every aspect except the SSs are replaced by the sequential SS.

Source	d.f.	Sequential SS	MS	F-value
A	a-1	SS(A\|1)	$\mathrm{SS}_{A} / d f_{A}$	$\mathrm{MS}_{\mathrm{A}} / \mathrm{MSE}$
B	$b-1$	SS(B\|1, A)	$\mathrm{SS}_{B} / d f_{B}$	MS ${ }_{B} / \mathrm{MSE}$
C	$c-1$	$S S(C \mid 1, A, B)$	$\mathrm{SS} C_{C} / d f_{C}$	MSc/MSE
AB	$(a-1)(b-1)$	$S S(A B \mid 1, A, B, C)$	$\mathrm{SS}_{A B} / d f_{A B}$	$\mathrm{MS}_{\text {AB }} / \mathrm{MSE}$
AC	$(a-1)(c-1)$	$S S(A C \mid 1, A, B, C, A B)$	$\mathrm{SS}_{A C} / d f_{A C}$	$\mathrm{MS}_{\text {AC }} / \mathrm{MSE}$
BC	$(a-1)(c-1)$	$S S(B C \mid 1, A, B, C, A B, A C)$	SS ${ }_{B C} / d f_{B C}$	$\mathrm{MS}_{B C} / \mathrm{MSE}$
ABC	$(a-1)(b-1)(c-1)$	$S S(A B C \mid 1, A B, C, A B, A C, B C)$	$S^{A B C} / d f_{A B C}$	$\mathrm{MS}_{\text {ABC }} / \mathrm{MSE}$
Error	$N-a b c$	SSE	SSE/dfe	
Total	$N-1$	SST		

Sequential SS's and the SSE always add up to SST.
Chapter 10-16

Why Sequential SS's Are Not Ideal?

Look the $3 F$-statistic for the 3 main effects in the previous page.

- The F-statistic for A is unadjusted
- The F-statistic for B is adjusted with A
- The F-statistic for C is adjusted with both A and B

When considering whether a term, say A, is needed in a model, one should look at the net effect of A after adjusting for the effect of other terms.

What are the terms that should be accounted for before considering A?

$$
1, B, C, B C
$$

Why not adjusting for $A B, A C$ and $A B C$?
Thus, a more sensible adjusted SS for A is $S S(A \mid 1, B, C, B C)$.
Such adjusted SS's are called the Type II Sum of Squares.
Chapter 10-17

Type II Sum of Squares (Yates' Fitting Constant)

The Type II $S S_{U}$ of an effect $U(U$ can be a main effect or an interaction) is computed as follows:

- take the biggest hierarchical model without effect U, and then compare it to the model with U added.
Here "biggest hierarchical model" means all the effects that don't include term U. E.g., for the model (1, A, B, C, AB, AC, BC, ABC),
- the Type II SS for $A B$ is $S S(A B \mid 1, A, B, C, A C, B C)$
- the Type II SS for C is $S S(C \mid 1, A, B, A B)$ but not $S S(C \mid 1, A)$ or $S S(C \mid 1, A, A B)$
Unlike Type I SS, Type II SS does NOT depend on the order of terms in a model

Type II 3-Way ANOVA table

Source	d.f.	Type II SS	MS	F-value
A	$a-1$	$\mathrm{SS}(A \mid 1, B, C, B C)$	$\mathrm{SS}_{A} / d f_{A}$	$\mathrm{MS}_{A} / \mathrm{MSE}$
B	$b-1$	$\mathrm{SS}(B \mid 1, A, C, A C)$	$\mathrm{SS}_{B} / d f_{B}$	$\mathrm{MS}_{B} / \mathrm{MSE}$
C	$c-1$	$\mathrm{SS}(C \mid 1, A, B, A B)$	$\mathrm{SS}_{C} / d f_{C}$	$\mathrm{MS}_{C} / \mathrm{MSE}$
AB	$(a-1)(b-1)$	$\mathrm{SS}(A B \mid 1, A, B, C, A C, B C)$	$\mathrm{SS}_{A B} / d f_{A B}$	$\mathrm{MS}_{A B} / \mathrm{MSE}$
AC	$(a-1)(c-1)$	$\mathrm{SS}(A C \mid 1, A, B, C, A B, B C)$	$\mathrm{SS}_{A C} / d f_{A C}$	$\mathrm{MS}_{A C} / \mathrm{MSE}$
BC	$(a-1)(c-1)$	$\mathrm{SS}(B C \mid 1, A, B, C, A B, A C)$	$\mathrm{SS}_{B C} / d f_{B C}$	$\mathrm{MS}_{B C} / \mathrm{MSE}$
ABC	$(a-1)(b-1)(c-1) \mathrm{SS}(A B C \mid 1, A B, C, A B, A C, B C)$	$\mathrm{SS}_{A B C} / d f_{A B C} \mathrm{MS}_{A B C} / \mathrm{MSE}$		
Error	$N-a b c$	SSE	$\mathrm{SSE} / d f_{E}$	

Type II SS of terms in a model will NOT sum to SST

Chapter 10-19

Computing Type II ANOVA Table in R

The build-in function anova() in R gives Type I sums of squares only. To get the Type II SS's, first load the library car (which is the short for "Companion to Applied Regression"), and then use the function Anova() as follows.
> library(car)
> Anova(yourmodel, type=2)
Note the first letter A in Anova() is a capital letter A.

```
\(>\operatorname{lm} 2 b=\operatorname{lm}(\log (y) \sim g t+v+a t+g t: v, d a t a=a m y l[-1]\),
> Anova(lm2b,type=2)
Anova Table (Type II tests)
```

Response: log(y)

	Sum Sq	Df	F value	$\operatorname{Pr}(>F)$	
gt	0.00211	1	0.3673	0.5461286	
v	0.55282	1	96.3443	$1.361 e-15$	$* * *$
at	3.03751	7	75.6243	$<2.2 e-16$	$* * *$
gt:v	0.07554	1	13.1647	0.0004888	$* * *$
Residuals	0.48199	84			

Chapter 10-20

Exercise 10.3 (p.246)

Here are two sequential (Type I) ANOVA tables for the same data.

	DF	SS
r	3	3.3255
c	3	112.95
r.c	9	0.48787
Error	14	0.8223

	DF	SS
c	3	116.25
r	3	
c.r	9	0.48787
Error	14	0.8223

Q1: Fill in the 3 blanks in the second ANOVA table.

- SSE doesn't depend on the order of terms \Rightarrow SSE $=0.8223$
- the Type I SS for interaction are both $\operatorname{SS}(r c \mid 1, r, c)$ $\Rightarrow S S_{r . c}=S S_{c . r}=0.48787$

Exercise 10.3 (p.246)

	DF	SS
r	3	3.3255
c	3	112.95
r.c	9	0.48787
Error	14	0.8223

	DF	SS
c	3	116.25
r	3	0.0255
c.r	9	0.48787
Error	14	0.8223

Type I SS's and SSE add up to SST in both tables, i.e.,

$$
\begin{aligned}
& S S(r)+S S(c \mid 1, r)+S S(r . \in 11, r, c)+S S E \\
= & S S(c)+S S(r \mid 1, c)+S S(c . H 1, r, c)+S S E
\end{aligned}
$$

As the two tables have identical SSE and SS for the interactions, we know

$$
S S(r)+S S(c \mid 1, r)=S S(c)+S S(r \mid 1, c)
$$

So

$$
\begin{aligned}
S S(r \mid 1, c) & =S S(r)+S S(c \mid 1, r)-S S(c) \\
& =3.3255+112.95-116.25=0.0255
\end{aligned}
$$

Chapter 10-22

Exercise 10.3 (p.246)

	DF	SS
r	3	3.3255
c	3	112.95
r.c	9	0.48787
Error	14	0.8223

	DF	SS
c	3	116.25
r	3	0.0255
c.r	9	0.48787
Error	14	$\underline{0.8223}$

Q2: What do you conclude about the significance of row effects, column effects, and interactions?
Ans: One should determine using the Type II SS.

- The Type I SS for r.c. in the two tables is also the Type II SS $=\mathrm{SS}(\mathrm{r} . \mathrm{c} . \mid 1, \mathrm{r}, \mathrm{c})$.

$$
F=\frac{S S(r . c . \mid 1, r, c) / d f_{r . c .}}{M S E}=\frac{0.48787 / 9}{0.8223 / 14} \approx 0.9229 \sim F_{9,14}
$$

The P-value is $\mathrm{pf}(0.9229,9,14$, lower.tail $=\mathrm{F}) \approx 0.534$, not significant

Chapter 10-23

Exercise 10.3 (p.246)

	DF	SS
r	3	3.3255
c	3	112.95
r.c	9	0.48787
Error	14	0.8223

	DF	SS
c	3	116.25
r	3	0.0255
c.r	9	0.48787
Error	14	0.8223

- The Type II SS for the row effect is $\operatorname{SS}(r \mid 1, c)$, which is the Type I SS for r in the right table.

$$
F=\frac{S S(r \mid 1, c) / d f_{r}}{M S E}=\frac{0.0255 / 3}{0.8223 / 14} \approx 0.1447 \sim F_{3,14}
$$

The P-value is $\mathrm{pf}(0.1447,3,14$, lower.tail=F) ≈ 0.93, not significant

- The Type II SS for the column effect is $\operatorname{SS}(\mathrm{c} \mid 1, r)$, which is the Type I SS for c in the left table.

$$
F=\frac{S S(c \mid 1, r) / d f_{c .}}{M S E}=\frac{112.95 / 3}{0.8223 / 14} \approx 641.0 \sim F_{3,14}
$$

The P-value is pf ($641.0,3,14$, lower.tail=F) $\approx 3.22 \times 10^{-15}$, highly significant

Chapter 10-24

Exercise 10.1 on p. 245-245

Three ANOVA tables are given for the results of a single experiment. These tables give the Type I sums of squares. Construct a Type II ANOVA table.

	DF	SS		DF	SS		DF	SS
a	1	1.9242	b	2	1573	c	1	1259.3
b	2	1584.2	C	1	1428.7	a	1	9.0198
a.b	2	19.519	b.c	2	153.62	c.a	1	0.93504
c	1	1476.7	a	1	39.777	b	2	1776.1
a.c	1	17.527	b.a	2	69.132	c.b	2	169.92
b.c	2	191.84	c.a	1	27.51	a.b	2	76.449
a.b.c	2	28.567	b.c.a	2	28.567	c.a.b	2	28.567
Error	11	166.71	Error	11	166.71	Error	11	166.71

Chapter 10-25

Type I SS's for the first table

	DF	SS	Type I SS	
a	1	1.9242	$S S(A \mid 1)$	
b	2	1584.2	$S S(B \mid 1, A)$	
a.b	2	19.519	$S S(A B \mid 1, A, B)$	
c	1	1476.7	$S S(C \mid 1, A, B, A B)$	
a.c	1	17.527	$S S(A C \mid 1, A, B, C, A B)$	
b.c	2	191.84	$S S(B C \mid 1, A, B, C, A B, A C)$	also Type II
a.b.c	2	28.567	$S S(A B C \mid 1, A, B, C, A B, A C, B C)$	also Type II

Type I SS's for the second table:

	DF	SS	Type I SS	
b	2	1573	$S S(B \mid 1)$	
c	1	1428.7	$S S(C \mid 1, B)$	
b.c	2	153.62	$S S(B C \mid 1, B, C)$	
a	1	39.777	$S S(A \mid 1, B, C, B C)$	
b.a	2	69.132	$S S(A B \mid 1, A, B, C, B C)$	
c.a	1	27.51	$S S(A C \mid 1, A, B, C, A B, B C)$	also Type II
b.c.a	2	28.567	$S S(A B C \mid 1, A, B, C, A B, A C, B C)$	also Type II

Chapter 10-26

Type I SS's for the last table:

	DF	SS	Type I SS	
c	1	1259.3	$S S(C \mid 1)$	
a	1	9.0198	$S(A \mid 1, C)$	
c.a	1	0.93504	$S S(A C \mid 1, A, C)$	also Type II
b	2	1776.1	$S S(B \mid 1, A, C, A C)$	
c.b	2	169.92	$S S(B C \mid 1, A, B, C, A C)$	also Type II
a.b	2	76.449	$S S(A B \mid 1, A, B, C, A C, B C)$	
c.a.b	2	28.567	$S S(A B C \mid 1, A, B, C, A B, A C, B C)$	also Type II

Collecting the Type II SS's in the 3 tables above one can construct the Type II ANOVA table.

	DF	SS	Formula	F-value	P-value
a	1	39.777	$S S(A \mid 1, B, C, B C)$	2.6247	0.13350
b	2	1776.1	$S S(B \mid 1, A, C, A C)$	58.597	1.36×10^{-06}
c	1	1476.7	$S S(C \mid 1, A, B, A B)$	97.440	8.41×10^{-07}
a.b	2	76.449	$S S(A B \mid 1, A, B, C, A C, B C)$	2.5222	0.12542
c.a	1	27.51	$S S(A C \mid 1, A, B, C, A B, B C)$	1.8152	0.20498
b.c	2	191.84	$S S(B C \mid 1, A, B, C, A B, A C)$	6.3293	0.01482
a.b.c	2	28.567	$S S(A B C \mid 1, A, B, C, A B, A C, B C)$	0.94253	0.41897
Error	11	166.71			

Only the main effects b, c and their interactions b.c are significant.
Chapter 10-27

