General Factorial Designs

Yibi Huang

8.7 General Factorial Designs

- Definition of 3-way and k-way interactions
- 3-way interaction plots
- Parameter estimates
- Sum of Squares, dfs, and the ANOVA table
8.11 Hierarchy
8.9 Single Replicates

Chapter 08B-1

3-Way Interaction Contrast

Based on the means model $y_{i j k \ell}=\mu_{i j k}+\varepsilon_{i j k \ell}$ of a 3-way design, a 3-way interaction contrast between level (i_{1}, i_{2}) for factor A, level $\left(j_{1}, j_{2}\right)$ for factor B , and level $\left(k_{1}, k_{2}\right)$ for factor C is defined to be
$\mu_{i_{1} j_{1} k_{1}}-\mu_{i_{2} j_{1} k_{1}}-\mu_{i_{1} j_{2} k_{1}}-\mu_{i_{1} j_{1} k_{2}}+\mu_{i_{2} j_{2} k_{1}}+\mu_{i_{2} j_{1} k_{2}}+\mu_{i_{1} j_{2} k_{2}}-\mu_{i_{2} j_{2} k_{2}}$
Observe that any two $\mu_{i j k}$'s in the contrast have

opposite identical signs if they differ by an
 identical even

The 3-way interaction contrast above has 3 interpretations:

$$
\left.\begin{array}{rl}
& \mu_{i_{1} j_{1} k_{1}}-\mu_{i_{2} j_{1} k_{1}}-\mu_{i_{1} j_{2} k_{1}}-\mu_{i_{1} j_{1} k_{2}}+ \\
= & (\underbrace{\mu_{i_{1} j_{1} k_{1}}-\mu_{i_{2} j_{1} k_{1}}-\mu_{i_{1} j_{2} k_{1}}+\mu_{i_{2} j_{2} k_{1}}}_{\text {AB interaction contrast when } C=k_{1}})
\end{array}\right)-(\underbrace{}_{i_{2} j_{1} k_{2}}+\mu_{i_{1} j_{2} k_{2}}-\mu_{i_{2} j_{2} k_{2}},(\underbrace{\mu_{i_{1} j_{1} k_{2}}-\mu_{i_{2} j_{1} k_{2}}-\mu_{i_{1} j_{2} k_{2}}+\mu_{i_{2} j_{2} k_{2}}}_{\text {AB interaction contrast when } C=k_{2}}))
$$

Three-Way Interactions

We say factor A, B, and C have three-way interactions if

- an AB interaction contrast changes with the levels of C , or
- a BC interaction contrast changes with the levels of A , or
- an AC interaction contrast changes with the levels of B.
E.g.,

Factor A
No $A B$ interactions
when C is fixed at 1

C is fixed at 2

$A B$ have interactions when C is fixed at 2

Chapter 08B-3

Example 2: Three-Way Interactions

$$
\begin{aligned}
& \left(\mu_{111}-\mu_{211}\right)-\left(\mu_{121}-\mu_{221}\right)>0 \\
& (\underbrace{\mu_{112}-\mu_{212}}_{=0})-(\underbrace{\mu_{122}-\mu_{222}}_{>0})<0
\end{aligned}
$$

The AB interaction contrast $\left(\mu_{11 k}-\mu_{21 k}\right)-\left(\mu_{12 k}-\mu_{22 k}\right)$ depends on the level k of factor C. Hence there exist ABC 3-way interactions.

Chapter 08B-4

It can be hard to judge graphically whether $A B C$ interaction is present when $A B$ interactions exist at both levels of C.

	$C=1$		$C=2$	
	$B=1$	$B=2$	$B=1$	$B=2$
$A=1$	$\mu_{111}=5$	$\mu_{121}=7$	$\mu_{112}=4$	$\mu_{122}=8$
$A=2$	$\mu_{211}=4$	$\mu_{221}=1$	$\mu_{212}=5$	$\mu_{222}=4$

The $A B$ interactions at the two levels of C are equal and hence there is no $A B C$ interaction.

$$
\begin{aligned}
& \left(\mu_{111}-\mu_{211}\right)-\left(\mu_{121}-\mu_{221}\right)=(5-4)-(7-1)=-5 \\
& \left(\mu_{112}-\mu_{212}\right)-\left(\mu_{122}-\mu_{222}\right)=(4-5)-(8-4)=-5
\end{aligned}
$$

Chapter 08B-5

Higher Order Interactions

- An ABCD 4-way interaction contrast is
- the difference of some ABC 3-way interaction contrast at two different levels of D
- the difference of some ABD 3-way interaction contrast at two different levels of C
- the difference of some ACD 3-way interaction contrast at two different levels of B
- the difference of some BCD 3-way interaction contrast at two different levels of A
- We say $A B C D$ have 4-way interactions if any of the $A B C D$ 4-way interaction contrast is non-zero or if any 3-way interaction contrast between any 3 of the 4 factors changes with the levels of a 4th factor.
- e.g., if some ACD 3-way interaction contrast changes with the levels of factor B, then there exist $A B C D$ 4-way interaction
- We say k factors have k-way interactions means the ($k-1$)-way interaction of any $(k-1)$ of the k factors changes with the levels of a k th factor.

Chapter 08B-6

General Factorial Models

The model and analysis of multi-way factorial data are generalization of those for two-way factorial data. E.g., consider a 4-way factorial design with factors $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D .
means model $: y_{i j k \ell m}=\mu_{i j k \ell}+\varepsilon_{i j k \ell m}$ for $\left\{\begin{array}{l}i=1, \ldots, a, j=1, \ldots, b, \\ k=1, \ldots, c, \ell=1, \ldots, d, \\ m=1, \ldots, n .\end{array}\right.$
effects model: $y_{i j k \ell m}=$

$$
\begin{aligned}
& \underbrace{\mu}_{\text {grand mean }}+\underbrace{\alpha_{i}+\beta_{j}+\gamma_{k}+\delta_{\ell}}_{\text {main effects }} \\
& +\underbrace{\alpha \beta_{i j}+\alpha \gamma_{i k}+\alpha \delta_{i \ell}+\beta \gamma_{j k}+\beta \delta_{j \ell}+\gamma \delta_{k \ell}}_{\text {2-way interactions }} \\
& +\underbrace{\alpha \beta \gamma_{i j k}+\alpha \beta \delta_{i j \ell}+\alpha \gamma \delta_{i k \ell}+\beta \gamma \delta_{j k \ell}}_{\text {3-way interactions }} \\
& +\underbrace{\alpha \beta \gamma \delta_{i j k \ell}}_{\text {4-way interaction }}+\underbrace{\varepsilon_{i j k \ell m}}_{\text {error }}
\end{aligned}
$$

Chapter 08B-7

Zero-Sum Constraints for General Factorial Models

$$
\begin{aligned}
y_{i j k \ell m}= & \mu+\alpha_{i}+\beta_{j}+\gamma_{k}+\delta_{\ell} \\
& +\alpha \beta_{i j}+\alpha \gamma_{i k}+\alpha \delta_{i \ell}+\beta \gamma_{j k}+\beta \delta_{j \ell}+\gamma \delta_{k \ell} \\
& +\alpha \beta \gamma_{i j k}+\alpha \beta \delta_{i j \ell}+\alpha \gamma \delta_{i k \ell}+\beta \gamma \delta_{j k \ell} \\
& +\alpha \beta \gamma \delta_{i j k \ell}+\varepsilon_{i j k \ell m}
\end{aligned}
$$

All the effects have zero-sum constraints that they add to 0 when summing over any subscript, e.g.,

- $\sum_{i} \alpha_{i}=\sum_{j} \beta_{j}=\sum_{k} \gamma_{k}=\sum_{\ell} \delta_{\ell}=0$
- $\sum_{i} \alpha \gamma_{i k}=\sum_{k} \alpha \gamma_{i k}=0$, for all i, k, so do other 2-way interactions
- $\sum_{i} \alpha \gamma \delta_{i k \ell}=\sum_{k} \alpha \gamma \delta_{i k \ell}=\sum_{\ell} \alpha \gamma \delta_{i k \ell}=0$, for all i, k, ℓ, so do other 3-way interactions
$-\sum_{i} \alpha \beta \gamma \delta_{i j k \ell}=\sum_{j} \alpha \beta \gamma \delta_{i j k \ell}=\sum_{k} \alpha \beta \gamma \delta_{i j k \ell}=\sum_{\ell} \alpha \beta \gamma \delta_{i j k \ell}=0$, for all i, j, k, ℓ.

Chapter 08B-8

Parameter Estimates

For a 4-way model, the parameter estimates under the zero-sum constraints are

grand mean	$\widehat{\mu}=\bar{y}_{\bullet \bullet \bullet \bullet}$
main effects	$\begin{array}{ll} \widehat{\alpha}_{i}=\bar{y}_{i \bullet \bullet \bullet \bullet}-\bar{y}_{\bullet \bullet \bullet \bullet}, & \widehat{\beta}_{j}=\bar{y}_{\bullet j \bullet \bullet \bullet}-\bar{y}_{\bullet \bullet \bullet \bullet \bullet} \\ \widehat{\gamma}_{k}=\bar{y}_{\bullet \bullet k \bullet \bullet}-\bar{y}_{\bullet \bullet \bullet \bullet \bullet}, & \widehat{\delta}_{\ell}=\bar{y}_{\bullet \bullet \bullet \ell \bullet}-\bar{y}_{\bullet \bullet \bullet \bullet} \end{array}$
2-way	$\begin{aligned} & \widehat{\alpha \beta}_{i j}=\bar{y}_{i j \bullet \bullet \bullet}-\bar{y}_{i \bullet \bullet \bullet \bullet}-\bar{y}_{\bullet j \bullet \bullet \bullet}+\bar{y}_{\bullet \bullet \bullet \bullet} \\ & \widehat{\beta \gamma}_{j k}=\bar{y}_{\bullet j k \bullet \bullet}-\bar{y}_{\bullet j \bullet \bullet \bullet}-\bar{y}_{\bullet \bullet k \bullet \bullet}+\bar{y}_{\bullet \bullet \bullet \bullet} \end{aligned}$
3-way	$\begin{aligned} \widehat{\alpha \beta \delta}_{i j \ell}= & \bar{y}_{i j \bullet \ell \bullet}-\bar{y}_{i j \bullet \bullet \bullet}-\bar{y}_{i \bullet \bullet \ell \bullet}-\bar{y}_{\bullet j \bullet \ell \bullet} \\ & +\bar{y}_{i \bullet \bullet \bullet \bullet}+\bar{y}_{\bullet j \bullet \bullet \bullet}+\bar{y}_{\bullet \bullet \bullet \ell \bullet}-\bar{y}_{\bullet \bullet \bullet \bullet} \\ \widehat{\alpha \gamma \delta}_{i k \ell}= & \cdots \end{aligned}$
4-way	$\widehat{\alpha \beta \gamma \delta}_{i j k \ell}=(16$ terms, see the next page $)$

$$
\begin{aligned}
\widehat{\alpha \beta \gamma \delta} \delta_{i j k \ell}= & \bar{y}_{i j k \ell \bullet} \\
& -\bar{y}_{i j k \bullet \bullet}-\bar{y}_{i j \bullet \ell \bullet}-\bar{y}_{\bullet \bullet k \ell \bullet}-\bar{y}_{\bullet j k \ell \bullet} \\
& +\bar{y}_{i j \bullet \bullet \bullet}+\bar{y}_{i \bullet k \bullet \bullet}+\bar{y}_{i \bullet \bullet \bullet}+\bar{y}_{\bullet j k \bullet \bullet}+\bar{y}_{\bullet j \bullet \ell \bullet}+\bar{y}_{\bullet \bullet k \ell \bullet} \\
& -\bar{y}_{i \bullet \bullet \bullet \bullet}-\bar{y}_{\bullet \bullet \bullet \bullet \bullet}-\bar{y}_{\bullet \bullet k \bullet \bullet}-\bar{y}_{\bullet \bullet \bullet \ell \bullet} \\
& +\bar{y}_{\bullet \bullet \bullet \bullet} \\
= & (\text { terms that average over } 1 \text { index }) \\
& -(\text { terms that average over } 2 \text { indexes }) \\
& +(\text { terms that average over } 3 \text { indexes }) \\
& -(\text { terms that average over } 4 \text { indexes }) \\
& +(\text { terms that average over } 5 \text { indexes })
\end{aligned}
$$

Sum of Squares

SST can be decomposed into SS of main effects and interactions of all orders, e.g., in an $a \times b \times c \times d$ design with n replicates:

$$
\begin{aligned}
S S T= & S S_{A}+S S_{B}+S S_{C}+S S_{D} \\
& +S S_{A B}+S S_{A C}+S S_{A D}+S S_{B C}+S S_{B D}+S S_{C D} \\
& +S S_{A B C}+S S_{A C D}+S S_{A B D}+S S_{B C D} \\
& +S S_{A B C D} \\
& +S S E
\end{aligned}
$$

where SST $=\sum_{i j k \ell m}\left(y_{i j k \ell m}-\bar{y}_{\bullet \ldots \ldots \bullet}\right)^{2}$, SSE $=\sum_{i j k \ell m}\left(y_{j j k \ell m}-\bar{y}_{i j k \ell \bullet}\right)^{2}$, and the SS for all other terms are the sum of squares of corresponding parameter estimates under the zero sum constraints, e.g.,

$$
\begin{aligned}
S S_{C} & =\sum_{i j k \ell m}\left(\widehat{\gamma}_{k}\right)^{2}=a b d n \sum_{k}\left(\widehat{\gamma}_{k}\right)^{2} \\
S S_{B C} & =\sum_{i j k \ell m}\left(\widehat{\beta \gamma \gamma}_{j k}\right)^{2}=a d n \sum_{j k}\left(\widehat{\beta \gamma}_{j k}\right)^{2} \\
S S_{A C D} & =\sum_{i j k \ell m}\left(\widehat{\alpha \gamma \delta}_{i k \ell}\right)^{2}=b n \sum_{i k \ell}\left(\widehat{\alpha \gamma \delta}_{i k \ell}\right)^{2} \\
S S_{A B C D} & =\sum_{i j k \ell m}\left(\widehat{\alpha \beta \gamma \delta}_{i j k \ell}\right)^{2}=n \sum_{i j k \ell}\left(\widehat{\alpha \beta \gamma \delta} \delta_{i j \ell \ell}\right)^{2}
\end{aligned}
$$

Chapter 08B-11

Degrees of Freedom

Say factor A, B, C, and D have respectively a, b, c, d levels, and there are n replicates.

- d.f. of a main effect $=$ number of levels -1 .
e.g., $d f_{A}=a-1, d f_{C}=c-1$.
- d.f. of an interaction = product of d.f.'s for the main effects of the involved factors, e.g.,
- $d f_{A D}=(a-1)(d-1)$,
- $d f_{B C D}=(b-1)(c-1)(d-1)$,
- $d f_{A B C D}=(a-1)(b-1)(c-1)(d-1)$.
- d.f. of SST $=$ total $\#$ of observation $-1=a b c d n-1$
- d.f. of SSE $=$ total \# of observation - total \# of treatments

$$
=a b c d n-a b c d=a b c d(n-1)
$$

Chapter 08B-12

Example 8.10 Amylase data (p.195)

- Goal: to study the amylase specific activity of sprouted maize
- An $8 \times 2 \times 2$ factorial design with 3 factors:
- analysis temperature ($40,35,30,25,20,15,13$, or $10^{\circ} \mathrm{C}$)
- growth temperature of the sprouts $\left(25\right.$ or $\left.13^{\circ} \mathrm{C}\right)$
- variety of maize (B73 or Oh43)
- 3 replicates per treatment
- Response: the amylase specific activities (IU)
- You may load the data using the command

```
amyl = read.table(
    "http://www.stat.uchicago.edu/~yibi/s222/amylaze.txt", h=T)
```


Example 8.10 Amylase data

Table 8.9: Amylase specific activity (IU), for two varieties of sprouted maize under different growth and analysis temperatures (degrees C).

Analysis Temperature									
GT	Var.	40	35	30	25	20	15	13	10
25	B73	391.8	427.7	486.6	469.2	383.1	338.9	283.7	269.3
		311.8	388.1	4266.6	436.8	408.8	355.5	309.4	298.7
		367.4	468.1	499.8	444.0	429.0	304.5	309.9	313.0
	O43	301.3	352.9	376.3	373.6	377.5	308.8	234.3	197.1
		271.4	296.4	393.0	364.8	364.3	279.0	255.4	198.3
		300.3	346.7	334.7	386.6	329.2	261.3	239.4	216.7
13	B73	292.7	422.6	443.5	438.5	350.6	305.9	319.9	286.7
		283.3	359.5	431.2	398.9	383.9	342.8	283.2	266.5
		348.1	381.9	388.3	413.7	408.4	332.2	287.9	259.8
	O43	269.7	380.9	389.4	400.3	340.5	288.6	260.9	221.9
		284.0	357.1	420.2	412.8	309.5	271.8	253.6	254.4
		235.3	339.0	453.4	371.9	313.0	333.7	289.5	246.7

Chapter 08B-14

```
> amyl = read.table(
    "http://www.stat.uchicago.edu/~yibi/s222/amylaze.txt", h=T)
> str(amyl)
'data.frame': 96 obs. of 7 variables:
    $ atemp : int 40 35 30 25 20 15 13 10 40 35 %..
    $ gtemp : int 25 25 25 25 25 25 25 25 13 13 ...
    $ variety: Factor w/ 2 levels "B73","043": 1 1 1 1 1 1 1 1 1 1 ...
    $ y : num 392 428 487 469 383 ...
> amyl$at = as.factor(amyl$atemp)
> amyl$gt = as.factor(amyl$gtemp)
> amyl$v = as.factor(amyl$variety)
```


Three-Way Interaction Plots - Amylase data

```
with(subset(amyl,v=="B73"),
    interaction.plot(at,gt,log(y),type="b",xlab="Analysis Temperature"))
with(subset(amyl,v=="043"),
    interaction.plot(at,gt,log(y),type="b",xlab="Analysis Temperature"))
```


For both varieties, there appear little at:gt interaction as the 2 curves are pretty close in shape. Keep in mind that lines in an interaction plot may not be exactly parallel due to noise even if there is no interaction as we plot it using the sample means, not the population means. Hence, there's little signs of 3-way interactions.

Chapter 08B-16

Or one can combine both plots into one.
with(amyl, interaction.plot(at, gt:v, log(y), type="b",
xlab="Analysis Temperature (degree C)"))

- Little at:gt interactions for both varieties \Rightarrow little at:v:gt interactions
- Little at: v interactions for both $\mathrm{gt}=13$ and $\mathrm{gt}=25$

Chapter 08B-17

- Some evidence of gt:v interactions since
\rightarrow the line gt:v $=25: B 73$ is always ABOVE gt:v $=13: B 73$
- the line gt:v = 25:043 is mostly BELOW gt:v = 13:043
- Large at main effects as the lines are not horizontal
- Some v (variety) main effects as the two lines for v = B73 are always ABOVE the two lines for $v=B 73$
- As noted earlier, the effect of growth temperature gt were different for the two varieties.

Chapter 08B-18

Two-Way Interaction Plots - Amylase data

If one just check the two-way interaction plot between at and gt, the information of variety v would be ignored. The two curves below the curves for $\mathrm{gt}=13$ and $\mathrm{gt}=25$ averaged over the two varieties B73 and O43.

```
with(amyl,interaction.plot(at, gt, log(y),
    xlab="Analysis Temperature (degree C)"))
```


- Little evidence of at:gt interactions
- The at main effects appear significant as the lines are not horizontal
- There appear little gt main effects as there's little gap between the two lines

Chapter 08B-19

Example 8.10 Amylase data - Interaction Plots

- Does the main effect at appear significant?
- and the main effect v?
- at:v interaction?
- Does the main effect gt appear significant?
- and main effect v ?
- gt:v interaction?

Chapter 08B-20

Parameter Estimates for General Factorial Models

The Box-Cox method suggests taking log of of the amylase activity to make the variance closer to equal. The following are the sample group means $\bar{u}_{i j k}$, where $u_{i j k \ell}=\log y_{i j k \ell}$ is the \log of amylase activity.

Growth Temperature

Variety	$13^{\circ} \mathrm{C}(k=1)$		$25^{\circ} \mathrm{C}(k=2)$	
	= 1)	O43 ($j=2$)	B73 ($j=1$)	043
$\bigcirc 10^{\circ} \mathrm{C}$	$\bar{u}_{111} \bullet \approx 5.601$	$\bar{u}_{121} \bullet \approx 5.483$	$\bar{u}_{112} \bullet 5.657$	$\bar{u}_{122} \approx 5.317$
坴 13°	$\bar{u}_{211} \bullet \approx 5.692$	$\bar{u}_{221} \bullet \approx 5.589$	$\bar{u}_{212} \bullet \approx 5.706$	$\bar{u}_{222} \approx 5.492$
边 $15^{\circ} \mathrm{C}$	$\bar{u}_{311} \bullet 25.789$	$\bar{u}_{321} \bullet \approx 5.693$	$\bar{u}_{312} \bullet 5.806$	$\bar{u}_{322} \approx 5.643$
$20^{\circ} \mathrm{C}$	$\bar{u}_{411} \bullet 2.941$	$\bar{u}_{421} \bullet \approx 5.771$	$\bar{u}_{412} \bullet \approx 6.008$	$\bar{u}_{422} \approx 5.876$
$\stackrel{\square}{\vdash} 25^{\circ}$	$\bar{u}_{511} \bullet \approx 6.032$	$\bar{u}_{521} \bullet 5.978$	$\bar{u}_{512} \bullet \approx 6.109$	$\bar{u}_{522} \approx 5.927$
$\frac{-n}{n} 30^{\circ} \mathrm{C}$	$\bar{u}_{611} \bullet \approx 6.041$	$\bar{u}_{621} \bullet \approx 6.041$	$\bar{u}_{612} \bullet \approx 6.153$	$\bar{u}_{622} \approx 5.906$
त $35^{\circ} \mathrm{C}$	$\bar{u}_{711} \bullet \approx 5.959$	$\bar{u}_{721} \bullet \approx 5.882$	$\bar{u}_{712} \bullet \approx 6.056$	$\bar{u}_{722} \approx 5.802$
40°	\bar{u}_{81}	$\bar{u}_{821} \bullet \approx 5.569$	$\bar{u}_{812 \bullet} \approx 5.873$	

Chapter 08B-21

ty	B73 $(j=1)$	$\mathrm{O} 43(j=2)$	Mean
$\bigcirc 10$	$\bar{u}_{11 \bullet \bullet} \approx 5.629$	$\bar{u}_{12 \bullet \bullet} \approx 5.400$	$\bar{u}_{1 \bullet \bullet \bullet} \approx 5.515$
13	$\bar{u}_{21 \bullet \bullet} \approx 5.699$	$\bar{u}_{22 \bullet \bullet} \approx 5.541$	$\bar{u}_{2 \bullet \bullet} \approx 5.620$
¢ 15	$\bar{u}_{31 \bullet \bullet} \approx 5.797$	$\bar{u}_{32 \bullet \bullet} \approx 5.668$	$\bar{u}_{3} \cdot . \bullet 5.733$
20	$\bar{u}_{41 \bullet \bullet} \approx 5.974$	$\bar{u}_{42 \bullet \bullet} \approx 5.823$	$\bar{u}_{4} \cdot \ldots \approx 5.899$
25	$\bar{u}_{51 \bullet \bullet} \approx 6.071$	$\bar{u}_{52 \bullet \bullet} \approx 5.952$	$\bar{u}_{5 \bullet \bullet \bullet} \approx 6.011$
30	$\bar{u}_{61 \bullet \bullet} \approx 6.097$	$\bar{u}_{62 \bullet \bullet} \approx 5.973$	$\bar{u}_{6 \bullet \bullet \bullet} \approx 6.035$
35	$\bar{u}_{71 \bullet \bullet} \approx 6.007$	$\bar{u}_{72 \bullet \bullet} \approx 5.842$	$\bar{u}_{7 \bullet \bullet \bullet} \approx 5.925$
< 40	$\bar{u}_{81 \bullet \bullet} \approx 5.800$	$\bar{u}_{82 \bullet \bullet} \approx 5.621$	$\bar{u}_{8 \bullet \bullet \bullet} \approx 5.710$
Mean	$\bar{u}_{\bullet 1 \bullet \bullet} \approx 5.884$	$\bar{u}_{\bullet 2 \bullet \bullet} \approx 5.728$	$\bar{u}_{\bullet \bullet \bullet \bullet} \approx 5.806$

GT	$13^{\circ} \mathrm{C}(k=1) \quad 25^{\circ} \mathrm{C}(k=2)$		
$\stackrel{1}{ \pm} 10$	$\bar{u}_{1 \bullet 1 \bullet} \approx 5.542 \bar{u}_{1 \bullet 2 \bullet} \approx 5.487$		
± 13	$\bar{u}_{2 \bullet 1 \bullet} \approx 5.641 \bar{u}_{2 \bullet 2 \bullet} \approx 5.599$		
\% 15	$\bar{u}_{3 \bullet 1 \bullet} \approx 5.741 \bar{u}_{3 \bullet 2 \bullet} \approx 5.725$		Growth Temperature
${ }_{c}^{\text {c }} 20$	$\bar{u}_{4 \bullet 1 \bullet} \approx 5.856 \bar{u}_{4 \bullet 2 \bullet} \approx 5.942$	Variety	$13^{\circ} \mathrm{C}(k=1) \quad 25^{\circ} \mathrm{C}(k=2)$
$\stackrel{+}{-} 25$	$\bar{u}_{5 \bullet 1 \bullet} \approx 6.005 \bar{u}_{5 \bullet 2 \bullet} \approx 6.018$	B73	$\bar{u}_{\bullet 11} \bullet 25.848 \bar{u}_{\bullet 12 \bullet} \approx 5.921$
- $\frac{1}{n} 30$	$\bar{u}_{6 \bullet 1 \bullet} \approx 6.041 \bar{u}_{6 \bullet 2 \bullet} \approx 6.029$	043	$\bar{u}_{\bullet 21} \bullet 2.751 \bar{u}_{\bullet 22} \bullet \approx 5.704$
त 35	$\bar{u}_{7 \bullet 1 \bullet} \approx 5.920 \bar{u}_{7 \bullet 2 \bullet} \approx 5.929$		
安 40	$\bar{u}_{8 \bullet 1} \bullet \approx 5.647 \bar{u}_{8 \bullet 2 \bullet} \approx 5.773$		
Mean	$\bar{u}_{\bullet \bullet 1 \bullet} \approx 5.799 \bar{u}_{\bullet \bullet 2 \bullet} \approx 5.813$		

Chapter 08B-22

Parameter Estimates for General Factorial Models

For the full model with all 2-way and 3-way interactions:

$$
u_{i j k \ell}=\log y_{i j k \ell}=\mu+\alpha_{i}+\beta_{j}+\gamma_{k}+\alpha \beta_{i j}+\beta \gamma_{j k}+\alpha \gamma_{i j}+\alpha \beta \gamma_{i j k}+\varepsilon_{i j k \ell}
$$

The parameter estimates under the zero-sum constraints for a few parameters are

$$
\begin{aligned}
& \widehat{\mu}=\bar{u}_{\bullet \bullet \bullet \bullet} \approx 5.806 \\
& \widehat{\alpha}_{5}=\bar{u}_{5 \bullet \bullet \bullet}-\bar{u}_{\bullet \bullet \bullet \bullet} \approx 6.011-5.806=0.205 \\
& \widehat{\beta}_{1}=\bar{u}_{\bullet 1 \bullet \bullet}-\bar{u}_{\bullet \bullet \bullet \bullet} \approx 5.884-5.806=0.078 \\
& \widehat{\beta \gamma}_{12}=\bar{u}_{\bullet 12 \bullet}-\bar{u}_{\bullet 1 \bullet \bullet}-\bar{u}_{\bullet \bullet 2 \bullet}+\bar{u}_{\bullet \bullet \bullet \bullet} \\
& \approx 5.921-5.885-5.813+5.806=0.029 \\
& \widehat{\alpha \beta \gamma} \\
& 512=\bar{u}_{512 \bullet}-\bar{u}_{51 \bullet \bullet}-\bar{u}_{\bullet 12 \bullet}-\bar{u}_{5 \bullet 2 \bullet}+\bar{u}_{5 \bullet \bullet \bullet}+\bar{u}_{\bullet 1 \bullet \bullet}+\bar{u}_{\bullet \bullet 2 \bullet}-\bar{u}_{\bullet \bullet \bullet \bullet} \\
& \approx 6.109-6.071-5.921-6.018+6.011+5.884+5.813-5.806 \\
&=0.001
\end{aligned}
$$

Other parameters can be estimated similarly.
Chapter 08B-23

How to find $\bar{u}_{i j k}$ in R ?
library(mosaic)
mean(log(y) ~ at+v+gt, data=amyl)
Similarly,

- $\bar{u}_{i j \bullet \bullet}: \operatorname{mean}(\log (y) \sim a t+v$, data=amyl)
- $\bar{u}_{i \bullet k \bullet}: \operatorname{mean}(\log (y) \sim a t+g t, d a t a=a m y l)$
- $\bar{u}_{\bullet j k}:$ mean $(\log (y))^{\sim}{ }^{+}+g t$, data=amyl)
- $\bar{u}_{i \bullet 0 \bullet}: \operatorname{mean}(\log (y)$ ~ at, data=amyl)
- $\bar{u}_{\bullet j \bullet \bullet}: \operatorname{mean}(\log (y) \sim v, d a t a=a m y l)$
- $\bar{u}_{\bullet \bullet k \bullet}: \operatorname{mean}(\log (y)$ ~ gt, data=amyl)
- $\bar{u}_{\bullet \bullet \bullet \bullet}: \operatorname{mean}(\log (y) \sim 1$, data=amyl)

Model Formula in R

The R command for fitting the full 3-way model

$$
\log y_{i j k \ell}=\mu+\alpha_{i}+\beta_{j}+\gamma_{k}+\alpha \beta_{i j}+\beta \gamma_{j k}+\alpha \gamma_{i j}+\alpha \beta \gamma_{i j k}+\varepsilon_{i j k \ell}
$$

is
$\operatorname{lm}(\log (y) \sim a t+v+g t+a t: v+a t: g t+v: g t+a t: v: g t, d a t a=a m y l)$
A simpler syntax is
$\operatorname{lm}(\log (y) \sim a t * v * g t$, data=amyl)
The term at*v*gt and at:v:gt both mean the 3-way interaction terms $\alpha \beta \gamma_{i j k}$, but

- at*v*gt will automatically include all relevant main effects and lower order interactions in the model.
- at:v:gt will not include the lower order terms Hence, the R command below
$\operatorname{lm}(\log (y) \sim-1+a t: v: g t$, data=amyl)
will fit the means model $\log y_{i j k \ell}=\mu_{i j k}+\varepsilon_{i j k \ell}$.
Chapter 08B-25

Example 8.10 Amylase data - ANOVA Table

```
> logfit1 = lm(log(y) ~ at*v*gt, data=amyl)
> anova(logfit1)
Analysis of Variance Table
```

Response: $\log (y)$
Df Sum Sq Mean Sq F value $\quad \operatorname{Pr}(>F)$
at $\quad 73.016130 .43088 \quad 78.8628<2.2 \mathrm{e}-16$ ***
v $\quad 10.589570 .58957107 .9085 \quad 2.305 \mathrm{e}-15$ ***
$\begin{array}{llllll}\text { gt } & 1 & 0.00438 & 0.00438 & 0.8016 & 0.3739757\end{array}$
at:v $\quad 7 \quad 0.027580 .00394 \quad 0.72120 .6543993$
at:gt $\quad 70.081060 .01158 \quad 2.11950 .0539203$.
v:gt $\quad 10.085990 .08599 \quad 15.73920 .0001863$ ***
at:v:gt $\quad 7 \quad 0.047640 .00681 \quad 1.2457 \quad 0.2916176$
Residuals 640.349670 .00546

Only the analysis temperature (at), variety (v), and the variety by growth temperature interactions ($\mathrm{v}: \mathrm{gt}$) are highly significant.
Can I fit a model like $y_{i j k \ell}=\mu+\alpha_{i}+\beta_{j}+\beta \gamma_{j k}+\varepsilon_{i j k \ell}$?
$\operatorname{logfit2}=\operatorname{lm}(\log (y) \sim a t+v+v: g t$, data=amyl)
Chapter 08B-26

8.11 Hierarchy

A model is hierarchical if any term in the model implies the presence of all the composite lower-order terms.

- $y_{i j k \ell}=\mu+\alpha_{i}+\beta_{j}+\beta \gamma_{j k}+\varepsilon_{i j k \ell}$ is not hierarchical because including the term $\beta \gamma_{j k}$ must includes both β_{j} and γ_{k} as well.
- $y_{i j k}=\mu+\alpha_{i}+\beta_{j}+\alpha \beta_{i j}+\varepsilon_{i j k}$ is hierarchical.
- A hierarchical model with a term $\alpha \beta \gamma_{i j k}$ must also include:
- the relevant main effects: $\alpha_{i}+\beta_{j}+\gamma_{k}$
- and the included two-way effects: $\alpha \beta_{i j}+\alpha \gamma_{i k}+\beta \gamma_{j k}$.

8.11 Hierarchy

Unless having a specific reason, we should stick to hierarchical models.

- This is because a k-way interaction in defined upon ($k-1$)-way interactions. It is strange to consider a $A B C$ interaction while claiming A and B have no 2-way interaction.
- E.g., when we say there are no $A B$ interactions, we also imply that there are no higher order interactions that involve $A B$ interactions, like $A B D$ interactions, or $A B C D$ interactions.

Why Maintaining Hierarchy?

Let's consider a model for a 2×2 factorial design.

$$
\begin{aligned}
y_{i j k} & =\mu_{i j}+\varepsilon_{i j k} \\
& =\mu+\alpha_{i}+\beta_{j}+\alpha \beta_{i j}+\varepsilon_{i j k}
\end{aligned}
$$

If $\alpha_{1}=\alpha_{2}=0$, but $\alpha \beta_{11} \neq 0$, can Factor A have any effect on the response? Consider the example below.

	$B=1$	$B=2$	Mean
$A=1$	$\mu_{11}=3$	$\mu_{12}=2$	$\mu_{1 \bullet}=2.5$
$A=2$	$\mu_{21}=5$	$\mu_{22}=0$	$\mu_{\bullet \bullet}=2.5$
Mean	$\mu_{\bullet 1}=4$	$\mu_{\bullet 2}=1$	$\mu_{\bullet \bullet}=2.5$
Under the zero-sum constraint,			

$$
\alpha_{i}=\bar{\mu}_{i \bullet}-\bar{\mu}_{\bullet \bullet}=2.5-2.5=0
$$

for $i=1,2$.
Clearly $\alpha \beta_{i j} \neq 0$ as the lines are not parallel.

Chapter 08B-29

Back to the Amylase Data

Here is a hierarchical model that leaves out all insignificant terms.

```
> logfit2 = lm(log(y) ~ at + v + gt + at:gt + v:gt, data=amyl)
> anova(logfit2)
Analysis of Variance Table
Response: log(y)
    Df Sum Sq Mean Sq F value Pr(>F)
```



```
v 1 0.58957 0.58957 108.2305 < 2.2e-16 ***
gt 1 0.00438 0.00438 0.8040 0.3726670
at:gt 7 0.08106 0.01158 2.1258 0.0503809 .
v:gt 1 0.08599 0.08599 15.7861 0.0001571 ***
Residuals 78 0.42489 0.00545
```

The insignificant gt main effect cannot be left out since the two-way interaction v:gt is significant.

The SS's and d.f.'s of the left-out terms are pooled into the SSE and the df of error while the SS's and d.f's of the remaining stay unchanged.

Goodness-of-Fit Test

Comparing the reduced model with the full 3 -way model (equivalent to the means model), the large P-value indicates the adequacy of the reduced model.
> anova(logfit2,logfit1)
Analysis of Variance Table

```
Model 1: log(y) ~ at + v + gt + at:gt + v:gt
```

Model 2: $\log (y)$ ~ at * gt * v
Res.Df RSS Df Sum of $\mathrm{Sq} \quad \mathrm{F} \operatorname{Pr}(>F)$
1780.42489
$2 \quad 64 \quad 0.3496714 \quad 0.0752230 .98340 .4801$

More On Model Formula in R (1)

Instead of writing terms explicitly in the model formula
> logfit2 $=\operatorname{lm}(\log (y) \quad$ ~ at + v + gt + at:gt + v:gt, data=amyl)
Here is another simpler expression for the same model. R will automatically create the smallest hierarchical model that include both at:gt and gt:v interactions.
> logfit2a $=\operatorname{lm}(\log (y) \sim a t * g t+v * g t, ~ d a t a=a m y l)$
> anova(logfit2a)
Analysis of Variance Table
Response: $\log (y)$
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
at $\quad 73.016130 .43088 \quad 79.0981<2.2 \mathrm{e}-16$ ***
gt $\quad 10.004380 .00438 \quad 0.8040 \quad 0.3726670$
v $\quad 10.589570 .58957108 .2305<2.2 \mathrm{e}-16$ ***
at:gt $\quad 70.081060 .01158 \quad 2.12580 .0503809$.
gt:v $\quad 10.085990 .08599 \quad 15.78610 .0001571$ ***
Residuals 780.424890 .00545
Chapter 08B-32

More On Model Formula in R (2)

If one wants a model with all two-way interactions but no 3-way interaction, one can explicitly write down every term
$\operatorname{logfit3a}=\operatorname{lm}(\log (\mathrm{y}) \sim$ at + v + gt + at:v + v:gt + at:gt, data=amyl)
Here is another way to obtain everything up to the 2-way interactions
$\operatorname{logfit3b}=\operatorname{lm}(\log (y) \sim(a t+v+g t) \wedge 2$, data=amyl)
Here is another way to "leave out" the 3-way interaction

```
logfit3c = lm(log(y) ~ at*v*gt - at:v:gt, data=amyl)
```

You can verify the 3 model formulas are identical in R.

```
anova(logfit3a)
anova(logfit3b)
anova(logfit3c)
```


Example 8.10 Amylase data - Model Checking

Always check model assumptions FIRST!

Recall that we took log of the original response. If we didn't...

```
> fit1 = lm(y ~ at*v*gt, data=amyl); anova(fit1)
```

Analysis of Variance Table

Response: y						
	Df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>F)$	
at	7	327811	46830	72.9366	< $2.2 \mathrm{e}-16$	***
v	1	63809	63809	99.3801	$1.192 \mathrm{e}-14$	***
gt	1	1155	1155	1.7988	0.1845968	
at:v	7	1174	168	0.2611	0.9665902	
at:gt	7	7158	1023	1.5925	0.1537663	
v:gt	1	10648	10648	16.5839	0.0001305	***
at:v:gt	7	6257	894	1.3922	0.2240596	
Residuals	64	41092	642			

Don't drop insignificant terms before checking model assumptions. If any assumption is violated, the ANOVA table is not reliable.

Chapter 08B-34

Example 8.10 Amylase data - Model Checking (2)

- The residual plot exhibits non-constant variability - the size of residuals increases with fitted values.
- The QQ plot looks symmetric but a bit short-tailed.
- The Box-Cox method suggests a log-transformation.

Check the model again after log-transformation but before dropping terms, i.e. check the model
$\operatorname{lm}(\log (y) \sim a t * v * g t, d a t a=a m y l)$.

- The non-constant variance problem is alleviated
- The QQ plot still looks short-tailed. Residuals often appear short-tailed when fiting a "large" model, which tends to overfit the data, making residuals too close to zero.
- Box-Cox suggests no transformation ($\lambda=1$ is in the 95% C.I.), i.e., the log-transformed response is fine.

So the ANOVA table based on the log-transformed data seems trustworthy and we can make inference or drop terms based on it.

Chapter 08B-36

Let's check the model again after dropping insignificant terms in the log transformed model (i.e. $\operatorname{lm}(\log (y) \sim a t * g t+g t * v, ~ d a t a=a m y l))$.

- The residual plot looks fine
- After removing insignificant terms, residuals no longer appear short-tailed
- Box-Cox 95\% C.I. for λ contains 1. Okay.

Remark about Box-Cox: R by default will only plot λ for the range $(-2,2)$. The range of λ can be changed, like -2 to 10 in steps 0.25 in the command below.

```
> library(MASS)
> boxcox(logfit2,lambda=seq(-2,10,0.25))
```

Chapter 08B-37

8.9 Single Replicates

Some factorial experiments have only ONE replicate per treatment.

- No degree of freedom for error, cannot estimate σ^{2}
- All sum of squares (SS) can be computed as usual except that $\mathrm{SSE}=0$.
- ANOVA F-tests for main effects and interactions of all orders cannot be done!
Remedy - Pooling higher order interactions into error

Problem 8.6 (p. 222, Oehlert's)

Response: dry matter yield in hundreds of pounds per acre over a 54-week study period

Factors:

- height of cut (1, 3, or 6 inches)
- cutting interval (1, 3, 6, or 9 weeks)
- amount of nitrogen fertilizer ($0,8,16$, or 32 hundred pounds of ammonium sulfate per acre per year).

Cutting Interval

					wks. 3 wks. 6 wks. 9 wks.
Ht 1 F 0	74.1	65.4	96.7	147.1	
F 8	87.4	117.7	190.2	188.6	
F 16	96.5	122.2	197.9	232.0	
F 32	107.6	140.5	241.3	192.0	
Ht 3 F 0	61.7	83.7	88.8	155.6	
F 8	112.5	129.4	145.0	208.1	
F 16	102.3	137.8	173.6	203.2	
F 32	115.3	154.3	211.2	245.2	
Ht 6 F 0	49.9	72.7	113.9	143.4	
F 8	92.9	126.4	175.5	207.5	
F 16	100.8	153.5	184.5	194.2	
F 32	115.8	160.0	224.8	197.5	

Let's first load the data and fit a full 3-way model.

```
pr8.6 = read.table(
    "http://www.stat.uchicago.edu/~yibi/s222/pr8_6.txt", h=T)
pr8.6$HT = as.factor(pr8.6$ht)
pr8.6$FERT = as.factor(pr8.6$fert)
pr8.6$INT = as.factor(pr8.6$int)
lm1 = lm(y ~ HT*FERT*INT, data=pr8.6); anova(lm1)
```

The ANOVA table obtained is
Response: y
HT
FERT $3 \quad 42072 \quad 14023.9$
$2 \quad 29 \quad 14.6$
INT 37388724629.0

HT:FERT	6	406	67.7

HT:INT	6	3005	500.9

FERT:INT $9 \quad 5352 \quad 594.6$
HT:FERT:INT 183155175.3
Residuals 0 0
Warning message:
In anova.lm(lm1) :
ANOVA F-tests on an essentially perfect fit are unreliable

We can pool the 3-way interaction terms as errors to get a conservative estimate of σ^{2}.

```
> lm2 = lm(y ~ (HT+FERT+INT)^2, data=pr8.6)
> anova(lm2)
Analysis of Variance Table
```

Response: y

	Df	Sum Sq	Mean Sq	F value	Pr $(>F)$
HT	2	29	14.6	0.0830	0.92068
FERT	3	42072	14023.9	80.0153	$1.334 e^{-10}$

Pooling SS of higher-order interactions into error can be justified since the expected value of the MS for a term (main effect or interaction) can be shown to be $\geq \sigma^{2}$.
If we divide the MS for other terms by an "MSE" that tend to overestimates σ^{2}, the F-value tend to be too small, less significant.

Chapter 08B-41

Before examining the treatment effects, first check if the model assumptions are met.
> library(MASS)
> boxcox(lm2)
The Box-Cox method below suggest a square-root transformation of the response since 0.5 is in the 95% confidence interval for λ.

Box-Cox Transform. for Linear Models

Chapter 08B-42

Should check model assumption again after fitting the new model below.

```
> lm2s= lm(sqrt(y) ~ (HT+FERT+INT)^2, data=pr8.6)
> anova(lm2s)
Analysis of Variance Table
```

Response: sqrt(y)

	Df	Sum Sq	Mean Sq	F value	Pr $(>F)$
HT	2	0.103	0.052	0.1763	0.83979
FERT	3	82.222	27.407	93.8199	$3.510 \mathrm{e}-11$

One possible model is keeping the two significant interactions HT:INT and FERT:INT. In this case, one needs to keep the insignificant HT main effects to maintain the hierarchy.
lm3s = lm(sqrt (y) ~ HT + INT + FERT + HT:INT + FERT:INT, data=pr8.6)
Chapter 08B-43

Another possible model is dropping all two-way interactions because the evidence for HT:INT and FERT:INT interactions is just at the borderline. In this case, we can drop the insignificant HT main effects and only keep the FERT and INT main effects

```
> lm4s = lm(sqrt(y) ~ FERT + INT, data=pr8.6)
> anova(lm2s, lm4s)
Analysis of Variance Table
Model 1: sqrt(y) ~ FERT + INT
Model 2: sqrt(y) ~ (HT + FERT + INT)^2
    Res.Df RSS Df Sum of Sq F Pr(>F)
141 17.6385
2 18 5.2583 23 12.38 1.8426 0.09473.
```

This simple model fits the data not much worse than the model with all 2 -way interactions with a P-value of 0.095 , which is preferred for its simplicity.

3-Way Interaction Plot

```
with(pr8.6, interaction.plot(HT:INT,FERT,sqrt(y),type="b"))
```


- Little INT: FERT interactions for the 3 HT level \Rightarrow little evidence of INT:FERT:HT interactions
- Large gap between lines \Rightarrow significant FERT main effect
- Lines are not horizontal \Rightarrow significant INT main effect

Chapter 08B-45

3-Way Interaction Plot

- The 3 lines entangled \Rightarrow little HT main effect
- Lines are closed to parallel \Rightarrow Little HT:FERT interactions

