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3-Way Interaction Contrast
Based on the means model yijk` = µijk + εijk` of a 3-way design, a
3-way interaction contrast between level (i1, i2) for factor A, level
(j1, j2) for factor B, and level (k1, k2) for factor C is defined to be

µi1j1k1 − µi2j1k1 − µi1j2k1 − µi1j1k2 + µi2j2k1 + µi2j1k2 + µi1j2k2 − µi2j2k2

Observe that any two µijk ’s in the contrast have

opposite
identical

signs if they differ by an
odd
even

number of indexes.

The 3-way interaction contrast above has 3 interpretations:

µi1j1k1 − µi2j1k1 − µi1j2k1 − µi1j1k2 + µi2j2k1 + µi2j1k2 + µi1j2k2 − µi2j2k2

= (µi1j1k1−µi2j1k1−µi1j2k1 + µi2j2k1︸ ︷︷ ︸
AB interaction contrast when C = k1

)− (µi1j1k2−µi2j1k2−µi1j2k2 + µi2j2k2︸ ︷︷ ︸
AB interaction contrast when C = k2

)

= (µi1j1k1−µi1j2k1−µi1j1k2 + µi1j2k2︸ ︷︷ ︸
BC interaction contrast when A = i1

)− (µi2j1k1−µi2j2k1−µi2j1k2 + µi2j2k2︸ ︷︷ ︸
BC interaction contrast when A = i2

)

= (µi1j1k1−µi2j1k1−µi1j1k2 + µi2j1k2︸ ︷︷ ︸
AC interaction contrast when B = j1

)− (µi1j2k1−µi2j2k1−µi1j2k2 + µi2j2k2︸ ︷︷ ︸
AC interaction contrast when B = j2

)
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Three-Way Interactions
We say factor A, B, and C have three-way interactions if
I an AB interaction contrast changes with the levels of C, or
I a BC interaction contrast changes with the levels of A, or
I an AC interaction contrast changes with the levels of B.

E.g.,
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Example 2: Three-Way Interactions
AB have interactions AB have interactions
when C is fixed at 1 when C is fixed at 2
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The AB interaction contrast (µ11k − µ21k)− (µ12k − µ22k)
depends on the level k of factor C. Hence there exist ABC 3-way
interactions. Chapter 08B - 4



It can be hard to judge graphically whether ABC interaction is
present when AB interactions exist at both levels of C .
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The AB interactions at the two levels of C are equal and hence
there is no ABC interaction.

(µ111 − µ211)− (µ121 − µ221) = (5− 4)− (7− 1) = −5

(µ112 − µ212)− (µ122 − µ222) = (4− 5)− (8− 4) = −5
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Higher Order Interactions
I An ABCD 4-way interaction contrast is

I the difference of some ABC 3-way interaction contrast at two
different levels of D

I the difference of some ABD 3-way interaction contrast at two
different levels of C

I the difference of some ACD 3-way interaction contrast at two
different levels of B

I the difference of some BCD 3-way interaction contrast at two
different levels of A

I We say ABCD have 4-way interactions if any of the ABCD
4-way interaction contrast is non-zero or if any 3-way
interaction contrast between any 3 of the 4 factors changes
with the levels of a 4th factor.
I e.g., if some ACD 3-way interaction contrast changes with the

levels of factor B, then there exist ABCD 4-way interaction

I We say k factors have k-way interactions means the
(k − 1)-way interaction of any (k − 1) of the k factors
changes with the levels of a kth factor.
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General Factorial Models
The model and analysis of multi-way factorial data are
generalization of those for two-way factorial data. E.g., consider a
4-way factorial design with factors A, B, C, and D.

means model : yijk`m = µijk` + εijk`m for

{
i = 1, . . . , a, j = 1, . . . , b,
k = 1, . . . , c, ` = 1, . . . , d ,
m = 1, . . . , n.

effects model: yijk`m = µ︸︷︷︸
grand mean

+αi + βj + γk + δ`︸ ︷︷ ︸
main effects

+ αβij + αγik + αδi` + βγjk + βδj` + γδk`︸ ︷︷ ︸
2-way interactions

+ αβγijk + αβδij` + αγδik` + βγδjk`︸ ︷︷ ︸
3-way interactions

+ αβγδijk`︸ ︷︷ ︸
4-way interaction

+ εijk`m︸ ︷︷ ︸
error
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Zero-Sum Constraints for General Factorial Models

yijk`m = µ+ αi + βj + γk + δ`

+ αβij + αγik + αδi` + βγjk + βδj` + γδk`

+ αβγijk + αβδij` + αγδik` + βγδjk`

+ αβγδijk` + εijk`m

All the effects have zero-sum constraints that they add to 0 when
summing over any subscript, e.g.,

I
∑

i αi =
∑

j βj =
∑

k γk =
∑

` δ` = 0

I
∑

i αγik =
∑

k αγik = 0, for all i , k ,
so do other 2-way interactions

I
∑

i αγδik` =
∑

k αγδik` =
∑

` αγδik` = 0, for all i , k , `,
so do other 3-way interactions

I
∑

i αβγδijk` =
∑

j αβγδijk` =
∑

k αβγδijk` =
∑

` αβγδijk` =0,
for all i , j , k , `.
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Parameter Estimates

For a 4-way model, the parameter estimates under the zero-sum
constraints are

grand mean µ̂ = y•••••

main effects α̂i = y i•••• − y•••••, β̂j = y•j••• − y•••••,

γ̂k = y••k•• − y•••••, δ̂` = y•••`• − y•••••

2-way α̂βij = y ij••• − y i•••• − y•j••• + y•••••

β̂γjk = y•jk•• − y•j••• − y••k•• + y•••••
...

3-way α̂βδij` = y ij•`• − y ij••• − y i••`• − y•j•`•

+y i•••• + y•j••• + y•••`• − y•••••

α̂γδik` = · · ·
4-way α̂βγδijk` = (16 terms, see the next page)
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α̂βγδijk` = y ijk`•

− y ijk•• − y ij•`• − y i•k`• − y•jk`•

+ y ij••• + y i•k•• + y i••`• + y•jk•• + y•j•`• + y••k`•

− y i•••• − y•j••• − y••k•• − y•••`•

+ y•••••

= (terms that average over 1 index)

− (terms that average over 2 indexes)

+ (terms that average over 3 indexes)

− (terms that average over 4 indexes)

+ (terms that average over 5 indexes)
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Sum of Squares
SST can be decomposed into SS of main effects and interactions of all
orders, e.g., in an a× b × c × d design with n replicates:

SST = SSA + SSB + SSC + SSD

+ SSAB + SSAC + SSAD + SSBC + SSBD + SSCD

+ SSABC + SSACD + SSABD + SSBCD

+ SSABCD

+ SSE

where SST =
∑

ijk`m(yijk`m − y•••••)2, SSE =
∑

ijk`m(yijk`m − y ijk`•)2,
and the SS for all other terms are the sum of squares of corresponding
parameter estimates under the zero sum constraints, e.g.,

SSC =
∑

ijk`m
(γ̂k)2 = abdn

∑
k
(γ̂k)2

SSBC =
∑

ijk`m
(β̂γjk)2 = adn

∑
jk

(β̂γjk)2

SSACD =
∑

ijk`m
(α̂γδik`)

2 = bn
∑

ik`
(α̂γδik`)

2

SSABCD =
∑

ijk`m
(α̂βγδijk`)

2 = n
∑

ijk`
(α̂βγδijk`)

2
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Degrees of Freedom

Say factor A, B, C, and D have respectively a, b, c , d levels, and
there are n replicates.

I d.f. of a main effect = number of levels −1.
e.g., dfA = a− 1, dfC = c − 1.

I d.f. of an interaction = product of d.f.’s for the main effects
of the involved factors, e.g.,

I dfAD = (a− 1)(d − 1),
I dfBCD = (b − 1)(c − 1)(d − 1),
I dfABCD = (a− 1)(b − 1)(c − 1)(d − 1).

I d.f. of SST = total # of observation −1 = abcdn − 1

I d.f. of SSE = total # of observation − total # of treatments
= abcdn − abcd = abcd(n − 1)
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Example 8.10 Amylase data (p.195)

I Goal: to study the amylase specific activity of sprouted maize
I An 8× 2× 2 factorial design with 3 factors:

I analysis temperature (40, 35, 30, 25, 20, 15, 13, or 10◦C)
I growth temperature of the sprouts (25 or 13◦C)
I variety of maize (B73 or Oh43)

I 3 replicates per treatment

I Response: the amylase specific activities (IU)

I You may load the data using the command

amyl = read.table(

"http://www.stat.uchicago.edu/~yibi/s222/amylaze.txt", h=T)
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Example 8.10 Amylase data194 Factorial Treatment Structure

Table 8.9: Amylase specific activity (IU), for two varieties of sprouted
maize under different growth and analysis temperatures (degrees C).

Analysis Temperature
GT Var. 40 35 30 25 20 15 13 10

25 B73 391.8 427.7 486.6 469.2 383.1 338.9 283.7 269.3
311.8 388.1 426.6 436.8 408.8 355.5 309.4 278.7
367.4 468.1 499.8 444.0 429.0 304.5 309.9 313.0

O43 301.3 352.9 376.3 373.6 377.5 308.8 234.3 197.1
271.4 296.4 393.0 364.8 364.3 279.0 255.4 198.3
300.3 346.7 334.7 386.6 329.2 261.3 239.4 216.7

13 B73 292.7 422.6 443.5 438.5 350.6 305.9 319.9 286.7
283.3 359.5 431.2 398.9 383.9 342.8 283.2 266.5
348.1 381.9 388.3 413.7 408.4 332.2 287.9 259.8

O43 269.7 380.9 389.4 400.3 340.5 288.6 260.9 221.9
284.0 357.1 420.2 412.8 309.5 271.8 253.6 254.4
235.3 339.0 453.4 371.9 313.0 333.7 289.5 246.7

effects change, and with this weighting antibiotic 1 has a mean response 6
units lower on average than antibiotic 2 and is thus preferred to antibiotic 2.

Analogous examples have zero column effects for weighted averages and
nonzero column effects in the usual decomposition. Note in the weighted
decomposition that column effects add to zero and the interactions add to
zero across columns, but row effects and interaction effects down columns
only add to zero with 1,2,1 weights.

If factors A and B do not interact, then the A and B main effectsare
the same regardless of how we weight the means. In the absenceof AB in-
teraction, testing the main effects of A and B computed usingour equallyWeighting

matters due to
interaction

weighted averages gives the same results as for any other weighting. Simi-
larly, if there is no ABC interaction, then testing AB, AC, orBC using the
standard ANOVA gives the same results as for any weighting.

Factorial effects are only defined in the context of a particular weighting
scheme for averages. As long as we are comparing hierarchical models, we
know that the parameter tests make sense for any weighting. When we testUse correct

weighting lower-order terms in the presence of an including interaction, we must use
the correct weighting.

Chapter 08B - 14



> amyl = read.table(

"http://www.stat.uchicago.edu/~yibi/s222/amylaze.txt", h=T)

> str(amyl)

’data.frame’: 96 obs. of 7 variables:

$ atemp : int 40 35 30 25 20 15 13 10 40 35 ...

$ gtemp : int 25 25 25 25 25 25 25 25 13 13 ...

$ variety: Factor w/ 2 levels "B73","O43": 1 1 1 1 1 1 1 1 1 1 ...

$ y : num 392 428 487 469 383 ...

> amyl$at = as.factor(amyl$atemp)

> amyl$gt = as.factor(amyl$gtemp)

> amyl$v = as.factor(amyl$variety)

Chapter 08B - 15



Three-Way Interaction Plots — Amylase data
with(subset(amyl,v=="B73"),

interaction.plot(at,gt,log(y),type="b",xlab="Analysis Temperature"))

with(subset(amyl,v=="O43"),

interaction.plot(at,gt,log(y),type="b",xlab="Analysis Temperature"))
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For both varieties, there appear little at:gt interaction as the 2
curves are pretty close in shape. Keep in mind that lines in an interaction

plot may not be exactly parallel due to noise even if there is no interaction as

we plot it using the sample means, not the population means. Hence,
there’s little signs of 3-way interactions.
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Or one can combine both plots into one.

with(amyl, interaction.plot(at, gt:v, log(y), type="b",

xlab="Analysis Temperature (degree C)"))
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I Little at:gt interactions for both varieties
⇒ little at:v:gt interactions

I Little at:v interactions for both gt = 13 and gt = 25
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I Some evidence of gt:v interactions since
I the line gt:v = 25:B73 is always ABOVE gt:v = 13:B73
I the line gt:v = 25:O43 is mostly BELOW gt:v = 13:O43

I Large at main effects as the lines are not horizontal

I Some v (variety) main effects as the two lines for v = B73 are
always ABOVE the two lines for v = B73

I As noted earlier, the effect of growth temperature gt were
different for the two varieties.
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Two-Way Interaction Plots — Amylase data

If one just check the two-way interaction plot between at and gt,
the information of variety v would be ignored. The two curves
below the curves for gt = 13 and gt = 25 averaged over the two
varieties B73 and O43.

with(amyl,interaction.plot(at, gt, log(y),

xlab="Analysis Temperature (degree C)"))
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I Little evidence of at:gt
interactions

I The at main effects appear
significant as the lines are not
horizontal

I There appear little gt main
effects as there’s little gap
between the two lines
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Example 8.10 Amylase data — Interaction Plots
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Parameter Estimates for General Factorial Models

The Box-Cox method suggests taking log of of the amylase
activity to make the variance closer to equal. The following are the
sample group means uijk•, where uijk` = log yijk` is the log of
amylase activity.

Growth Temperature
13◦C (k = 1) 25◦C (k = 2)

Variety B73 (j = 1) O43 (j = 2) B73 (j = 1) O43 (j = 2)

A
n

al
ys

is
T

em
p

er
at

u
re 10◦C u111• ≈ 5.601 u121• ≈ 5.483 u112• ≈ 5.657 u122• ≈ 5.317

13◦C u211• ≈ 5.692 u221• ≈ 5.589 u212• ≈ 5.706 u222• ≈ 5.492
15◦C u311• ≈ 5.789 u321• ≈ 5.693 u312• ≈ 5.806 u322• ≈ 5.643
20◦C u411• ≈ 5.941 u421• ≈ 5.771 u412• ≈ 6.008 u422• ≈ 5.876
25◦C u511• ≈ 6.032 u521• ≈ 5.978 u512• ≈ 6.109 u522• ≈ 5.927
30◦C u611• ≈ 6.041 u621• ≈ 6.041 u612• ≈ 6.153 u622• ≈ 5.906
35◦C u711• ≈ 5.959 u721• ≈ 5.882 u712• ≈ 6.056 u722• ≈ 5.802
40◦C u811• ≈ 5.726 u821• ≈ 5.569 u812• ≈ 5.873 u822• ≈ 5.672
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Variety B73 (j = 1) O43 (j = 2) Mean

A
n
al
ys
is
T
em

p
er
at
u
re 10 u11•• ≈ 5.629 u12•• ≈ 5.400 u1••• ≈ 5.515

13 u21•• ≈ 5.699 u22•• ≈ 5.541 u2••• ≈ 5.620
15 u31•• ≈ 5.797 u32•• ≈ 5.668 u3••• ≈ 5.733
20 u41•• ≈ 5.974 u42•• ≈ 5.823 u4••• ≈ 5.899
25 u51•• ≈ 6.071 u52•• ≈ 5.952 u5••• ≈ 6.011
30 u61•• ≈ 6.097 u62•• ≈ 5.973 u6••• ≈ 6.035
35 u71•• ≈ 6.007 u72•• ≈ 5.842 u7••• ≈ 5.925
40 u81•• ≈ 5.800 u82•• ≈ 5.621 u8••• ≈ 5.710

Mean u•1•• ≈ 5.884 u•2•• ≈ 5.728 u•••• ≈ 5.806

GT 13◦C (k = 1) 25◦C (k = 2)

A
n
al
ys
is
T
em

p
er
at
u
re 10 u1•1• ≈ 5.542 u1•2• ≈ 5.487

13 u2•1• ≈ 5.641 u2•2• ≈ 5.599
15 u3•1• ≈ 5.741 u3•2• ≈ 5.725
20 u4•1• ≈ 5.856 u4•2• ≈ 5.942
25 u5•1• ≈ 6.005 u5•2• ≈ 6.018
30 u6•1• ≈ 6.041 u6•2• ≈ 6.029
35 u7•1• ≈ 5.920 u7•2• ≈ 5.929
40 u8•1• ≈ 5.647 u8•2• ≈ 5.773

Mean u••1• ≈ 5.799 u••2• ≈ 5.813

Growth Temperature
Variety 13◦C (k = 1) 25◦C (k = 2)

B73 u•11• ≈ 5.848 u•12• ≈ 5.921
O43 u•21• ≈ 5.751 u•22• ≈ 5.704
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Parameter Estimates for General Factorial Models
For the full model with all 2-way and 3-way interactions:

uijk` = log yijk` = µ+αi +βj +γk +αβij +βγjk +αγij +αβγijk +εijk`

The parameter estimates under the zero-sum constraints for a few
parameters are

µ̂ = u•••• ≈ 5.806

α̂5 = u5••• − u•••• ≈ 6.011− 5.806 = 0.205

β̂1 = u•1•• − u•••• ≈ 5.884− 5.806 = 0.078

β̂γ12 = u•12• − u•1•• − u••2• + u••••

≈ 5.921− 5.885− 5.813 + 5.806 = 0.029

α̂βγ512 = u512• − u51•• − u•12• − u5•2• + u5••• + u•1•• + u••2• − u••••

≈ 6.109− 6.071− 5.921− 6.018 + 6.011 + 5.884 + 5.813− 5.806

= 0.001

Other parameters can be estimated similarly.

Chapter 08B - 23



How to find uijk• in R?

library(mosaic)

mean(log(y) ~ at+v+gt, data=amyl)

Similarly,

I uij••: mean(log(y) ~ at+v, data=amyl)

I ui•k•: mean(log(y) ~ at+gt, data=amyl)

I u•jk•: mean(log(y) ~ v+gt, data=amyl)

I ui•••: mean(log(y) ~ at, data=amyl)

I u•j••: mean(log(y) ~ v, data=amyl)

I u••k•: mean(log(y) ~ gt, data=amyl)

I u••••: mean(log(y) ~ 1, data=amyl)
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Model Formula in R
The R command for fitting the full 3-way model

log yijk` = µ+ αi + βj + γk + αβij + βγjk + αγij + αβγijk + εijk`

is

lm(log(y) ~ at+v+gt+at:v+at:gt+v:gt + at:v:gt, data=amyl)

A simpler syntax is

lm(log(y) ~ at*v*gt, data=amyl)

The term at*v*gt and at:v:gt both mean the 3-way interaction
terms αβγijk , but

I at*v*gt will automatically include all relevant main effects
and lower order interactions in the model.

I at:v:gt will not include the lower order terms
Hence, the R command below

lm(log(y) ~ -1 + at:v:gt, data=amyl)

will fit the means model log yijk` = µijk + εijk`.
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Example 8.10 Amylase data — ANOVA Table

> logfit1 = lm(log(y) ~ at*v*gt, data=amyl)

> anova(logfit1)

Analysis of Variance Table

Response: log(y)

Df Sum Sq Mean Sq F value Pr(>F)

at 7 3.01613 0.43088 78.8628 < 2.2e-16 ***

v 1 0.58957 0.58957 107.9085 2.305e-15 ***

gt 1 0.00438 0.00438 0.8016 0.3739757

at:v 7 0.02758 0.00394 0.7212 0.6543993

at:gt 7 0.08106 0.01158 2.1195 0.0539203 .

v:gt 1 0.08599 0.08599 15.7392 0.0001863 ***

at:v:gt 7 0.04764 0.00681 1.2457 0.2916176

Residuals 64 0.34967 0.00546

Only the analysis temperature (at), variety (v), and the variety by
growth temperature interactions (v:gt) are highly significant.

Can I fit a model like yijk` = µ+ αi + βj + βγjk + εijk`?

logfit2 = lm(log(y) ~ at + v + v:gt, data=amyl)
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8.11 Hierarchy

A model is hierarchical if any term in the model implies the
presence of all the composite lower-order terms.

I yijk` = µ+ αi + βj + βγjk + εijk` is not hierarchical because
including the term βγjk must includes both βj and γk as well.

I yijk = µ+ αi + βj + αβij + εijk is hierarchical.

I A hierarchical model with a term αβγijk must also include:

I the relevant main effects: αi + βj + γk
I and the included two-way effects: αβij + αγik + βγjk .
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8.11 Hierarchy

Unless having a specific reason, we should stick to hierarchical
models.

I This is because a k-way interaction in defined upon
(k − 1)-way interactions. It is strange to consider a ABC
interaction while claiming A and B have no 2-way interaction.

I E.g., when we say there are no AB interactions, we also imply
that there are no higher order interactions that involve AB
interactions, like ABD interactions, or ABCD interactions.
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Why Maintaining Hierarchy?

Let’s consider a model for a 2× 2 factorial design.

yijk = µij + εijk

= µ+ αi + βj + αβij + εijk

If α1 = α2 = 0, but αβ11 6= 0, can Factor A have any effect on the
response? Consider the example below.

B = 1 B = 2 Mean
A = 1 µ11 = 3 µ12 = 2 µ1• = 2.5
A = 2 µ21 = 5 µ22 = 0 µ2• = 2.5
Mean µ•1 = 4 µ•2 = 1 µ•• = 2.5
Under the zero-sum constraint,

αi = µ̄i• − µ̄•• = 2.5− 2.5 = 0

for i = 1, 2.
Clearly αβij 6= 0 as the lines are not
parallel.
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Back to the Amylase Data
Here is a hierarchical model that leaves out all insignificant terms.

> logfit2 = lm(log(y) ~ at + v + gt + at:gt + v:gt, data=amyl)

> anova(logfit2)

Analysis of Variance Table

Response: log(y)

Df Sum Sq Mean Sq F value Pr(>F)

at 7 3.01613 0.43088 79.0981 < 2.2e-16 ***

v 1 0.58957 0.58957 108.2305 < 2.2e-16 ***

gt 1 0.00438 0.00438 0.8040 0.3726670

at:gt 7 0.08106 0.01158 2.1258 0.0503809 .

v:gt 1 0.08599 0.08599 15.7861 0.0001571 ***

Residuals 78 0.42489 0.00545

The insignificant gt main effect cannot be left out since the
two-way interaction v:gt is significant.

The SS’s and d.f.’s of the left-out terms are pooled into the SSE
and the df of error while the SS’s and d.f’s of the remaining stay
unchanged.
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Goodness-of-Fit Test

Comparing the reduced model with the full 3-way model
(equivalent to the means model), the large P-value indicates the
adequacy of the reduced model.

> anova(logfit2,logfit1)

Analysis of Variance Table

Model 1: log(y) ~ at + v + gt + at:gt + v:gt

Model 2: log(y) ~ at * gt * v

Res.Df RSS Df Sum of Sq F Pr(>F)

1 78 0.42489

2 64 0.34967 14 0.075223 0.9834 0.4801
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More On Model Formula in R (1)
Instead of writing terms explicitly in the model formula

> logfit2 = lm(log(y) ~ at + v + gt + at:gt + v:gt, data=amyl)

Here is another simpler expression for the same model. R will
automatically create the smallest hierarchical model that include
both at:gt and gt:v interactions.

> logfit2a = lm(log(y) ~ at*gt + v*gt, data=amyl)

> anova(logfit2a)

Analysis of Variance Table

Response: log(y)

Df Sum Sq Mean Sq F value Pr(>F)

at 7 3.01613 0.43088 79.0981 < 2.2e-16 ***

gt 1 0.00438 0.00438 0.8040 0.3726670

v 1 0.58957 0.58957 108.2305 < 2.2e-16 ***

at:gt 7 0.08106 0.01158 2.1258 0.0503809 .

gt:v 1 0.08599 0.08599 15.7861 0.0001571 ***

Residuals 78 0.42489 0.00545
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More On Model Formula in R (2)

If one wants a model with all two-way interactions but no 3-way
interaction, one can explicitly write down every term

logfit3a = lm(log(y) ~ at + v + gt + at:v + v:gt + at:gt, data=amyl)

Here is another way to obtain everything up to the 2-way
interactions

logfit3b = lm(log(y) ~ (at + v + gt)^2, data=amyl)

Here is another way to “leave out” the 3-way interaction

logfit3c = lm(log(y) ~ at*v*gt - at:v:gt, data=amyl)

You can verify the 3 model formulas are identical in R.

anova(logfit3a)

anova(logfit3b)

anova(logfit3c)
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Example 8.10 Amylase data — Model Checking

Always check model assumptions FIRST!

Recall that we took log of the original response. If we didn’t...

> fit1 = lm(y ~ at*v*gt, data=amyl); anova(fit1)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

at 7 327811 46830 72.9366 < 2.2e-16 ***

v 1 63809 63809 99.3801 1.192e-14 ***

gt 1 1155 1155 1.7988 0.1845968

at:v 7 1174 168 0.2611 0.9665902

at:gt 7 7158 1023 1.5925 0.1537663

v:gt 1 10648 10648 16.5839 0.0001305 ***

at:v:gt 7 6257 894 1.3922 0.2240596

Residuals 64 41092 642

Don’t drop insignificant terms before checking model assumptions.
If any assumption is violated, the ANOVA table is not reliable.
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Example 8.10 Amylase data — Model Checking (2)
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I The residual plot exhibits non-constant variability — the size
of residuals increases with fitted values.

I The QQ plot looks symmetric but a bit short-tailed.

I The Box-Cox method suggests a log-transformation.
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Check the model again after log-transformation but before
dropping terms, i.e. check the model
lm(log(y)~at*v*gt, data=amyl).
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I The non-constant variance problem is alleviated
I The QQ plot still looks short-tailed. Residuals often appear

short-tailed when fiting a “large” model, which tends to
overfit the data, making residuals too close to zero.

I Box-Cox suggests no transformation (λ = 1 is in the 95%
C.I.), i.e., the log-transformed response is fine.

So the ANOVA table based on the log-transformed data seems
trustworthy and we can make inference or drop terms based on it.
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Let’s check the model again after dropping insignificant terms in
the log transformed model (i.e. lm(log(y)~at*gt+gt*v, data=amyl)).
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I The residual plot looks fine
I After removing insignificant terms, residuals no longer appear

short-tailed
I Box-Cox 95% C.I. for λ contains 1. Okay.

Remark about Box-Cox: R by default will only plot λ for the range
(−2, 2). The range of λ can be changed, like -2 to 10 in steps 0.25 in the
command below.

> library(MASS)

> boxcox(logfit2,lambda=seq(-2,10,0.25))
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8.9 Single Replicates

Some factorial experiments have only ONE replicate per treatment.

I No degree of freedom for error, cannot estimate σ2

I All sum of squares (SS) can be computed as usual except that
SSE = 0.

I ANOVA F -tests for main effects and interactions of all orders
cannot be done!

Remedy — Pooling higher order interactions into error
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Problem 8.6 (p. 222, Oehlert’s)

Response: dry matter yield in hundreds of pounds per acre over a
54-week study period

Factors:

I height of cut (1, 3, or 6
inches)

I cutting interval (1, 3, 6,
or 9 weeks)

I amount of nitrogen
fertilizer (0, 8, 16, or 32
hundred pounds of
ammonium sulfate per
acre per year).

Cutting Interval
1 wks. 3 wks. 6 wks. 9 wks.

Ht 1 F 0 74.1 65.4 96.7 147.1
F 8 87.4 117.7 190.2 188.6
F 16 96.5 122.2 197.9 232.0
F 32 107.6 140.5 241.3 192.0

Ht 3 F 0 61.7 83.7 88.8 155.6
F 8 112.5 129.4 145.0 208.1
F 16 102.3 137.8 173.6 203.2
F 32 115.3 154.3 211.2 245.2

Ht 6 F 0 49.9 72.7 113.9 143.4
F 8 92.9 126.4 175.5 207.5
F 16 100.8 153.5 184.5 194.2
F 32 115.8 160.0 224.8 197.5
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Let’s first load the data and fit a full 3-way model.

pr8.6 = read.table(

"http://www.stat.uchicago.edu/~yibi/s222/pr8_6.txt", h=T)

pr8.6$HT = as.factor(pr8.6$ht)

pr8.6$FERT = as.factor(pr8.6$fert)

pr8.6$INT = as.factor(pr8.6$int)

lm1 = lm(y ~ HT*FERT*INT, data=pr8.6); anova(lm1)

The ANOVA table obtained is

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

HT 2 29 14.6

FERT 3 42072 14023.9

INT 3 73887 24629.0

HT:FERT 6 406 67.7

HT:INT 6 3005 500.9

FERT:INT 9 5352 594.6

HT:FERT:INT 18 3155 175.3

Residuals 0 0

Warning message:

In anova.lm(lm1) :

ANOVA F-tests on an essentially perfect fit are unreliable
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We can pool the 3-way interaction terms as errors to get a
conservative estimate of σ2.

> lm2 = lm(y ~ (HT+FERT+INT)^2, data=pr8.6)

> anova(lm2)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

HT 2 29 14.6 0.0830 0.92068

FERT 3 42072 14023.9 80.0153 1.334e-10 ***

INT 3 73887 24629.0 140.5241 1.120e-12 ***

HT:FERT 6 406 67.7 0.3860 0.87835

HT:INT 6 3005 500.9 2.8578 0.03903 *

FERT:INT 9 5352 594.6 3.3927 0.01313 *

Residuals 18 3155 175.3

Pooling SS of higher-order interactions into error can be justified
since the expected value of the MS for a term (main effect or
interaction) can be shown to be ≥ σ2.
If we divide the MS for other terms by an “MSE” that tend to
overestimates σ2, the F -value tend to be too small, less significant.
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Before examining the treatment effects, first check if the model
assumptions are met.

> library(MASS)

> boxcox(lm2)

The Box-Cox method below suggest a square-root transformation
of the response since 0.5 is in the 95% confidence interval for λ.
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Should check model assumption again after fitting the new model
below.

> lm2s= lm(sqrt(y) ~ (HT+FERT+INT)^2, data=pr8.6)

> anova(lm2s)

Analysis of Variance Table

Response: sqrt(y)

Df Sum Sq Mean Sq F value Pr(>F)

HT 2 0.103 0.052 0.1763 0.83979

FERT 3 82.222 27.407 93.8199 3.510e-11 ***

INT 3 132.738 44.246 151.4617 5.865e-13 ***

HT:FERT 6 0.537 0.089 0.3062 0.92553

HT:INT 6 4.873 0.812 2.7800 0.04303 *

FERT:INT 9 6.868 0.763 2.6123 0.03962 *

Residuals 18 5.258 0.292

One possible model is keeping the two significant interactions
HT:INT and FERT:INT. In this case, one needs to keep the
insignificant HT main effects to maintain the hierarchy.

lm3s = lm(sqrt(y) ~ HT + INT + FERT + HT:INT + FERT:INT, data=pr8.6)
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Another possible model is dropping all two-way interactions
because the evidence for HT:INT and FERT:INT interactions is just
at the borderline. In this case, we can drop the insignificant HT
main effects and only keep the FERT and INT main effects

> lm4s = lm(sqrt(y) ~ FERT + INT, data=pr8.6)

> anova(lm2s, lm4s)

Analysis of Variance Table

Model 1: sqrt(y) ~ FERT + INT

Model 2: sqrt(y) ~ (HT + FERT + INT)^2

Res.Df RSS Df Sum of Sq F Pr(>F)

1 41 17.6385

2 18 5.2583 23 12.38 1.8426 0.09473 .

This simple model fits the data not much worse than the model
with all 2-way interactions with a P-value of 0.095, which is
preferred for its simplicity.
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3-Way Interaction Plot

with(pr8.6, interaction.plot(HT:INT,FERT,sqrt(y),type="b"))
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I Little INT:FERT interactions for the 3 HT level
⇒ little evidence of INT:FERT:HT interactions

I Large gap between lines ⇒ significant FERT main effect

I Lines are not horizontal ⇒ significant INT main effect
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3-Way Interaction Plot

with(pr8.6, interaction.plot(INT:FERT,HT,sqrt(y),legend=F))

legend("topleft",lty=c(3,2,1),paste("HT =", c(6,3,1)),bty="n")

for(i in 1:4){abline(v=4*i+0.5)}
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