8.1-8.6 Two-Way Factorial Designs

Yibi Huang

8.1-8.6 Two-Way Factorial Designs

Chapter 8A-1

Problem 8.1 - Sprouting Barley (p. 166 in Oehlert)

Brewer's malt is produced from germinating barley, so brewers like to know under what conditions they should germinate their barley.
The following is part of an experiment on barley germination.

- 30 lots of barley seeds, 100 seeds per lot, are randomly divided into 10 groups of 3 lots
- Each group receives a treatment according to
- water amount used in germination - 4 ml or 8 ml
- age of seeds in weeks after harvest - $1,3,6,9$, or 12
- Response: \# of seeds germinating

	Age of Seeds (weeks)				
water	1	1	3	6	9
12					
$4(\mathrm{ml})$	11	7	9	13	20
	9	16	19	35	37
	6	17	35	28	45
$8(\mathrm{ml})$	8	1	5	1	11
	3	7	9	10	15
	3	3	9	9	25

Chapter 8A-2

Basic Terminology

The sprouting barley experiment has 10 treatments. The 10 treatments has a factorial structure.

- A factor is an experimentally adjustable variable, e.g. water amount used in germination, age of seeds in weeks after harvest, ...
- Factors have levels, e.g.
water amount is a factor with 2 levels (4 ml or 8 ml) age of seeds is a factor with 5 levels ($1,3,6,9,12$ weeks)
- A treatment is a combination of factors. In the barley experiment, the treatments are the 2×5 combinations of the possible levels of the two factors

| $(4 \mathrm{ml}, 1 \mathrm{wk})$ | $(4 \mathrm{ml}, 3 \mathrm{wks})$ | $(4 \mathrm{ml}, 6 \mathrm{wks})$ | $(4 \mathrm{ml}, 9 \mathrm{wks})$ | $(4 \mathrm{ml}, 12 \mathrm{wks})$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $(8 \mathrm{ml}, 1 \mathrm{wk})$ | $(8 \mathrm{ml}, 3 \mathrm{wks})$ | $(8 \mathrm{ml}, 6 \mathrm{wks})$ | $(8 \mathrm{ml}, 9 \mathrm{wks})$ | $(8 \mathrm{ml}, 12 \mathrm{wks})$ |

Chapter 8A-3

Full k-Way Factorial Design

- Consider k factors with respectively $L_{1}, L_{2}, \ldots, L_{k}$ levels, a full k-way factorial design include all the $L_{1} \times L_{2} \times \cdots \times L_{k}$ combination of the k factors as treatments.
- A factorial design is said to be balanced if all the treatment groups have the same number of replicates. Otherwise, the design is unbalanced.
- Question: How many units are there in a 3×2 design with 4 replicates?
- Balanced designs have many advantages, but not always necessary - sometimes if a unit fails (ex, a test tube gets dropped) we might end up with unbalanced results even if the original design was balanced

Data for a Two-Way $a \times b$ Design with n Replicates

	B-level 1	B-level 2			B-level b
	y_{111}	y_{121}			$y_{1 b 1}$
A-level 1	y_{112}	y_{122}	\ldots	\ldots	$y_{1 b 2}$
	\vdots	\vdots			\vdots
	$y_{11 n}$	$y_{12 n}$			$y_{1 b n}$
	y_{211}	y_{221}			$y_{2 b 1}$
A-level 2	y_{212}	y_{222}	\ldots	\ldots	$y_{2 b 2}$
	\vdots	\vdots			\vdots
	$y_{21 n}$	$y_{22 n}$			$y_{2 b n}$
\vdots	\vdots	\vdots	\ddots		\vdots
A-level a	\vdots	\vdots		\ddots	\vdots
	$y_{a 12}$	$y_{a 22}$	\ldots	\cdots	$y_{a b 2}$
	\vdots	\vdots			\vdots
	$y_{a 1 n}$	$y_{a 2 n}$			$y_{a b n}$

Means Model for a Two-Way Factorial Design

For a $a \times b$ two-way factorial experiment with n replicates

$$
\text { means model }: y_{i j k}=\mu_{i j}+\varepsilon_{i j k} \quad \text { for }\left\{\begin{array}{l}
i=1, \ldots, a, \\
j=1, \ldots, b, \\
k=1, \ldots, n
\end{array}\right.
$$

- $y_{i j k}=$ the k th replicate in the treatment formed from the i th level of factor A and j th level of factor B
- $\varepsilon_{i j k}$'s are i.i.d. $N\left(0, \sigma^{2}\right)$
- $\mu_{i j}=$ the mean response in the treatment formed from the i th level of factor A and j th level of factor B
- The means model regards the 2-way factorial design as a CRD with $a \times b$ treatments, ignoring the factorial structure of the treatments.

Two-Way Interaction Contrast

The two-way interaction contrast between level $\left(i_{1}, i_{2}\right)$ of factor A and level $\left(j_{1}, j_{2}\right)$ of factor B is defined as

$$
C=\mu_{i_{1} j_{1}}-\mu_{i_{1} j_{2}}-\mu_{i_{2} j_{1}}+\mu_{i_{2} j_{2}},
$$

which has two interpretations.

$$
\begin{aligned}
C & =\mu_{i_{1} j_{1}}-\mu_{i_{1} j_{2}}-\mu_{i_{2} j_{1}}+\mu_{i_{2} j_{2}} \\
& =\underbrace{\left(\mu_{i_{1} j_{1}}-\mu_{i_{1}} j_{2}\right)}_{\begin{array}{c}
\text { effect of changing B from } j_{1} \\
\text { when A is fixed at } i_{1}
\end{array}}
\end{aligned} \underbrace{\left(\mu_{i_{2} j_{1}}-\mu_{i_{2} j_{2}}\right)}_{\begin{array}{c}
\text { effect of changing B from } j_{1} \\
\text { when A is fixed at } i_{2}
\end{array}} \underbrace{\left(\mu_{i_{1} j_{1}}-\mu_{i_{2} j_{1}}\right)}_{\begin{array}{c}
\text { effect of changing A from } i_{1} \\
\text { when B is fixed at } j_{1}
\end{array}} \quad-\underbrace{\left(\mu_{i_{1} j_{2}}-\mu_{\left.i_{2} j_{2}\right)}\right)}_{\begin{array}{c}
\text { effect of changing A from } i_{1} \text { to } i_{2} \\
\text { when B is fixed at } j_{2}
\end{array}}
$$

Chapter 8A-7

Two-Way Interaction

We say factor A and factor B have no interaction if and only if the two-way interaction contrast between any two levels of A and any two levels of B is 0 , i.e.,

$$
\mu_{i_{1} j_{1}}-\mu_{i_{1} j_{2}}-\mu_{i_{2} j_{1}}+\mu_{i_{2} j_{2}}=0 \quad \text { for all } i_{1}, i_{2}, j_{1}, j_{2}
$$

which has two interpretations:

- effect of A on Y doesn't change with the levels of B, and
- effect of B on Y doesn't change with the levels of A

Conversely, two factors A and B are said to have two-way interactions if the effect of A on Y changes with the levels of B, or the effect of B on Y changes with the levels of A.

Interaction Plots

Plotting cell means ($\mu_{i j}$) against levels of one factor (A or B), with different lines for the other factor (B or A)

The two interaction plots convey the same information.
Chapter 8A-9

Parallel Lines Indicate No Interaction (1)

Chapter 8A-10

Parallel Lines Indicate No Interaction (2)

Effect of B on Y doesn't change with levels of A

Chapter 8A-11

Parallel Lines Indicate No Interaction (3)

Effect of A on Y doesn't change with levels of B

Chapter 8A-12

What does the interaction plot below tell us? (1)

Chapter 8A-13

What does the interaction plot below tell us? (2)

Chapter 8A-14

Interaction Plots for the Sprouting Barley Study

In reality, the population means $\mu_{i j}$ are not observable. Interaction plots are made using sample means $\bar{y}_{i j \bullet}$ rather than population means $\mu_{i j}$.

	Age of Seeds (weeks)				
$y_{i j k}$	1	3	6	9	12
water 4(ml)	11	7	9	13	20
	9	16	19	35	37
	6	17	35	28	45
water 8(ml)	8	1	5	1	11
	3	7	9	10	15
	3	3	9	9	25

sample means	Age of Seeds (weeks)				
$\bar{y}_{i j \bullet}$	1	3	6	9	12
water $4(\mathrm{ml})$	8.67	13.33	21.00	25.33	34.00
water $8(\mathrm{ml})$	4.67	3.67	7.67	6.67	17.00

Chapter 8A-15

Interaction Plots in R

```
barley = read.table(
    "http://www.stat.uchicago.edu/~yibi/s222/SproutingBarley.txt",h=T)
with(barley, interaction.plot(week,water,y,type="b",
    xlab="Age of Seed (week)"))
with(barley, interaction.plot(water,week,y,type="b",
    xlab="Water Amount (ml)"))
```


4

Note that lines in the interaction plots might not be exactly parallel even if the two factors have no interaction since $\bar{y}_{i j \bullet} \neq \mu_{i j}$.
The less parallel the lines, the stronger the evidence of interactions. Chapter 8A - 16

"Parallel" Or Not Is Affected by The Y-Scale

Please note that the y-scale might affect your perception of whether the lines are "parallel" or not.

Check the Y-scale and see if the change in the slopes is big enough to be important.

Chapter 8A-17

Additive Model

An additive model or main-effect model for two-way factorial data is as follows

$$
y_{i j k}=\mu+\underbrace{\alpha_{i}}_{\text {A main effect }}+\underbrace{\beta_{j}}_{\mathrm{B} \text { main effect }}+\varepsilon_{i j k} \quad \text { for }\left\{\begin{array}{l}
i=1, \ldots, a, \\
j=1, \ldots, b, \\
k=1, \ldots, n .
\end{array}\right.
$$

- The additive model takes the factorial structure of the $a \times b$ treatments into account
- The additive model is nested in the means model $y_{i j k}=\mu_{i j}+\varepsilon_{i j k}$ since the means model will become the additive model if

$$
\mu_{i j}=\mu+\alpha_{i}+\beta_{j} \quad \text { for all } i, j
$$

Additive Model Assumes No Interactions

If the additive model $y_{i j k}=\mu+\alpha_{i}+\beta_{j}+\varepsilon_{i j k}$ is true, then

$$
\mu_{i j}=\mu+\alpha_{i}+\beta_{j} \quad \text { for all } i, j,
$$

we have

$$
\begin{aligned}
& \mu_{i_{1} j_{1}}-\mu_{i_{1} j_{2}}-\mu_{i_{2} j_{1}}+\mu_{i_{2} j_{2}} \\
= & \left(\mu+\alpha_{i_{1}}+\beta_{j_{1}}\right)-\left(\mu+\alpha_{i_{1}}+\beta_{j_{2}}\right) \\
& -\left(\mu+\alpha_{i_{2}}+\beta_{j_{1}}\right)+\left(\mu+\alpha_{i_{2}}+\beta_{j_{2}}\right) \\
= & 0
\end{aligned}
$$

for all $i_{1}, i_{2}, j_{1}, j_{2}$. Thus the two factors have no interaction.
However, under the means model, the two factors might have interactions.

$$
\mu_{i_{1} j_{1}}-\mu_{i_{1} j_{2}}-\mu_{i_{2} j_{1}}+\mu_{i_{2} j_{2}} \text { might not be } 0 .
$$

Chapter 8A-19

Main-Effect-Interaction Model for 2-Way Factorial Designs

The main-effect-interaction model is an extension of the additive model that allows interactions

$$
y_{i j k}=\mu+\alpha_{i}+\beta_{j}+\alpha \beta_{i j}+\varepsilon_{i j k} \quad \text { for }\left\{\begin{array}{l}
i=1, \ldots, a, \\
j=1, \ldots, b, \\
k=1, \ldots, n
\end{array}\right.
$$

- $\alpha \beta_{i j}$ is a parameter by itself. $\alpha \beta_{i j} \neq \alpha_{i} \times \beta_{j} ; \alpha \beta_{i j} \neq \alpha \times \beta_{i j}$

Chapter 8A-20

Main-Effect-Interaction Model Is Overparameterized

- The main-effect-interaction model $y_{i j k}=\mu+\alpha_{i}+\beta_{j}+\alpha \beta_{i j}+\varepsilon_{i j k}$ is equivalent to the means model $y_{i j k}=\mu_{i j}+\varepsilon_{i j k}$. They have identical predicted values, residuals, and SSE.
- For a two-way $a \times b$ design, the means model has $a b$ parameters; the main-effect-interaction model has $1+a+b+a b$ parameters
- 1 parameter μ

μ_{11}	μ_{12}	\cdots	$\mu_{1 b}$
μ_{21}	μ_{22}	\cdots	$\mu_{2 b}$
\vdots	\vdots		\vdots
$\mu_{a 1}$	$\mu_{a 2}$	\cdots	$\mu_{a b}$

- a parameters for A main effects: $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{a}$
- b parameters for B main effects: $\beta_{1}, \beta_{2}, \ldots, \beta_{b}$
- ab parameters for $A B$ interactions:

$\alpha \beta_{11}$	$\alpha \beta_{12}$	\cdots	$\alpha \beta_{1 b}$
$\alpha \beta_{21}$	$\alpha \beta_{22}$	\cdots	$\alpha \beta_{2 b}$
\vdots	\vdots	\ddots	\vdots
$\alpha \beta_{a 1}$	$\alpha \beta_{a 2}$	\cdots	$\alpha \beta_{a b}$

- Two equivalent models should have identical numbers of parameters. The main-effect-interaction model is overparameterized, meaning its parameters cannot be uniquely determined unless we set constraints on them.

> Chapter 8A-21

Baseline Constraints (1)

R by default use the baseline constraints by setting all the parameters for the first level of a factor/interaction to 0 ,

$$
\alpha_{1}=0, \quad \beta_{1}=0, \quad \alpha \beta_{1 j}=\alpha \beta_{i 1}=0 \quad \text { for all } i, j
$$

So effectively, there are

- 1 parameter μ,
- a-1 parameters for A main effects,
- $b-1$ parameters for B main effects,
- $(a-1)(b-1)$ parameters for $A B$ interactions.

In total, there are $1+(a-1)+(b-1)+(a-1)(b-1)=a b$ parameters, same as the means model.

Chapter 8A-22

Baseline Constraints (2)

Under the baseline constraint: $\alpha_{1}=0, \beta_{1}=0, \alpha \beta_{1 j}=\alpha \beta_{i 1}=0$

- $\mu_{11}=\mu+\underbrace{\alpha_{1}}+\underbrace{\beta_{1}}+\underbrace{\alpha \beta_{11}} \Rightarrow \mu=\mu_{11}$
- $\mu_{i 1}=\mu+\alpha_{i}+\underbrace{\beta_{1}}+\underbrace{\alpha \beta_{i 1}} \Rightarrow \alpha_{i}=\mu_{i 1}-\mu=\mu_{i 1}-\mu_{11}$
- So $\alpha_{i}=$ effect of changing factor A from level 1 to level i on the mean of y, when factor B is fixed at level 1
- Level 1 is the baseline level of factor A
- $\mu_{1 j}=\mu+\underbrace{\alpha_{1}}_{=0}+\beta_{j}+\underbrace{\alpha \beta_{1 j}}_{=0} \Rightarrow \beta_{j}=\mu_{1 j}-\mu=\mu_{1 j}-\mu_{11}$
- So $\beta_{j}=$ effect of changing factor B from level 1 to level j on the mean of y, when factor A is fixed at level 1
- level 1 is the baseline level of factor B
- $\alpha \beta_{i j}=\mu_{i j}-\mu-\alpha_{i}-\beta_{j}$

$$
\begin{aligned}
& =\mu_{i j}-\mu_{11}-\left(\mu_{i 1}-\mu_{11}\right)-\left(\mu_{1 j}-\mu_{11}\right) \\
& =\mu_{i j}-\mu_{i 1}-\mu_{1 j}+\mu_{11}
\end{aligned}
$$

Chapter 8A-23

Zero-Sum Constraints (1)

For factorial data, the more commonly used constraints are the zero-sum constraints:
$\sum_{i=1}^{a} \alpha_{i}=0, \quad \sum_{j=1}^{b} \beta_{j}=0, \quad \sum_{i=1}^{a} \alpha \beta_{i j}=0$ for all j, and $\sum_{j=1}^{b} \alpha \beta_{i j}=0$ for all i.
I.e., the row sums and column sums of the array $\left\{\alpha \beta_{i j}\right\}$ are all 0 .

So effectively, there are

- 1 parameter μ,

- a-1 parameters for A main effects since $\alpha_{a}=-\sum_{i=1}^{a-1} \alpha_{i}$,
- $b-1$ parameters for B main effects since $\beta_{b}=-\sum_{j=1}^{b-1} \beta_{j}$,
- $(a-1)(b-1)$ parameters for $A B$ interactions since the last row and the last column of the $\left\{\alpha \beta_{i j}\right\}$ array can be determined from the zero-sum constraint.
In total, there are $1+(a-1)+(b-1)+(a-1)(b-1)=a b$ parameters, same as the means model.

Chapter 8A-24

Zero-Sum Constraints (2)

Since $\mu_{i j}=\mu+\alpha_{i}+\beta_{j}+\alpha \beta_{i j}$, summing them over i, we get

$$
\sum_{i=1}^{a} \mu_{i j}=a \mu+\underbrace{\sum_{i=1}^{a} \alpha_{i}}_{=0}+a \beta_{j}+\underbrace{\sum_{i=1}^{a} \alpha \beta_{i j}}_{=0}, \Rightarrow \mu+\beta_{j}=\frac{1}{a} \sum_{i=1}^{a} \mu_{i j}=\bar{\mu}_{\bullet j}
$$

Likewise, summing $\mu_{i j}=\mu+\alpha_{i}+\beta_{j}+\alpha \beta_{i j}$ over j, we get

$$
\sum_{j=1}^{b} \mu_{i j}=b \mu+b \alpha_{i}+\underbrace{\sum_{j=1}^{b} \beta_{j}}_{=0}+\underbrace{\sum_{j=1}^{b} \alpha \beta_{i j}}_{=0}, \Rightarrow \mu+\alpha_{i}=\frac{1}{b} \sum_{j=1}^{b} \mu_{i j}=\bar{\mu}_{i \bullet}
$$

Summing $\mu+\alpha_{i}=\bar{\mu}_{\bullet j}$ over i, we get

$$
a \mu+\underbrace{\sum_{i=1}^{a} \alpha_{i}}_{=0}=\sum_{i=1}^{a} \bar{\mu}_{\bullet j}=\sum_{i=1}^{a} \frac{1}{b} \sum_{j=1}^{b} \mu_{i j} \Rightarrow \mu=\frac{1}{a b} \sum_{i=1}^{a} \sum_{j=1}^{b} \mu_{i j}=\bar{\mu}_{\bullet \bullet}
$$

Zero-Sum Constraints (3)

Under the zero-sum constraint, parameters in the means model and the main-effect-interaction model are related as follows

$$
\begin{aligned}
\mu & =\bar{\mu}_{\bullet \bullet}=\text { overall mean } \\
\alpha_{i} & =\bar{\mu}_{\bullet \bullet}-\bar{\mu}_{\bullet \bullet}=\text { row mean }- \text { overall mean } \\
\beta_{j} & =\bar{\mu}_{\bullet j}-\bar{\mu}_{\bullet \bullet}=\text { column mean }- \text { overall mean } \\
\alpha \beta_{i j} & =\mu_{i j}-\mu-\alpha_{i}-\beta_{j} \\
& =\mu_{i j}-\bar{\mu}_{\bullet \bullet}-\left(\bar{\mu}_{i \bullet}-\bar{\mu}_{\bullet \bullet}\right)-\left(\bar{\mu}_{\bullet j}-\bar{\mu}_{\bullet \bullet}\right) \\
& =\mu_{i j}-\bar{\mu}_{i \bullet}-\bar{\mu}_{\bullet j}+\bar{\mu}_{\bullet \bullet} \\
& =\text { cell mean }- \text { row mean }- \text { column mean }+ \text { overall mean } \\
& \begin{array}{|c|c|c|c|c|}
\hline \mu_{11} & \mu_{12} & \cdots & \mu_{1 b} \\
\hline \mu_{21} & \mu_{22} & \cdots & \mu_{2 b} & \bar{\mu}_{1 \bullet} \\
\hline \vdots & \vdots & & \vdots & \vdots \\
\hline \bar{\mu}_{2 \bullet} \\
\hline \mu_{a 1} & \mu_{a 2} & \cdots & \mu_{a b} \\
\bar{\mu}_{\bullet \bullet} \\
\bar{\mu}_{\bullet 1} & \bar{\mu}_{\bullet 2} & \cdots & \bar{\mu}_{\bullet \bullet} & \bar{\mu}_{\bullet \bullet}
\end{array}=\text { overall mean }
\end{aligned}
$$

Chapter 8A-26

Estimation of Parameters under the Zero-Sum Constraint (1)

Parameter estimation in a balanced factorial design under the Zero-Sum constraint is straightforward. For

- $y_{i j k}=\mu+\alpha_{i}+\beta_{j}+\alpha \beta_{i j}+\varepsilon_{i j k}$ (main-effect-interaction model) the parameter estimates are

$$
\begin{aligned}
\widehat{\mu}_{i j} & =\bar{y}_{i \boldsymbol{} \bullet} \\
\widehat{\mu} & =\bar{y}_{\bullet \bullet \bullet} \\
\widehat{\alpha}_{i} & =\bar{y}_{i \bullet \bullet}-\bar{y}_{\bullet \bullet \bullet} \\
\widehat{\beta}_{j} & =\bar{y}_{\bullet \bullet \bullet}-\bar{y}_{\bullet \bullet \bullet} \\
\widehat{\alpha \beta}_{i j} & =\bar{y}_{i \boldsymbol{l} \cdot}-\bar{y}_{i \bullet \bullet}-\bar{y}_{\bullet j \bullet}+\bar{y}_{\bullet \bullet \bullet}
\end{aligned}
$$

Observe the estimates satisfy the zero-sum constraints:

$$
\sum_{i=1}^{a} \widehat{\alpha}_{i}=\sum_{j=1}^{b} \widehat{\beta}_{j}=\sum_{i=1}^{a} \widehat{\alpha \beta}_{i j}=\sum_{j=1}^{a} \widehat{\alpha \beta}_{i j}=0, \quad \text { for all } i, j .
$$

Chapter 8A-27

Estimation of Parameters under the Zero-Sum Constraint (2)

Since the design is balanced, for any of the reduced models below,

- $y_{i j k}=\mu+\varepsilon_{i j k} \ldots \ldots \ldots \ldots$. n main effects, no interaction)
- $y_{i j k}=\mu+\alpha_{i}+\varepsilon_{i j k} \ldots \ldots \ldots \ldots \ldots \ldots$ (main effects of A only)

the estimates of μ, α_{i} 's, and β_{j} 's under the zero-sum constraints are identical with those for the main-effects-interaction model:

$$
\widehat{\mu}=\bar{y}_{\bullet \bullet \bullet}, \quad \widehat{\alpha}_{i}=\bar{y}_{i \bullet \bullet}-\bar{y}_{\bullet \bullet \bullet}, \quad \widehat{\beta}_{j}=\bar{y}_{\bullet j \bullet}-\bar{y}_{\bullet \bullet}
$$

If NOT balanced, the estimates will change with the model.
Recall in a regression model, the estimate of a coefficient will change with the presence of other covariates in the model

Chapter 8A-28

Parameter Estimates Under the Baseline Constraints (May Skip)

Under the baseline constraints,

$$
\alpha_{1}=0, \quad \beta_{1}=0, \quad \alpha \beta_{1 j}=\alpha \beta_{i 1}=0 \quad \text { for all } i, j .
$$

the least-square estimates for parameters in the 5 models are different (see below), even if the data is balanced.

Model Formula	Parameter Estimates			
	$\widehat{\mu}$	$\widehat{\alpha}_{i}$	$\widehat{\beta}_{j}$	$\widehat{\alpha \beta}_{i j}$
$\mu+\alpha_{i}+\beta_{j}+\alpha \beta_{i j}$	$\bar{y}_{11 \bullet}$	$\bar{y}_{i 1 \bullet}-\bar{y}_{11 \bullet}$	$\bar{y}_{1 j \bullet}-\bar{y}_{11 \bullet}$	$\bar{y}_{i j \bullet}-\bar{y}_{i 1 \bullet}-\bar{y}_{1 j \bullet}+\bar{y}_{11 \bullet}$
$\mu+\alpha_{i}+\beta_{j}$	$\bar{y}_{1 \bullet \bullet}+\bar{y}_{\bullet \bullet \bullet}-\bar{y}_{\bullet \bullet \bullet}$	$\bar{y}_{i \bullet \bullet}-\bar{y}_{1 \bullet \bullet}$	$\bar{y}_{\bullet j \bullet}-\bar{y}_{\bullet 1 \bullet}$	-
$\mu+\alpha_{i}$	$\bar{y}_{1 \bullet \bullet}$	$\bar{y}_{i \bullet \bullet}-\bar{y}_{1 \bullet \bullet}$	-	-
$\mu+\beta_{j}$	$\bar{y}_{\bullet 1 \bullet}$	-	$\bar{y}_{\bullet j \bullet \bullet}-\bar{y}_{\bullet 1 \bullet}$	-
μ	$\bar{y}_{\bullet \bullet \bullet}$	-	-	-

- Simplicity in the formulas of parameter estimates is the primary reason we mostly use the zero-sum constraints for factorial data, even though R uses the baseline constraints
- Don't memorize the formulas for the baseline constraints!
- Models are not affected by the constraints imposed. The fitted values, residuals, df, SSE are not affected.

Chapter 8A-29

Fitted Values for a Main-Effect-Interaction Model

For a main-effect-interaction model, the fitted value for $y_{i j k}$ under the zero-sum constraints is

$$
\begin{aligned}
\widehat{y}_{i j k}= & \widehat{\mu}+\widehat{\alpha}_{i}+\widehat{\beta}_{j}+\widehat{\alpha \beta}_{i j} \\
= & \bar{y}_{\bullet \bullet \bullet}+\left(\bar{y}_{i \bullet \bullet}-\bar{y}_{\bullet \bullet \bullet}\right)+\left(\bar{y}_{\bullet j \bullet}-\bar{y}_{\bullet \bullet \bullet}\right) \\
& +\left(\bar{y}_{i j \bullet}-\bar{y}_{i \bullet \bullet}-\bar{y}_{\bullet j \bullet}+\bar{y}_{\bullet \bullet \bullet}\right) \\
= & \bar{y}_{i j \bullet}=\text { cell mean }
\end{aligned}
$$

which is equal to the fitted value under the baseline constraints:

$$
\begin{aligned}
\widehat{y}_{i j k}= & \widehat{\mu}+\widehat{\alpha}_{i}+\widehat{\beta}_{j}+\widehat{\alpha \beta}_{i j} \\
= & \bar{y}_{11 \bullet}+\left(\bar{y}_{i 1 \bullet}-\bar{y}_{11 \bullet}\right)+\left(\bar{y}_{1 j \bullet}-\bar{y}_{11 \bullet}\right) \\
& +\bar{y}_{i j \bullet}-\bar{y}_{i 1 \bullet}-\bar{y}_{1 j \bullet}+\bar{y}_{11 \bullet} \\
= & \bar{y}_{i j \bullet}=\text { cell mean. }
\end{aligned}
$$

Chapter 8A-30

Fitted Values for an Additive Model

For an additive model (no interaction), the fitted value for $y_{i j k}$ under the zero-sum constraints is

$$
\begin{aligned}
\widehat{y}_{i j k} & =\widehat{\mu}+\widehat{\alpha}_{i}+\widehat{\beta}_{j} \\
& =\bar{y}_{\bullet \bullet \bullet}+\left(\bar{y}_{i \bullet \bullet}-\bar{y}_{\bullet \bullet \bullet}\right)+\left(\bar{y}_{\bullet j \bullet}-\bar{y}_{\bullet \bullet \bullet}\right) \\
& =\bar{y}_{\bullet \bullet \bullet}+\bar{y}_{\bullet j \bullet}-\bar{y}_{\bullet \bullet \bullet} \\
& =\text { row mean }+ \text { column mean }- \text { overall mean }
\end{aligned}
$$

which is equal to the fitted value under the baseline constraints:

$$
\begin{aligned}
\widehat{y}_{i j k} & =\widehat{\mu}+\widehat{\alpha}_{i}+\widehat{\beta}_{j} \\
& =\left(\bar{y}_{1 \bullet \bullet}+\bar{y}_{\bullet 1 \bullet}-\bar{y}_{\bullet \bullet \bullet}\right)+\left(\bar{y}_{\bullet \bullet \bullet}-\bar{y}_{1 \bullet \bullet}\right)+\left(\bar{y}_{\bullet j \bullet}-\bar{y}_{\bullet 1 \bullet}\right) \\
& =\bar{y}_{i \bullet \bullet}+\bar{y}_{\bullet j \bullet}-\bar{y}_{\bullet \bullet \bullet} \\
& =\text { row mean }+ \text { column mean }- \text { overall mean }
\end{aligned}
$$

Example 8.6 Bacteria in Cheese (p. 178 in Oehlert)

- Factor A: Bacteria R50\#10, added or not
- Factor B: Bacteria R21\#2, added or not
- 3 replicates
- Response: total free amino acids in cheddar cheese after 56 days of ripening.

	No R21	R21 added
No	1.697	2.211
R50	1.601	1.673
	1.830	1.973
R50	2.032	2.091
added	2.017	2.255
	2.409	2.987

	No R21	R21 added
No R50	$\bar{y}_{11 \bullet}=1.709$	$\bar{y}_{12 \bullet}=1.952$
R50 added	$\bar{y}_{21 \bullet}=2.153$	$\bar{y}_{22 \bullet}=2.444$

Is there interaction?

Chapter 8A-32

Example 8.6 Bacteria in Cheese (p. 178 in Oehlert)

	B-level 1	B-level 2	row mean
A-level 1	$\bar{y}_{11 \bullet}=1.709$	$\bar{y}_{12 \bullet}=1.952$	$\bar{y}_{1 \bullet \bullet}=1.831$
A-level 2	$\bar{y}_{21 \bullet}=2.153$	$\bar{y}_{2 \bullet \bullet}=2.444$	$\bar{y}_{2 \bullet \bullet}=2.299$
column mean	$\bar{y}_{\bullet 1 \bullet}=1.931$	$\bar{y}_{\bullet 2 \bullet}=2.198$	$\bar{y}_{\bullet \bullet \bullet}=2.065$

$$
\begin{aligned}
\widehat{\mu} & =\bar{y}_{\bullet \bullet \bullet}=2.065 \\
\widehat{\alpha}_{1} & =\bar{y}_{1 \bullet \bullet}-\bar{y}_{\bullet \bullet \bullet}=1.831-2.065=-0.234 \\
\widehat{\beta}_{1} & =\bar{y}_{\bullet 1 \bullet}-\bar{y}_{\bullet \bullet \bullet}=1.931-2.065=-0.134 \\
\widehat{\alpha \beta}_{11} & =\bar{y}_{11 \bullet}-\bar{y}_{1 \bullet \bullet}-\bar{y}_{\bullet 1 \bullet}+\bar{y}_{\bullet \bullet \bullet} \\
& =1.709-1.831-1.931+2.065=0.012
\end{aligned}
$$

The estimates of all other parameters can be computed using the zero-sum constraints.

$$
\begin{aligned}
\widehat{\alpha}_{1}+\widehat{\alpha}_{2}=0 & \Rightarrow \widehat{\alpha}_{2}=-\widehat{\alpha}_{1}=0.234 \\
\widehat{\beta}_{1}+\widehat{\beta}_{2}=0 & \Rightarrow \widehat{\beta}_{2}=-\widehat{\beta}_{1}=0.134 \\
\widehat{\alpha \beta} & 11 \\
\widehat{\alpha \beta}_{12}=0 & \Rightarrow \widehat{\alpha \beta}_{12}=-\widehat{\alpha \beta}_{11}=-0.012 \\
\widehat{\alpha \beta}_{11}+\widehat{\alpha \beta}_{21}=0 & \Rightarrow \widehat{\alpha \beta}_{21}=-\widehat{\alpha \beta}_{11}=-0.012 \\
\widehat{\alpha \beta}_{12}+\widehat{\alpha \beta} & 22
\end{aligned}=0 \Rightarrow \widehat{\alpha \beta}_{22}=-\widehat{\alpha \beta}_{12}=0.012
$$

Chapter 8A-33

Finding Parameter Estimates in R

Note that R finding parameter estimates using the baseline constraints by default.

```
    > cheese = read.table(
    "http://users.stat.umn.edu/~gary/book/fcdae.data/exmpl8.6",h=T)
    > cheese$r50 = as.factor(cheese$r50)
    > cheese$r21 = as.factor(cheese$r21)
    > lmcheese = lm(y ~ r50 + r21 + r50*r21, data=cheese)
    > lmcheese$coef
\begin{tabular}{rrrr} 
(Intercept) & \(r 502\) & \(r 212\) & \(r 502: r 212\) \\
1.70933333 & 0.44333333 & 0.24300000 & 0.04866667
\end{tabular}
```

$$
\begin{aligned}
\widehat{\mu} & =\bar{y}_{11 \bullet} \approx 1.709 \\
\widehat{\alpha}_{2} & =\bar{y}_{21 \bullet}-\bar{y}_{11 \bullet} \approx 2.153-1.709=0.444 \\
\widehat{\beta}_{2} & =\bar{y}_{12 \bullet}-\bar{y}_{11 \bullet} \approx 1.952-1.709=0.243 \\
\widehat{\alpha}_{22} & =\bar{y}_{22 \bullet}-\bar{y}_{21 \bullet}-\bar{y}_{12 \bullet}+\bar{y}_{11} \bullet \\
& \approx 2.444-2.153-1.952+1.709=0.048
\end{aligned}
$$

$$
\text { and } \widehat{\alpha}_{1}=\widehat{\beta}_{1}=\widehat{\alpha \beta}_{11}=\widehat{\alpha \beta}_{12}=\widehat{\alpha \beta}_{21}=0
$$

Chapter 8A-34

How to Force R Using the Zero-Sum Constraints?

To force R using the zero-sum constraints, one needs to set the following

```
contrasts(cheese$r50) = contr.sum(2)
contrasts(cheese$r21) = contr.sum(2)
```

where the number 2 inside contr.sum(2) is the number of levels for the factor.

Next, one need to fit the $\operatorname{lm}()$ model again to update the coefficient.

```
> lmcheese = lm(y ~ r50 + r21 + r50*r21, data=cheese)
> lmcheese$coef
(Intercept) r501 r211 r501:r211
    2.06466667-0.23383333-0.13366667 0.01216667
```

We get $\widehat{\mu} \approx 2.065, \widehat{\alpha}_{1} \approx-0.234, \widehat{\beta}_{1} \approx-0.134, \widehat{\alpha \beta}_{11} \approx 0.012$ which match our calculations. Estimates for other parameters can be determined by the zero-sum constraints.

Chapter 8A-35

Sum of Squares for Balanced 2-Way Factorial Designs (1)

An balanced $a \times b$ two-way factorial design with n replicates is also a CRD with $a b$ treatments, so the sum of squares identity is still valid.

$$
S S T=S S_{t r t}+S S E
$$

where

$$
\begin{aligned}
& S S T=\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n}\left(y_{i j k}-\bar{y}_{\bullet \bullet \bullet}\right)^{2} \quad \text { and } \\
& S S_{t r t}=n \sum_{i=1}^{a} \sum_{j=1}^{b}\left(\bar{y}_{i j \bullet}-\bar{y}_{\bullet \bullet \bullet}\right)^{2}, \quad \text { SSE }=\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n}\left(y_{i j k}-\bar{y}_{i j \bullet}\right)^{2}
\end{aligned}
$$

d.f. for SST $=$ total $\#$ of observations $-1=a b n-1$
d.f. for $\mathrm{SS}_{t r t}=\#$ of treatments $-1=a b-1$
d.f. for SSE $=$ total $\#$ of observations $-\#$ of treatments

$$
=a b n-a b=a b(n-1)
$$

Chapter 8A-36

Sum of Squares for Balanced 2-Way Factorial Designs (2)

As the $a b$ treatments have a factorial structure, $\mathrm{SS}_{t r t}$ can be decomposed further as

$$
S S_{t r t}=S S_{A}+S S_{B}+S S_{A B}
$$

in which

SS	formula	d.f.
SS_{A}	$n \sum_{i=1}^{a} \sum_{j=1}^{b}\left(\bar{y}_{i \bullet \bullet}-\bar{y}_{\bullet \bullet \bullet}\right)^{2}$	$a-1$
SS_{B}	$n \sum_{i=1}^{a} \sum_{j=1}^{b}\left(\bar{y}_{\bullet j \bullet}-\bar{y}_{\bullet \bullet \bullet}\right)^{2}$	$b-1$
$\mathrm{SS}_{A B}$	$n \sum_{i=1}^{a} \sum_{j=1}^{b}\left(\bar{y}_{i j \bullet}-\bar{y}_{i \bullet \bullet}-\bar{y}_{\bullet \boldsymbol{j} \bullet}+\bar{y}_{\bullet \bullet \bullet}\right)^{2}$	$(a-1)(b-1)$
$\mathrm{SS}_{t r t}$	$n \sum_{i=1}^{a} \sum_{j=1}^{b}\left(\bar{y}_{i j \bullet}-\bar{y}_{\bullet \bullet \bullet}\right)^{2}$	$a b-1$

Observe all the d.f.s for the SS of the main effects or interactions equal (number of parameters) - (number of constraint(s))

Chapter 8A-37

Sum of Squares for Balanced 2-Way Factorial Designs (3)

In summary

$$
S S T=S S_{A}+S S_{B}+S S_{A B}+S S E
$$

$$
\begin{aligned}
& S S T=\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n}\left(y_{i j k}-\bar{y} \bullet \bullet\right)^{2} \\
& S S_{A}=\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n}(\underbrace{\bar{y}_{i \bullet \bullet}-\bar{y}_{\bullet \bullet \bullet}}_{\widehat{\alpha}_{i}})^{2}=b n \sum_{i=1}^{a} \widehat{\alpha}_{i}^{2} \\
& S S_{B}=\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n}(\underbrace{\bar{y}_{\bullet \bullet \bullet}-\bar{y}_{\bullet \bullet \bullet}}_{\widehat{\beta}_{j}})^{2}=a n \sum_{j=1}^{b} \widehat{\beta}_{j}^{2} \\
& S S_{A B}=\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n}(\underbrace{\bar{y}_{i j \bullet}-\bar{y}_{i \bullet \bullet}-\bar{y}_{\bullet \bullet \bullet}+\bar{y}_{\bullet \bullet \bullet}}_{\widehat{\alpha \beta} i j})^{2}=n \sum_{i=1}^{a} \sum_{j=1}^{b} \widehat{\alpha \beta}_{i j}^{2} \\
& \text { SSE }=\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n}\left(y_{i j k}-\bar{y}_{i j \bullet}\right)^{2} \text { Chapter 8A-38 }
\end{aligned}
$$

ANOVA Table for Balanced Two-Way Factorial Designs

Source	d.f.	SS	MS	F
Factor A	$a-1$	SS_{A}	$\mathrm{MS}_{A}=\frac{S S_{A}}{a-1}$	$F_{A}=\frac{M S_{A}}{M S E}$
Factor B	$b-1$	SS_{B}	$\mathrm{MS}_{B}=\frac{S S_{B}}{b-1}$	$F_{B}=\frac{M S_{B}}{M S E}$
AB Interaction	$(a-1)(b-1)$	$\mathrm{SS}_{A B}$	$\mathrm{MS}_{A B}=\frac{S S_{A B}}{(a-1)(b-1)}$	$F_{A B}=\frac{M S_{A B}}{\mathrm{MSE}}$
Error	$a b(n-1)$	SSE	$\mathrm{MSE}=\frac{\mathrm{SSE}}{a b(n-1)}$	
Total	$a b n-1$	SST		

Chapter 8A-39

Questions of Interest in a 2-Way Factorial Design

1. Does factor A has an effect on the response?
E.g. does the age of seeds has an effect on germination?
$\left\{\begin{array}{l}H_{0}: \alpha_{1}=\cdots=\alpha_{a}=0 \\ H_{a}: \text { not all } \alpha_{i} \text { 's }=0,\end{array} \Rightarrow F_{A}=\frac{\mathrm{MS}_{A}}{\mathrm{MSE}} \sim F_{a-1, a b(n-1)}\right.$ under H_{0}.
2. Does factor B has an effect on the response?
E.g. does the water amount has an effect on germination?
$\left\{\begin{array}{l}H_{0}: \beta_{1}=\cdots=\beta_{b}=0 \\ H_{a}: \text { not all } \beta_{i} ' s=0,\end{array} \Rightarrow F_{B}=\frac{\mathrm{MS}_{B}}{\mathrm{MSE}} \sim F_{b-1, a b(n-1)}\right.$ under H_{0}.
3. Does the effect of factor A interact with that of factor B ? E.g., does the effect of age change with water amount?
$\left\{\begin{array}{l}H_{0}: \alpha \beta_{i j}=0 \text { for all } i, j \\ H_{a}: \alpha \beta_{i j} \neq 0 \text { for some } i, j\end{array} \Rightarrow F_{A B}=\frac{\mathrm{MS}_{A B}}{\mathrm{MSE}} \sim F_{(a-1)(b-1), a b(n-1)}\right.$ under H_{0}.
Chapter 8A-40

Example 8.6 Bacteria in Cheese (p. 178 in Oehlert)

$$
\begin{aligned}
S S_{A} & =b n \sum_{i=1}^{a} \widehat{\alpha}_{i}^{2}=2 \times 3 \times\left[(-0.234)^{2}+0.234^{2}\right]=0.656 \\
S S_{B} & =\operatorname{an} \sum_{j=1}^{b} \widehat{\beta}_{j}^{2}=2 \times 3 \times\left[(-0.134)^{2}+0.134^{2}\right]=0.214 \\
S S_{A B} & =n \sum_{i=1}^{a} \sum_{j=1}^{b} \widehat{\alpha \beta}_{i j}^{2}=3 \times\left[0.012^{2} \times 4\right] \approx 0.0017
\end{aligned}
$$

Computing SSE needs more work. It is easier to compute the SST:

$$
\begin{aligned}
S S T= & \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n}\left(y_{i j k}-\bar{y} \ldots \ldots\right)^{2} \\
= & (1.697-2.065)^{2}+(1.601-2.065)^{2}+(1.830-2.065)^{2} \\
& +\cdots+(2.987-2.065)^{2}=1.598
\end{aligned}
$$

Then we can get

$$
\begin{aligned}
S S E & =S S T-S S_{A}-S S_{B}-S S_{A B} \\
& =1.598-0.656-0.214-0.0018=0.726 .
\end{aligned}
$$

Chapter 8A-41

Example 8.6 Bacteria in Cheese - ANOVA table

Source	d.f.	SS	MS	F-value	P-value
$\mathrm{A}(\mathrm{R} 50)$	1	0.656	0.656	7.23	0.028
$\mathrm{~B}(\mathrm{R} 21)$	1	0.214	0.214	2.36	0.16
AB interaction	1	0.0017	0.0017	0.019	0.89
Error	8	0.726	0.091		
Total	11	1.598			

Only main effect A (Bacteria R50) is moderately significant. Main effect B and interaction are not.
One can also get the ANOVA table in R as follows.
> lmcheese $=\operatorname{lm}(y$ ~ r50 + r21 + r50*r21, data=cheese)
> anova(lmcheese)
Analysis of Variance Table
Response: y
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
$r 50 \quad 1 \quad 0.656140 .65614 \quad 7.23350 .02752$ *
$\begin{array}{lllllll}r 21 & 1 & 0.21440 & 0.21440 & 2.3636 & 0.16275\end{array}$
$\begin{array}{llllll}r 50: r 21 & 1 & 0.00178 & 0.00178 & 0.0196 & 0.89217\end{array}$
Residuals 80.725660 .09071
Chapter 8A-42

Display of Data from Two Way Factorial Designs

	Age of Seeds (weeks)				
$y_{i j k}$	1	6			12
water 4(ml)	11	7	9	13	20
	9	16	19	35	37
	6	17	35	28	45
water 8(ml)	8	1	5	1	11
	3	7	9	10	15
	3	3	9	9	25

	Age of Seeds (weeks)					Row means
Cell means $\bar{y}_{i j \bullet}$	1	3	6	9	12	$\bar{y}_{\bullet \bullet \bullet}$
water $4(\mathrm{ml})$	8.67	13.33	21.00	25.33	34.00	20.47
water $8(\mathrm{ml})$	4.67	3.67	7.67	6.67	17.00	7.93
Column means $\bar{y}_{\bullet j \bullet}$	6.67	8.50	14.33	16.00	25.50	$\bar{y}_{\bullet . \bullet \bullet}=14.2$
overall mean						

Does water have an effect on gemination?
Does the age of seeds have an effect?
Chapter 8A-43

Finding Row Means, Column Means, Cell Means in R

 Overall mean $\bar{y}_{\mathbf{0 .}}=\widehat{\mu}$:> library (mosaic)
> mean(${ }^{\text {y }}$, data=barley)
[1] 14.2
Row means $\bar{y}_{i \bullet \bullet}$:

```
> mean(y ~ water, data=barley)
```

$20.466667 \quad 7.933333$
Column means $\bar{y}_{\bullet j 0}$:

```
> mean(y ~ week, data=barley)
```

1	3	6	9	12
6.666667	8.500000	14.333333	16.000000	25.500000

Cell means ($\bar{y}_{i j \bullet}$, average of the 3 values in each cell):
$>$ mean (y ~ week+water, data=barley)

1.4	3.4	6.4	9.4	12.4	1.8	3.8
8.666667	13.333333	21.000000	25.333333	34.000000	4.666667	3.666667
6.8	9.8	12.8				
7.666667	6.666667	17.000000				

Chapter 8A-44

```
\mp@subsup{\alpha}{i}{}}=\mp@subsup{\overline{y}}{i\bullet\bullet}{}-\mp@subsup{\overline{y}}{\bullet\bullet\bullet}{}
> mean(y ~ water, data=barley)-mean(~ y, data=barley)
    6.266667-6.266667
\mp@subsup{\beta}{j}{}=\mp@subsup{\overline{y}}{\bulletj\bullet}{}-\mp@subsup{\overline{y}}{\bullet\bullet\bullet}{}:
> mean(y ~ week, data=barley)-mean(~ y, data=barley)
    1 3 6 6 0
-7.5333333 -5.7000000 0.1333333 1.8000000 11.3000000
```

```
\widehat { \alpha \beta } _ { i j } = \overline { y } _ { i j \bullet } - \overline { y } _ { i \bullet \bullet } - \overline { y } _ { \bullet j \bullet } + \overline { y } _ { \bullet \bullet \bullet }
> cell.mean = matrix(mean(y ~ week+water, data=barley),nrow=2,byrow=T)
> cell.mean
    [,1] [,2] [,3] [,4] [,5]
[1,] 8.666667 13.333333 21.000000 25.333333 34
[2,] 4.666667 3.666667 7.666667 6.666667 17
> row.mean = mean(y ~ water, data=barley)%o%rep(1,5); row.mean
    [,1] [,2] [,3] [,4] [,5]
4 20.466667 20.466667 20.466667 20.466667 20.466667
8 7.933333 7.933333 7.933333 7.933333 7.933333
> column.mean = rep(1,2)%o%mean(y ~ week, data=barley);column.mean
    1 3 6 9 12
[1,] 6.666667 8.5 14.33333 16 25.5
[2,] 6.666667 8.5 14.33333 16 25.5
> overall.mean = mean(~ y, data=barley)
> cell.mean - row.mean - column.mean + overall.mean
    [,1] [,2] [,3] [,4] [,5]
4 -4.266667-1.433333 0.4 3.066667 2.233333
8 4.266667 1.433333-0.4 -3.066667 -2.233333
```

Chapter 8A-46
> barley\$weekfac = as.factor(barley\$week)
> barley\$waterfac = as.factor(barley\$water)
> contrasts(barley\$weekfac) = contr.sum(5)
$>$ contrasts(barley\$waterfac) $=$ contr.sum(2)
> lmbarley = lm(y ~ waterfac + weekfac + waterfac*weekfac, data=barley)
> lmbarley\$coef

(Intercept)	waterfac1	weekfac1
14.2000000	6.2666667	-7.5333333
weekfac2	weekfac3	weekfac4
-5.7000000	0.1333333	1.8000000

waterfac1:weekfac1 waterfac1:weekfac2 waterfac1:weekfac3

$$
\begin{array}{lll}
-4.2666667 & -1.4333333 & 0.4000000
\end{array}
$$

waterfac1:weekfac4
3.0666667

Observe that we get

$$
\begin{array}{cccc}
\widehat{\mu}=14.2, & \widehat{\alpha}_{1} \approx 6.267, & & \\
\widehat{\beta}_{1} \approx-7.533, & \widehat{\beta}_{2}=-5.7, & \widehat{\beta}_{3} \approx 0.13,3 & \widehat{\beta}_{4}=1.8, \\
\widehat{\alpha \beta} & \approx-4.266, & \widehat{\alpha \beta} & \approx-1.433, \\
\widehat{\alpha \beta} & =0.4 & \widehat{\alpha \beta} & 14
\end{array}
$$

which match our calculations earlier. Estimates for other parameters can be determined by the zero-sum constraints.

Chapter 8A-47

Problem 8.1 - Sprouting Barley - ANOVA Table

```
> anova(lmbarley)
Analysis of Variance Table
Response: y
\begin{tabular}{lrrrrrl} 
waterfac & 1 & 1178.13 & 1178.13 & 19.7232 & 0.000251 & *** \\
weekfac & 4 & 1321.13 & 330.28 & 5.5293 & 0.003645 & ** \\
waterfac:weekfac & 4 & 208.87 & 52.22 & 0.8742 & 0.496726 & \\
Residuals & 20 & 1194.67 & 59.73 & & &
\end{tabular}
```

Conclusion:

- It looks like both water and week main effects are significant, but their interactions are not
- Wait! Need to check model assumptions before making conclusions.

Factorial Designs v.s. One-At-a-Time Designs

When there are two factors A and B of interest, we could conduct two separate experiments and change only one factor at a time,
Experiment \#1
Experiment \#2

$\mathrm{A}=1$	$\mathrm{~A}=2$	$\mathrm{~A}=3$	$\mathrm{~A}=4$

$\mathrm{B}=1$	$\mathrm{~B}=2$	$\mathrm{~B}=3$

rather than a two-way factorial design

	$A=1$	$A=2$	$A=3$	$A=4$
$B=1$				
$B=2$				
$B=3$				

Chapter 8A-49

Advantage of Factorial Designs

Factorial designs are superior to one-at-a-time designs that change only one factor at a time because factorial design can

- test the effects of both factors at once - more efficient than one-at-a-time design, taking fewer experimental units to attain the same goal;
- investigate interaction of factors, but one-at-a-time designs cannot.
- broaden the inductive base for generalizing our results by trying a wide range of treatments

