
Chapter 6
Model Assumption Checking and Remedies

Yibi Huang
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THREE ASSUMPTIONS We Need to Check
In the means model

yij = µi + εij

we make 3 assumptions about the error term εij ’s.:

1. the errors εij are independent, randomly distributed

2. the errors εij have constant variance across treatments

3. the errors εij follow a normal distribution

As the 3 assumptions are all related to errors εij , most of the
model diagnostic methods are based on the residuals

residual eij = yij − ŷij = yij − y i•.

In the real world, data never exactly conform to these assumptions.
Thankfully, the analysis in Ch3&4 work reasonably well if the
reality doesn’t deviate from the assumptions too much.

“All models are wrong, but some are useful.” — George
P.E. Box
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Standardized Residuals = Internally Studentized Residuals

I The error εij in the means model has mean 0 and SD σ

I The SD of eij = yij − y i• is actually σ
√

1− 1
ni
., not σ.

I We hence standardize the ith raw residuals as follows, called
the standardized residual or the internally Studentized residual

standardized residual sij =
eij√

MSE(1− 1
ni

)
.

I If the errors εij are normal, sij is approximately N(0, 1).

I Observations with |sij | > 3 are potential outliers.
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Studentized Residuals = Externally Studentized Residuals

For each externally studentized residuals, we use the MSE obtained
from the model that uses all the data EXCEPT that observation,
denoted as MSE(ij).

I Subscript ”(ij)” means ”all but the jth observation in the ith
group”.

Studentized residuals or externally studentized residuals are defined
as:

tij =
eij√

MSE(ij)(1− 1
ni

)

I eij is still computed using all the data but MSE(ij) is
computed excluding the jth observation in the ith group”.

I tij has a t-distribution with N − g − 1 d.f. but sij does not
have a t-distribution.
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Which Residuals Should We Use?

Internally and externally studentized residuals are related as follows

tij = sij

√
N − g − 1

N − g − 1− s2ij

If an observation is not an outlier, tij ≈ sij . It makes little
difference which one we used.
For potential outliers, it’s better using the externally
studentized residuals.
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Example: Hodgkin’s Disease

Hodgkin’s disease is a type of lymphoma, which is a cancer
originating from white blood cells called lymphocytes.

The data file Hodgkins.txt contains plasma bradykininogen levels
(in µg of bradykininogen per ml of plasma) in 3 types of subjects

I normal,

I in patients with active Hodgkin’s disease, and

I in patients with inactive Hodgkin’s disease.

Response: The globulin bradykininogen is the precursor substance
for bradykinin, which is thought to be a chemical mediator of
inflammation.

I Is this an experiment?

I We can use ANOVA to compare means of several samples in
an observational study.
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> hodgkins = read.table("Hodgkins.txt", header=T)

> library(hodgkins)

> bwplot(BradyLevel~Hodgkins, data=hodgkins)

> qplot(BradyLevel, Hodgkins, data=hodgkins)
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The distribution within each group looks right skewed. Let’s fit the
ANOVA model anyway and take a look at the residuals.

> brady1 = lm(BradyLevel ~ Hodgkins, data=hodgkins)

> anova(brady1)

Df Sum Sq Mean Sq F value Pr(>F)

Hodgkins 2 65.893 32.946 10.67 0.0001042 ***

Residuals 62 191.449 3.088
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Residuals

Residual eij = yij − y i•

> round(brady1$res,2)

1 2 3 4 5 6 7 8 9 10 11

-0.72 -0.29 -1.40 -0.40 -2.69 2.50 1.38 1.06 0.40 -2.01 -0.15

12 13 14 15 16 17 18 19 20 21 22

0.28 3.15 -0.44 -1.57 0.41 0.90 0.10 0.94 -1.28 0.64 -0.84

23 24 25 26 27 28 29 30 31 32 33

-0.35 -1.27 0.97 -0.91 -0.21 -0.70 1.85 3.17 -0.44 -0.04 -0.26

34 35 36 37 38 39 40 41 42 43 44

-1.91 1.50 -0.02 -1.54 0.09 -1.49 3.74 -1.84 7.44 3.04 -2.59

45 46 47 48 49 50 51 52 53 54 55

-1.11 -1.12 0.99 -0.04 1.04 1.50 -1.14 -0.86 -2.11 -1.03 0.44

56 57 58 59 60 61 62 63 64 65

0.66 -1.54 -0.81 -1.18 0.71 -1.18 2.05 -1.47 -2.46 0.27

Observation #42 has the largest residual 7.44 (NOT standardized).
Is it an outlier?

Chapter 6 - 8



Standardized and Studentized Residuals in R

The rstandard() and rstudent() command can produce the
standardized and studentized residuals in R

> rstandard(brady1) # Standardized residuals

1 2 3 4 5 6

-0.4222885 -0.1718277 -0.8125414 -0.2300744 -1.5697484 1.4590797

(... some output is omitted ...)

61 62 63 64 65

-0.6823674 1.1907600 -0.8505429 -1.4246593 0.1585103

> rstudent(brady1) # (externally) studentized residual

1 2 3 4 5 6

-0.4194728 -0.1704770 -0.8102878 -0.2283089 -1.5889328 1.4727714

(... some output is omitted ...)

61 62 63 64 65

-0.6793980 1.1948600 -0.8486212 -1.4368375 0.1572586
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> plot(rstandard(brady1), ylab="Standardized Residuals")

> plot(rstudent(brady1), ylab="Studentized Residuals")
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There is a potential outlier with a studentized residual > 5.
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3.4.1 How to Check the Normality Assumption

I Histogram of the residuals: if normal, should be bell-shaped

I Pros: simple, easy to understand
I Cons: for a small sample, histogram may not be

bell-shaped even though the sample is from a normal
distribution

I Normal probability plot of the residuals

I aka. normal QQ plot,
QQ stands for “quantile-quantile”

I the best method to assess normality
I See next slide for details
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Ideas Behind the Normal Probability Plot (1)

I Data y1, y2, . . . , yn
I Sorted Data: y(1) ≤ y(2) ≤ . . . ≤ y(n),

call the Sample Quantiles

I Theoretical Quantiles of the N(0, 1): z( 1
n
), z( 2

n
), . . . , z( n−1

n
),

where, z( k
n
) is a value such that P(Z ≤ z( k

n
)) = k/n for

Z ∼ N(0, 1).

z(1
n
) z(2

n
) z(3

n
) z(4

n
) z(n−1

n
)...

Each segment is
1/n of the total area
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Ideas Behind the Normal Probability Plot (2)
I If Y ∼ N(µ, σ2), then

P(Y ≤ µ+ σz( k
n
)) = P

(
Y − µ
σ︸ ︷︷ ︸

∼N(0,1)

≤ z( k
n
)

)
= k/n

We expected k/n of the observations to be ≤ µ+ σz( k
n
)

I We observe k/n of the observations are ≤ y(k).
I If the data are indeed N(µ, σ2), we expect

y(k) ≈ µ+ σz( k
n
)

I If one plots the Sample Quantiles y(1) ≤ y(2) ≤ . . . ≤ y(n)
against the Theoretical Quantiles z( 1

n
), z( 2

n
), . . . , z( n−1

n
), the

points would fall on the straight line

y = µ+ σz .

if the data follow N(µ, σ2)
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A Technical Remark

As z(n/n) =∞, R actually uses the Theoretical Quantiles:

z( 1−0.5
n

), z( 2−0.5
n

), z( 3−0.5
n

), . . . , z( n−0.5
n

)

instead of
z( 1

n
), z( 2

n
), . . . , z( n−1

n
), z( nn ).
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Normal QQ Plot — Normal Data
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Normal QQ Plot — Right-Skewed Data
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Normal QQ Plot — Left-Skewed Data
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Normal QQ Plot — Heavy-Tailed Data
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Normal QQ Plot — Light-Tailed Data
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Normal QQ Plot for The Hodgkin Data
qqnorm(brady1$res, ylab="Residuals")

qqline(brady1$res)

library(MASS)

qqnorm(rstudent(brady1), ylab="Studentized Residuals")

qqline(rstudent(brady1))
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Does the distribution of the residuals look normal?
Somewhat right-skewed, a potential outlier with sij > 5.
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Remedies for Non-Normality

Skewness can often be ameliorated by transforming the response
— often a power transformation.

fλ(y) =

{
yλ, if λ 6= 0

log(y), if λ = 0.

1. If right-skewned, try taking square root, logarithm, or other
powers λ < 1

y −→ 1/y , log(y),
√
y , or yλ with λ < 1

2. If left-skewned, try squaring, cubing, or other powers λ > 1

y −→ y2, y3, or yλ with λ > 1
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Square-Root Transformation Shrinks the Upper Tail and
Extends the Lower Tail, and Hence Reduces
Right-Skewness

0 4 9 16 25 36 49 641

0 1 2 3 4 5 6 7 8

y
↓
y
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Log Transformation Shrinks the Upper Tail and Extends
the Lower Tail Even More!

0 4 8 16 32 6421
↓
20

↓
21
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y → y 2 Extends the Upper Tail and Shrinks the Lower
Tail, and Hence Reduces Left-Skewness

0 1 2 3 4 5 6 7 8 9 10

0 9 16 25 36 49 64 81 1001 4

y

↓
y2

Chapter 6 - 25



Example: Hodgkin’s Disease – QQ Plots
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Log-transformation makes residu-
als less R-skewed, and the outlier
less extreme.

The square-root transformation
also reduces R-skewness but not
as much as the log transforma-
tion.

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

−2 −1 0 1 2

−
2

0
1

2
3

4

Square−root Transform

Theoretical Quantiles

S
tu

de
nt

iz
ed

 R
es

id
ua

ls

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

2
3

Log Transform

Theoretical Quantiles

S
tu

de
nt

iz
ed

 R
es

id
ua

ls

Chapter 6 - 26



R-Codes for Making the Plots on the Previous Slide

brady1 = lm(BradyLevel ~ Hodgkins, data=hodgkins)

brady2 = lm(sqrt(BradyLevel) ~ Hodgkins, data=hodgkins)

brady3 = lm(log(BradyLevel) ~ Hodgkins, data=hodgkins)

library(MASS)

qqnorm(rstudent(brady1), main="Original Scale")

qqline(rstudent(brady1))

qqnorm(rstudent(brady2), main="Square-root Transform")

qqline(rstudent(brady2))

qqnorm(rstudent(brady3), main="Log Transform")

qqline(rstudent(brady3))
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Box-Cox Method
Box-Cox method is an automatic procedure to select the “best”
power λ that make the residuals of the model

yλij = µi + εij

closest to normal.

I We usually round the optimal λ to a convenient power like

−1, −1

2
, −1

3
, 0,

1

3
,

1

2
, 1, 2, . . .

since the practical difference of y0.5827 and y0.5 is usually
small, but the square-root transformation is much easier to
interpret.

I A confidence interval for the optimal λ can also be obtained.
See Oehlert, p.129 for details.
We usually select a convenient power λ∗ in this C.I.
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Example: Hodgkin’s Disease – Box-Cox
In R, one must first load the
MASS library to use boxcox().

The argument of the boxcox()

function can be a model formula,
an lm model.

library(MASS)

boxcox(brady1)

boxcox(BradyLevel ~ Hodgkins, data=hodgkins)
−2 −1 0 1 2
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The middle dash line marks the optimal λ, the right and left dash
line mark the 95% C.I. for the optimal λ.

For the plot, we see the optimal λ is around −0.2, and the 95%
C.I. contains 0. For simplicity, we use the log-transformed
BradyLevel as our response.
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Example: Hodgkin’s Disease

From the 2 ANOVA tables below, we see the differences of the 3
group of patients become more significant after a log
transformation, because the outlier become less extreme and do
not inflate the MSE as much.

Response: BradyLevel

Df Sum Sq Mean Sq F value Pr(>F)

Hodgkins 2 65.893 32.946 10.67 0.0001042 ***

Residuals 62 191.449 3.088

Response: log(BradyLevel)

Df Sum Sq Mean Sq F value Pr(>F)

Hodgkins 2 2.2526 1.12631 15.436 3.628e-06 ***

Residuals 62 4.5238 0.07297
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Log-Scale is Commonly Used for Concentrations

In fact, for measurements of concentration, the log scale is more
commonly used than the original scale. For example,

I The concentrations 10.1 and 10.001 are nearly
indistinguishable

I However, there is a huge difference between concentration of
0.1 and 0.001 since 0.1 is 100 times higher than 0.001.

I In the original scale, (10.1, 10.001) and (0.1, 0.001) differ by
the same amount, 0.099.

I In log scale,

log10 0.1− log10 0.001 = 2 far greater than

log10 10.1− log10 10.001 ≈ 0.0043
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Non-Parametric Tests

I Transformation does not always fix non-normality.
For example, it helps little for symmetric but heavy-tailed
(many outliers) distributions.

I The ANOVA F -test is robust to non-normality, but it is not
resistent to outliers.

I If outliers are unavoidable, and cannot be removed, try
non-parametric tests, like permutation test in Chapter 2, and
Kruskal-Wallis test in Section 3.11.1, that doesn’t rely on
normality assumption, which we will introduce soon after we
finish Chapter 6.

Chapter 6 - 32



Part II: Constant Variance Assumption

Outline:

I Why Is Non-Constant Variance a Problem?
I Tools for checking nonconstant variance — Residual Plots

I Residuals v.s. Fitted Values
I Residuals v.s. Treatments
I Residuals v.s. Other Variables

I Remedies
I Transforming the Response —

Variance-Stabilizing Transformation
I Brown-Forsythe Modified F -test — an alternative to ANOVA

F -test
I Welch Test for Contrasts w/o Constant Variance Assumption
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Example: Resin Glue Failure Time

In previous lectures, the response
of the resin glue experiment is
log10(lifetime).
In the original data, the response
is simply the life time of the glue
without the log transformation.
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175 194 213 231 250

Temperature Failure Time in Hours
175◦C 110.0 82.2 99.1 82.9 71.3 91.7 76.0 79.2
194◦C 45.8 51.3 26.5 58.0 45.3 40.8 35.8 45.6
213◦C 33.8 34.8 24.2 20.5 22.5 18.8 18.2 24.2
231◦C 14.2 16.7 14.8 14.6 16.2 18.9 14.8
250◦C 18.0 6.7 12.0 10.5 12.2 11.4

Data file: resinlife.txt
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Example — Milk Pasteurization (Exercise 6.2 on p.143)
I Goal: to compare 3 pasteurization methods for milk

I Design: 15 samples of milk randomly assigned to the 3 trts

I Response: the bacterial load in each sample after treatment,
determined via serial dilution plating

I Data: http://users.stat.umn.edu/~gary/book/fcdae.data/ex6.2

Method 1 Method 2 Method 3

26× 102 35× 103 29× 105

29× 102 23× 103 23× 105

20× 102 20× 103 17× 105

22× 102 30× 103 29× 105
√

MSE = 309900

32× 102 27× 103 20× 105

Mean 25.8× 102 27× 103 23.6× 105

SD 492 5874 536656

Size of Noise 100’s 1000’s 100,000’s ⇒ Unequal Variability
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How to Count the Number of Bacteria in a Cup of Milk?
Serial Dilution Plating
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Why Non-Constant Variability Causes Problems?

Method 1 Method 2 Method 3
26× 102 35× 103 29× 105

29× 102 23× 103 23× 105

20× 102 20× 103 17× 105

22× 102 30× 103 29× 105
√

MSE = 309900
32× 102 27× 103 20× 105

Mean 25.8× 102 27× 103 23.6× 105

SD 492 5874 536656

95%C.I. for the mean of Method 1:

y1• ± t0.025,15−3

√
MSE
√
n1

= 2580± 2.179
309900√

5

= 2580± 301965

= (−299385, 304545)

which is far greater than the range of 5 observations for method 1
(2000-3200). What happened?
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Check the Constant Variance Assumption Using Residual
Plots

I Residuals v.s. Fitted Values

I Residuals v.s. Treatments

I Residuals v.s. Other Variables

If the constant variance assumption is true, residuals will evenly
spread around the zero line.

Rule of thumb: ANOVA F -tests for CRD can tolerate
non-constant variance to some extent, so do tests for contrasts.
It usually fine as long as

max{σ̂i}
min{σ̂i}

≤ 2, 3 or even 4,

especially when the group sizes ni are (roughly) equal.
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Example: Resin Glue Data
resinlife = read.table(

"http://www.stat.uchicago.edu/~yibi/s222/resinlife.txt", h=T)

lmorig = lm(life ~ as.factor(temp), data=resinlife)

plot(lmorig$fit,lmorig$res,ylab="Residuals", xlab="Fitted Values")

abline(h=0) # adding a zero line

plot(temp, lmorig$res,ylab="Residuals",xlab="Centigrade Temperature")

abline(h=0) # adding a zero line

Residuals v.s. Fitted Values Residuals v.s. Treatments
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I Why do the points line up vertically?

I Variability of residuals increases with the fitted value, but
decreases with the temperature
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Remedy 1: Variance-Stabilizing Transformation
If the SD σ (the spread of residuals) changes the mean µ (the
fitted values), you can try a variance-stabilizing transformation of
the response to make the variance (closer to) constant.

I if the SD is proportional to the fitted value, then

y → log(y)

I if the SD is proportional to
√

the fitted value, i.e., the
variance is proportional to the fitted value, then

y → √y

I In general, if the SD σ is proportional to (the fitted values)α,
then the variance-stabilizing transformation is

y →

{
y1−α for α 6= 1

log(y) for α = 1
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How Variance-Stabilizing Transformation Work? (1)

0 4 9 16 25 36 49 641

0 1 2 3 4 5 6 7 8

y

↓
y

Group 1, mean = 4.7, s=3.0
Group 2, mean = 9.3, s=4.7
Group 3, mean = 38.0, s=8.95
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How Variance-Stabilizing Transformation Work? (2)

0 4 8 16 32 6421
↓
20

↓
21

↓
22

↓
23

↓
24

↓
25

↓
26

0 1 2 3 4 5 6

y

↓
log2(y)

Group 1, mean = 3.7, s=1.4
Group 2, mean = 7.0, s=2.9
Group 3, mean = 29.1, s=10.0
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Example: Resin Glue

lm1 = lm(life ~ as.factor(temp))

lm2 = lm(sqrt(life) ~ as.factor(temp))

lm3 = lm(log(life) ~ as.factor(temp))

plot(lm1$fit, lm1$res, xlab="Fitted Value", ylab="Residuals")

abline(h=0,lty=2)

plot(lm2$fit, lm2$res, xlab="Fitted Value", ylab="Residuals")

abline(h=0,lty=2)

plot(lm3$fit, lm3$res, xlab="Fitted Value", ylab="Residuals")

abline(h=0,lty=2)

Untransformed Square-rooted Log Transform
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Box-Cox Again

In many cases, we don’t have a good idea what is the value of α.
We can still try power transformation of the response.

fλ(y) =

{
yλ, if λ 6= 0

log(y), if λ = 0.

How to select λ?

I Trial and error: try convenient power like −1,−1/2,−1/3, 0,
1/3, 1/2, 2, . . . and then check residual plots for each of them
for the constant variance.

I Box-Cox method:
Though Box-Cox is developed to select a power transformation
making the residuals as normal as possible, it’s been shown
that the optimal λ is often close to the variance-stabilizing λ.
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Example – Count of Bacteria Revisit

ex6.2 = read.table(

"http://users.stat.umn.edu/~gary/book/fcdae.data/ex6.2", h=T)

library(MASS)

boxcox(count ~ as.factor(method), data=ex6.2)

plot(ex6.2$method, log10(ex6.2$count),

xlab="Methods", ylab="log10(Count of Bacteria)")
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After log transformation, the 3 groups look even in variability.
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Example: Resin Glue — Box-Cox

library(MASS)

boxcox(life ~ as.factor(temp), data=resinlife)
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The 95% C.I. for λ contains both 0 and 1/2. As λ = 1/2 is very
close to the boundary of the C.I, λ = 0 seems to be a better
choice, which is consistent with the Arrhenius Law.
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Drawbacks of Transformation

I Except for a few special transformation (log,
√

, inverse),
the transformed response usually lacks natural interpretation
(How to interpret y0.1?)

I Unless having a good interpretation on the transformed
response, think again before making transformations

Remember that ANOVA tests have some tolerance for
non-constant variance. If

max{σ̂i}
min{σ̂i}

≤ 2, 3, or even 4,

don’t worry too much about non-constant variance.
In that case, it is fine to leave the response untransformed.
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> library(mosaic)

> sd(life ~ temp, data=resinlife)

175 194 213 231 250

12.895514 9.557785 6.378703 1.661181 3.646917

> sd(sqrt(life) ~ temp, data=resinlife)

175 194 213 231 250

0.6802037 0.7505140 0.6223047 0.2048698 0.5305554

> sd(log(life) ~ temp, data=resinlife)

175 194 213 231 250

0.1440872 0.2393055 0.2451210 0.1012540 0.3177677

After the log transformation, the ratio of the largest and smallest
SD is 2.2, which is acceptable
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Brown-Forsythe Modified F -test

If one cannot find an appropriate transformation, Brown-Forsythe
modified F -test is an alternative of the ANOVA F -test that
doesn’t rely on the constant variance assumption. The BF test
statistic is

BF =

∑g
i=1 ni (y i• − y••)2∑g
i=1 s

2
i (1− ni/N)

=
SStrt∑g

i=1 s
2
i (1− ni/N)

in which s2i is the sample variance in treatment i . Under the null
hypothesis of equal treatment means, BF is approximately
distributed as an F -distribution with g − 1 and ν degrees of
freedom, where

ν =
(
∑g

i=1 di )
2∑g

i=1 d
2
i /(ni − 1)

in which di = s2i (1− ni/N).
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Welch Tests for Contrasts w/o the Constant Variability
Assumption

If one cannot find an appropriate transformation, try Welch test
for a contrast

∑g
i=1 ωiµi , which doesn’t rely on the constant

variability assumption. The test statistic is

t =

∑g
i=1 ωiy i•√∑g
i=1 ω

2
i s

2
i /ni

which is approximately a t-distribution with ν degrees of freedom,
where

ν =

(∑g
i=1 ω

2
i s

2
i /ni

)2∑g
i=1

1
ni−1

ω4
i s

4
i

n2i

This is a generalization of the two-sample test without the equal
variance assumption.
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More on Residuals Plots
Residuals plots can be used to check many other things, like
non-linearity.

E.g., for the resin glue data, one can check if the linear model
yij = β0 + β1T + εij is appropriate by checking the residual plot

lmorig1 = lm(life ~ temp, data=resinlife)

plot(temp,lmorig1$res,ylab="Residuals",xlab="Centigrade Temperature")

abline(h=0)
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From the residual plot, we see

I non-constant variance
across temperature

I lifetime is curved, not
linear with temperature
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Plot of Residuals v.s. Variables Not in the Model

If there exist other variables that might affect the response, but are
not included in the model, then one should check the plots of
residuals versus these variables. For example,

I if experimental units come from different batches, then plot
residuals v.s. batches

I if measurements are made by several operators, then plot
residuals should v.s. operators

Patterns in such residual plots suggest these variables should

I either be included in the analysis
(but note one CANNOT claim these variables have a
causal-effect on the response, since they are not controlled in
advance)

I or be controlled more carefully, e.g., by a block design, in
future experiments
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Part III — Checking for Dependent Errors

I Among the 3 assumptions, violation of the independence
assumption causes severest problem. Most of our the analysis
(ANOVA, test of contrasts, multiple comparisons, etc.) have
little tolerance on dependence of errors

I There are various forms of dependence, serial dependence and
spatial dependence are two common ones

I Remedies for Dependence

I There isn’t much we can do about dependence using our
current machinery, since no simple transformation can
remove dependence.

I Analysis of dependent data requires tools like time series
or spatial statistics, which is beyond the scope of this
class
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Check Time Dependence By Plotting Residuals Against
Time

I If there is a time order that the data are collected, please
plot the residuals against the time order.

I If the time-plot of the residuals exhibit any pattern, . . .

I Better keep track of the time order the data are collected.
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Example: Balloon Experiment (Meily Li 1985)

I Goal: To determine whether balloons of different colors are
similar in terms of the time taken for inflation to a diameter of
7 inches.

I Four colors were selected from a single manufacturer.

I An assistant blew up the balloons and the experimenter
recorded the times (to the nearest 1/10 second) with a stop
watch. The data, in the order collected, are given in next
page where the codes 1, 2, 3, 4 denote the colors pink, yellow,
orange, blue, respectively.

I Any flaw in the design of the experiment?
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Example: Balloon Experiment — Data

62 Exercises

random variables with mean zero and variance σ 2. Compare these estimates with the
least squares estimates of µ + τi (i � 1, 2, . . . , v) in model (3.3.1), page 36.

10. For the model in the previous exercise, find an unbiased estimator for σ 2. Compare the
estimator with that in (3.4.8), page 43.

11. Verify, for the one-way analysis of variance model (3.3.1), page 36, that each treatment
sample variance S2

i is an unbiased estimator of the error variance σ 2, so that

E(SSE) �
∑

i

(ri − 1)E(S2
i ) � (n − v)σ 2.

12. Balloon experiment (Meily Lin, 1985)
Prior to 1985, the experimenter had observed that some colors of birthday balloons seem
to be harder to inflate than others. She ran this experiment to determine whether balloons
of different colors are similar in terms of the time taken for inflation to a diameter of
7 inches. Four colors were selected from a single manufacturer. An assistant blew up
the balloons and the experimenter recorded the times (to the nearest 1/10 second) with
a stop watch. The data, in the order collected, are given in Table 3.11, where the codes
1, 2, 3, 4 denote the colors pink, yellow, orange, blue, respectively.
(a) Plot inflation time versus color and comment on the results.
(b) Estimate the mean inflation time for each balloon color, and add these estimates to

the plot from part (a).
(c) Construct an analysis of variance table and test the hypothesis that color has no

effect on inflation time.
(d) Plot the data for each color in the order that it was collected. Are you concerned

that the assumptions on the model are not satisfied? If so, why? If not, why not?
(e) Is the analysis conducted in part (c) satisfactory?

13. Heart–lung pump experiment, continued
The heart–lung pump experiment was described in Example 3.4.4, page 40, and the
data were shown in Table 3.2, page 41.

Table 3.11 Times (in seconds) for the balloon experiment

Time Order 1 2 3 4 5 6 7 8
Coded color 1 3 1 4 3 2 2 2
Inflation Time 22.4 24.6 20.3 19.8 24.3 22.2 28.5 25.7
Time Order 9 10 11 12 13 14 15 16
Coded color 3 1 2 4 4 4 3 1
Inflation Time 20.2 19.6 28.8 24.0 17.1 19.3 24.2 15.8
Time Order 17 18 19 20 21 22 23 24
Coded color 2 1 4 3 1 4 4 2
Inflation Time 18.3 17.5 18.7 22.9 16.3 14.0 16.6 18.1
Time Order 25 26 27 28 29 30 31 32
Coded color 2 4 2 3 3 1 1 3
Inflation Time 18.9 16.0 20.1 22.5 16.0 19.3 15.9 20.3
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Balloon Experiment — Residual Time Plot

110 Chapter 5 Checking Model Assumptions

Figure 5.4
Residual plot for the

battery experiment
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the plot were to exhibit a strong pattern, then this would indicate a serious violation of the
independence assumption, as illustrated in the following example.

Example 5.5.1 Checking independence: balloon experiment

The experimenter who ran the balloon experiment in Exercise 12 of Chapter 3 was concerned
about lack of independence of the observations. She had used a single subject to blow up all
the balloons in the experiment, and the subject had become an expert balloon blower before
the experiment was finished! Having fitted the one-way analysis of variance model (3.3.1) to
the data (Table 3.11), she plotted the standardized residuals against the time order in which
the balloons were inflated. The plot is shown in Figure 5.5. There appears to be a strong
downward drift in the residuals as time progresses. The observations are clearly dependent.

Figure 5.5
Residual plot for the
balloon experiment
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I a clear downward drift in the residuals as time progresses
I a single assistant blew up all the balloons in the experiment,

and has become more skillful (required less time to inflate the
balloon to the required size) as the he blew up more balloons
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Example: Standard Gravity
The National Bureau of Standards performed 8 series of
experiments in 1924-1935 to determine g , the standard gravity.

The data are given in the table below (in deviations from
9.8m/s2 × 105, e.g., the first measurement of g is 9.80076 m/s2),
with series 1 representing the earliest set of experiments and series
8 the last.

Series Measurements

1 76 82 83 54 35 46 87 68
2 87 95 98 100 109 109 100 81 75 68 67
3 105 83 76 75 51 76 93 75 62
4 95 90 76 76 87 79 77 71
5 76 76 78 79 72 68 75 78
6 78 78 78 86 87 81 73 67 75 82 83
7 82 79 81 79 77 79 79 78 79 82 76 73 64
8 84 86 85 82 77 76 77 80 83 81 78 78 78
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Weird ANOVA F -Test

> g = c(76,82,83,54,35,46,87,68,87,95,98,100,109,109,100,81,75,68,67,

105,83,76,75,51,76,93,75,62,95,90,76,76,87,79,77,71,

76,76,78,79,72,68,75,78,78,78,78,86,87,81,73,67,75,82,83,

82,79,81,79,77,79,79,78,79,82,76,73,64,

84,86,85,82,77,76,77,80,83,81,78,78,78)

> series = c(rep(1,8),rep(2,11),rep(3,9),rep(4,8),rep(5,8),rep(6,11),

rep(7,13),rep(8,13))

> lmg = lm(g ~ as.factor(series))

> anova(lmg)

Response: g

Df Sum Sq Mean Sq F value Pr(>F)

as.factor(series) 7 2818.6 402.66 3.5675 0.002357 **

Residuals 73 8239.4 112.87

ANOVA rejects the H0 of the 8 series having equal means. What
does this mean? Will you conclude that

(a) g had changed in the 8 series of measurements, or

(b) the ANOVA F -test failed?

If your answer is (a), how do you explain the change of g?
If your answer is (b), why the ANOVA F -test failed?
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Example: Standard Gravity

The National Bureau of Standards (NBS) (now called the National

Institute of Standards and Technology (NIST)) is the government agency
that measures things. The following statement is taken from the
NIST website:

Founded in 1901, NIST is a non-regulatory federal agency
within the U.S. Department of Commerce. NIST mission
is to promote U.S. innovation and industrial competitive-
ness by advancing measurement science, standards, and
technology in ways that enhance economic security and
improve our quality of life.

Thus, it is safe to assume that the NBS scientists were trying hard
to measure the same quantity g (e.g., all experiments were done in
the same location) throughout all 8 series of experiments.
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> qplot(series, g, xlab="Series",

ylab="Standard Gravity g (m/s^2)")+

scale_x_continuous(breaks=1:8)

Variance decreases with series,
which makes sense since the
accuracy of measurement
improved as time went by.
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The ANOVA F -test here may not be reliable because at least the
constant variance assumption is not met

> round(sd(g ~ series), 2)

1 2 3 4 5 6 7 8

19.25 15.29 15.76 8.30 3.65 5.84 4.74 3.36

Will a transformation work here? Box-Cox?
No. The variance-stabilizing transformation works only when the
variability increases or decreases with the mean. Here the means of
the 8 series are nearly the same.
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Brown-Forsythe Modified F -test
In view of the nonconstant variability, let’s try the Brown-Forsythe
modified F -test

BF =
SSTrt∑g

i=1 s
2
i (1− ni/N)

The numerator SSTrt = 2819 can be found in the ANOVA table
above. The denominator is found using R (see the codes below) to
be 888.5747

> sds = sd(g ~ series); sds

1 2 3 4 5 6 7 8

19.24977 15.29349 15.75595 8.29694 3.65474 5.83874 4.73665 3.35506

> ni = c(8, 11, 9, 8, 8, 11, 13, 13)

> di = sds^2*(1-ni/sum(ni))

> BFbottom = sum(di)

> BFbottom

[1] 888.5747

> BF = 2819/BFbottom

The BF -statistic is thus BF =
2819

888.5747
= 3.1725.
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Under the null hypothesis of equal group means, BF has an
approx. F-distribution with df1= g − 1 and df2 given below

df2 =
(
∑g

i=1 di )
2∑g

i=1 d
2
i /(ni − 1)

in which di = s2i (1− ni/N)

where the second degrees of freedom df2 is calculated as 29.46 in
the R code below.

> df2 = (BFbottom)^2/sum(di^2/(ni-1))

> df2

[1] 29.46249

> pf(BF, 8-1, df2, lower.tail=F) # P-value of the BF-test

[1] 0.01263341

However, the BF-test, not relying on the constant variance
assumption, also rejects the null hypothesis of equal mean at a
P-value 0.0126. Why the BF-test also failed?
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Tools for Checking Serial Dependence
1. Time plot: a plot of residuals v.s. the order they are

measured)
I It’s better to keep track of the order units are measured.
I A smooth time-plot is a sign of positive serial

dependence, since a smooth time plot means successive
residuals are too close together

2. Autocorrelation Plots
I Lag 1 autocorrelation plot: plotting (e1, . . . , en−1) v.s.

(e2, . . . , en)
I Lag k autocorrelation plot: plotting (e1, . . . , en−k) v.s.

(e1+k , . . . , en)
I Any trend in the autocorrelation plot is a sign of serial

dependence.
3. Autocorrelation

I the Lag-k autocorrelation coefficient is the correlation
coefficient of (e1, . . . , en−k) v.s. (e1+k , . . . , en),
k = 1, 2, 3, . . . .
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The observations in each series are in fact given in time order
taken. We can thus make a time plot.
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We can see a lot of measurements are close to the previous
measurements, which indicates a positive serial correlation.

It’s not surprising that scientists in NIST might unconsciously
match their results with the previous measurement, which was
often regarded as the most accurate one till then.
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Autocorrelation Plots
> lm0 = lm(g ~ 1) # Null model: All series had the same mean

> res = lm0$res # Residual of null model

> qplot(res[2:81],res[1:80], xlab="Current Residual",

ylab="Lag 1 (Previous) Residual")

> cor(res[2:81],res[1:80])

[1] 0.5002454

> qplot(res[1:79], res[3:81], ylab="Current Residuals",

xlab="Lag 2 Residuals")

> cor(res[3:81],res[1:79])

[1] 0.1232966

r = 0.5002 r = 0.1233
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Effect of Dependent Errors
I When Y1,Y2, . . . ,Yn are dependent,

Var(Y1 + Y2 + . . .+ Yn) =
∑n

j=1
Var(Yj) +

∑
j,k:j 6=k

Cov(Yj ,Yk).

Suppose Var(Yj) = σ2 and Cov(Yj ,Yk) = ρjk .

Var(Y1 + Y2 + . . .+ Yn) = nσ2 +
∑

j,k:j 6=k
ρjk

⇒ Var(Y ) =
σ2

n
+

∑
j,k:j 6=k ρjk

n2
6= σ2

n

I If one-way ANOVA data {yij} have stronger positive within group
correlations than between group correlation

Var(y i• − y j•) >
σ2

ni
+
σ2

nj
,

the SE =
√

MSE( 1
ni

+ 1
nj

) calculated assuming independence would

underestimate the actual SD of y i• − y j•.Hence, t =
y i•−y j•

SE tends
to be too large, making it more likely to reject H0: µi = µj .

I The usual ANOVA F-test will be affected for similar reasons.
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Spatial Dependence

Spatial dependence can arise when the experimental units are
arranged in space, like plants in a farm. Spatial dependence occurs
when units that are closer together are more similar than units
farther apart.
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