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Why Worry About Multiple Comparisons?

Recall that, at level α = 0.05, a hypothesis test will make a Type I
error 5% of the time

I Type I error = H0 being falsely rejected when it is true

What if we conduct multiple hypothesis tests?

I When 100 H0’s are tested at 0.05 level, even if all H0’s are
true, it’s normal to have 5 being rejected.

I When multiple tests are done, it’s very likely that some
significant results may be NOT be TRUE FINDINGS. The
significance must be adjusted
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Why Worry About Multiple Comparisons?

I In an experiment, when the ANOVA F-test is rejected, we will
attempt to compare ALL pairs of treatments, as well as
contrasts to find treatments that are different from others.

For an experiment with g treatments, there are

I
(
g

2

)
=

g(g − 1)

2
pairwise comparisons to make, and

I numerous contrasts.

I When many H0’s are tested, it’s very likely that some of them
are falsely rejected even if all of H0’s are true as we would
falsely reject every true H0 at 5% level about 5% of the time.
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10 groups of observations of size 5 each are generated from the
N(0, 1) distribution.

g = 10 # number of treatments

n = 5 # number of replicates per treatment

trt = gl(g, n, labels=LETTERS[1:g]) # Treatment: A, B, C, ..., I, J

y = rnorm(g*n, mean=0, sd = 1) # Standard normal

data.frame(trt,y)

The data looks like

trt y

1 A -1.133072151

2 A -1.155419923

3 A 0.287352711

4 A -0.095260234

5 A -0.530695825

6 B 0.815546733

7 B 0.694283605

(...omitted...)

49 J -0.741629226

50 J -1.355834197
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As all the y ’s are generated from the N(0, 1) distribution, no pair
of treatments should be significantly different, but . . .

> pairwise.t.test(y, trt, p.adjust.method = "none")

Pairwise comparisons using t tests with pooled SD

data: y and trt

A B C D E F G H I

B 0.816 - - - - - - - -

C 0.328 0.454 - - - - - - -

D 0.250 0.356 0.860 - - - - - -

E 0.206 0.300 0.769 0.907 - - - - -

F 0.267 0.377 0.891 0.968 0.876 - - - -

G 0.656 0.831 0.592 0.477 0.408 0.502 - - -

H 0.039 0.065 0.260 0.341 0.402 0.321 0.100 - -

I 0.066 0.106 0.374 0.475 0.550 0.451 0.158 0.809 -

J 0.565 0.731 0.685 0.561 0.485 0.588 0.896 0.129 0.198

P value adjustment method: none
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Repeat the following several times.

g = 10 # number of treatments

n = 5 # number of replicates per treatment

trt = gl(g, n, labels=LETTERS[1:g]) # Treatment: A, B, C, ..., I, J

y = rnorm(g*n, mean=0, sd = 1) # Standard normal

pairwise.t.test(y, trt, p.adjust.method = "none")

How often do you see a significant difference?
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Data Snooping
I If one looks at data first and decide which contrast to test

based on what they see, that is called data snooping, e.g.,
I when one decides to compare treatment A & E because A has

the highest mean and E the lowest
I or if one decides to test the contrast

C =
µA + µC

2
− µB + µD

2

because A and C have higher means than B and D

I Data snooping is problematic because when people choose the
pair of treatments with the greatest difference or contrast
with a big effect after looking at data, they have implicitly
tested many pairs and contrasts that are unlikely to be
significant. Effectively, they have conducted many tests. They
cannot pretend as if they’ve just done one.

I If a comparison or contrast is determined after looking at the
data (data snooping), one must adjust for multiple
comparisons.
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5.1 Familywise Error Rate (FWER)
Given a single null hypothesis H0,

I recall a Type I error occurs when H0 is true but is rejected;

I the level (or size, or Type I error rate) of a test is is the
chance of making a Type I error.

Given a family of null hypotheses H01, H02, . . ., H0k ,

I a familywise Type I error occurs if H01, H02, . . ., H0k are all
true but at least one of them is rejected;

I The familywise error rate (FWER), also called
experimentwise error rate, is defined as the chance of making
a familywise Type I error

FWER = P(at least one of H01, . . . ,H0k is falsely rejected)

I FWER depends on the family.
The larger the family, the larger the FWER.
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Simultaneous Confidence Intervals

Similarly, a level 95% confidence level (L,U) for a parameter θ
may fail to cover θ 5% of the time.

What if we construct multiple 95% confidence intervals

{(L1,U1), (L2,U2), . . . , (Lk ,Uk)}

for several different parameters θ1, θ2, . . . , θk , the chance that at
least one of the intervals fails to cover the parameter is (a lot)
more than 5%.
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Simultaneous Confidence Intervals

Given a family of parameters {θ1, θ2, . . . , θk}, a 100(1− α)%
simultaneous confidence intervals is a family of intervals

{(L1,U1), (L2,U2), . . . , (Lk ,Uk)}

that
P(Li ≤ θi ≤ Ui for all i) > 1− α.

Note here that Li ’s and Ui ’s are random variables that depends on
the data.
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Multiple Comparisons

To account for multiple comparisons, we will need to make our C.I.
wider, and the critical values larger to ensure the chance of making
any false rejection < α.

We will introduce several multiple comparison methods.
All of them produce simultaneous C.I.’s of the form

estimate± (critical value)× (SE of the estimate)

and reject H0 when

|t0| =
|estimate|

SE of the estimate
> critical value.

Here the “estimates” and “SEs” are identical to those in the usual
t-tests and t-intervals. Only the critical values change with the
adjustment methods, as summarized on Slide 32.
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5.2 Bonferroni’s Method
Given that H01, . . . ,H0k being all true, by the Bonferroni’s
inequality we know

FWER = P(at least one of H01, . . . ,H0k is rejected)

≤
∑k

i=1
P(H0i is rejected)︸ ︷︷ ︸
type I error rate for H0i

If the Type I error rate for each of the k nulls can be controlled at
α/k , then

FWER ≤
∑k

i=1

α

k
= α.

Bonferroni’s method rejects a null if

the comparisonwise P-value is less than α/k,

or equivalently if

the t-statistic > tdf ,α/2/k .
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Example: Grass/Weed Competition (Ch 3)

Big bluestem was first seeded in these plots.
One year later, quack grass was seeded to each plot.

Response: Percentage of living material in each plot that is big
bluestem one year after quack grass was seeded.

Treatment 1N 1Y 2N 3N 4N 4Y

97 83 85 64 52 48
96 87 84 72 56 58
92 78 78 63 44 49
95 81 79 74 50 53

grass = read.table(

"http://www.stat.uchicago.edu/~yibi/s222/grassweed.txt", h=T)
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Example: Grass/Weed Competition (Ch 3)
The group means of the 4 treatments are

> library(mosaic)

> mean(percent ~ trt, data = grass)

1N 1Y 2N 3N 4N 4Y

95.00 82.25 81.50 68.25 50.50 52.00

From the ANOVA table below, we get MSE = 17.97.

> lm1 = lm(percent ~ trt, data = grass)

> anova(lm1)

Response: percent

Df Sum Sq Mean Sq F value Pr(>F)

trt 5 6398.3 1279.67 71.203 3.197e-11 ***

Residuals 18 323.5 17.97

The SE for pairwise comparison is

SE =

√
MSE

(
1

ni
+

1

nj

)
=

√
17.97

(
1

4
+

1

4

)
≈ 2.9975
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Example — Grass/Weed (Bonferoni’s Method)
To be significant at FWER = α based on Bonferoni’s correction,
the t-statistic for pairwise comparison must be at least

t =
y i• − y j•

SE
> tN−g ,α/2/k

where k = 15 since there are
(g
2

)
=
(6
2

)
= 15 pairs to compare.

df = N−g =24−6=18, tN−g ,α/2/k = t18,0.05/2/15≈3.38.

> qt(0.05/2/15, df=18, lower.tail=F)

[1] 3.380362

So a pair of treatments i , j are significantly different at FWER
= 0.05 iff

|y i• − y j•| > SE× tN−g ,α/2/k ≈ 2.9975× 3.38 ≈ 10.13 = BSD.

This is called Bonferoni’s Significant Difference (BSD).

4N 4Y 3N 2N 1Y 1N
50.50 52.00 68.25 81.50 82.25 95.00
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Alternatively, one can compute the P-values based on the ordinary
pairwise t-test

> pairwise.t.test(grass$percent, grass$trt, p.adjust="none")

Pairwise comparisons using t tests with pooled SD

data: grass$percent and grass$trt

1N 1Y 2N 3N 4N

1Y 0.00048 - - - -

2N 0.00027 0.80527 - - -

3N 5.0e-08 0.00019 0.00033 - -

4N 1.5e-11 3.7e-09 5.3e-09 1.3e-05 -

4Y 2.7e-11 7.8e-09 1.1e-08 3.8e-05 0.62287

P value adjustment method: none

There are k =
(6
2

)
= 15 tests.

To keep FWER ≤ α = 0.05, instead of rejecting a null when the
P-value < α, Bonferoni’s method rejects when

the P-value <
α

k
=

0.05

15
≈ 0.0033.

Only (1Y, 2N) and (4N, 4Y) are insignificant.

4N 4Y 3N 2N 1Y 1N
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> pairwise.t.test(grass$percent, grass$trt,

p.adjust.method = "bonferroni")

Pairwise comparisons using t tests with pooled SD

data: grass$percent and grass$trt

1N 1Y 2N 3N 4N

1Y 0.00717 - - - -

2N 0.00412 1.00000 - - -

3N 7.5e-07 0.00286 0.00496 - -

4N 2.3e-10 5.5e-08 8.0e-08 0.00020 -

4Y 4.1e-10 1.2e-07 1.7e-07 0.00057 1.00000

P value adjustment method: bonferroni

Each Bonferorni P-value is the corresponding unadjusted P-value
multiplied k.
You can just compare the Bonferrnoi P-values with α.
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Limitation of Bonferroni’s Method

I The number of tests k must be finite.

I Bonferroni’s method works OK when the number of tests k is
small

I When the number of tests k is large (> 10), Bonferroni often
get too conservative (too hard to reject H0) than necessary.
The actual FWER can be much less than α.
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5.4 Tukey-Kramer Procedure for Pairwise Comparisons

I Family: ALL PAIRWISE COMPARISON µi − µk
I For a balanced design (n1 = . . . = ng = n), observe that

|t0| =
|y i• − yk•|√
MSE

(
1
n + 1

n

) ≤ ymax − ymin√
2MSE/n

=
q√
2
.

in which q = ymax−ymin√
MSE/n

has a studentized range distribution.

I The critical values qα(g ,N − g) for the studentized range
distribution can be found on p.633-634, Table D.8 in the
textbook

I Controls the (strong) FWER exactly at α for balanced designs
(n1 = . . . = ng ); approximately at α for unbalanced designs
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Tukey-Kramer Procedure for All Pairwise Comparisons

For all 1 ≤ i 6= k ≤ g , the 100(1− α)% Tukey-Kramer’s
simultaneous C.I. for µi − µk is

y i• − yk• ±
qα(g ,N − g)√

2
SE(y i• − yk•)

For H0 : µi − µk = 0 v.s. Ha : µi − µk 6= 0, reject H0 if

|t0| =
| y i• − yk•|

SE(y i• − yk•)
>

qα(g ,N − g)√
2

In both the C.I. and the test,

SE(y i• − yk•) =

√
MSE

(
1

ni
+

1

nk

)
.
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Tukey’s HSD
For a balanced design (n1 = . . . = ng = n), to be significant at
FWER = α based Tukey’s correction, the mean difference between
a pair of treatments must be at least

qα(g ,N − g)√
2

×
√

MSE

(
1

n
+

1

n

)
This is called Tukey’s Honest Significant Difference (Tukey’s HSD).

R command to find qα(a, f ): qtukey(1-alpha,g,N-g)

> qtukey(0.95, 6, 18)/sqrt(2)

[1] 3.178035

For the Grass/Weed example, Tukey’s HSD is

3.178×
√

17.97

(
1

4
+

1

4

)
≈ 9.526

4N 4Y 3N 2N 1Y 1N
50.50 52.00 68.25 81.50 82.25 95.00
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Tukey’s HSD in R
TukeyHSD command only works for aov() model, not lm() model.

> aov1 = aov(percent ~ trt, data = grass)

> TukeyHSD(aov1)

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = percent ~ trt, data = grass)

$trt

diff lwr upr p adj

1Y-1N -12.75 -22.276745 -3.223255 0.0054014

2N-1N -13.50 -23.026745 -3.973255 0.0031780

3N-1N -26.75 -36.276745 -17.223255 0.0000007

4N-1N -44.50 -54.026745 -34.973255 0.0000000

4Y-1N -43.00 -52.526745 -33.473255 0.0000000

2N-1Y -0.75 -10.276745 8.776745 0.9998405

3N-1Y -14.00 -23.526745 -4.473255 0.0022319

4N-1Y -31.75 -41.276745 -22.223255 0.0000000

4Y-1Y -30.25 -39.776745 -20.723255 0.0000001

3N-2N -13.25 -22.776745 -3.723255 0.0037927

4N-2N -31.00 -40.526745 -21.473255 0.0000001

4Y-2N -29.50 -39.026745 -19.973255 0.0000002

4N-3N -17.75 -27.276745 -8.223255 0.0001661

4Y-3N -16.25 -25.776745 -6.723255 0.0004624

4Y-4N 1.50 -8.026745 11.026745 0.9955185
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Tukey’s HSD in R

> TukeyHSD(aov1)

Tukey multiple comparisons of means

95% family-wise confidence level

$trt

diff lwr upr p adj

1Y-1N -12.75 -22.276745 -3.223255 0.0054014

2N-1N -13.50 -23.026745 -3.973255 0.0031780

3N-1N -26.75 -36.276745 -17.223255 0.0000007

4N-1N -44.50 -54.026745 -34.973255 0.0000000

...(omitted)...

Note that the widths of all CIs above are 2x of the HSD.
E.g., the width of the CI for 1Y-1N is

−3.223255− (−22.276745) = 19.05349

is twice of HSD ≈ 9.526.
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5.3 Scheffé’s Method for Comparing All Contrasts
Suppose there are g treatments in total. Consider a contrast
C =

∑g
i=1 ωiµi . Recall

Ĉ =

g∑
i=1

ωiy i•, SE(Ĉ ) =

√√√√MSE×
g∑

i=1

ω2
i

ni

I The 100(1− α)% Scheffé’s simultaneous C.I. for all contrasts
C is

Ĉ ±
√

(g − 1)Fα,g−1,N−gSE(Ĉ )

I For testing H0 : C = 0 v.s. Ha : C 6= 0, reject H0 when

|t0| =
|Ĉ |

SE(Ĉ )
>
√

(g − 1)Fα,g−1,N−g
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Scheffé’s Method for Comparing All Contrasts

I Most conservative (least powerful) of all tests.
Protects against data snooping!

I Controls (strong) FWER at α,
where the family is ALL POSSIBLE CONTRASTS

I Should be used if you have not planned contrasts in
advance.
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Proof of Scheffé’s Method (1)
Because

∑g
i=1 ωi = 0, observe that

Ĉ =
∑g

i=1
ωiy i• =

∑g

i=1
ωi (y i• − y••).

By the Cauchy-Schwartz Inequality |∑ aibi | ≤
√∑

a2i
∑

b2i and

let ai =
ωi√
ni

and bi =
√
ni (y i• − y••), we get

|Ĉ | =

∣∣∣∣∣
g∑

i=1

ωi (y i• − y••)

∣∣∣∣∣ ≤
√√√√ g∑

i=1

ω2
i

ni

g∑
i=1

ni (y i• − y••)2

Recall that SStrt =
∑g

i=1 ni (y i• − y••)2, we get the inequality

|Ĉ | ≤

√√√√ g∑
i=1

ω2
i

ni
SStrt .
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Proof of Scheffé’s Method (2)
Recall the t-statistic for testing H0: C = 0 is t0(C ) = Ĉ

SE(Ĉ)
, and

using the inequality |Ĉ | ≤
√∑g

i=1
ω2
i

ni
SStrt proved in the previous

page, we have

|t0(C )| =
|Ĉ |

SE(Ĉ )
=

|Ĉ |√
MSE

∑g
i=1

ω2
i

ni

≤

√∑g
i=1

ω2
i

ni
SStrt√

MSE
∑g

i=1
ω2
i

ni

=

√
SStrt
MSE

Recall F = MStrt
MSE is the ANOVA F -statistic, we have

|t0(C )| ≤
√

SStrt
MSE

=

√
(g − 1)MStrt

MSE
=
√

(g − 1)F .

We thus get a uniform upper bound for the t-statistic for any
contrast C

|t0(C )| ≤
√

(g − 1)F .
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Proof of Scheffé’s Method (3)

Recall that F has a F -distribution with g − 1 and N − g degrees of
freedom, so P(F > Fα,g−1,N−g ) = α.

Since |t0(C )| <
√

(g − 1)F , we can see that

FWER = P

(
|t0(C )| >

√
(g − 1)Fα,g−1,N−g for any contrastC

)
≤ P

(√
(g − 1)F >

√
(g − 1)Fα,g−1,N−g

)
= P(F > Fα,g−1,N−g ) = α.
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A Contrast for Nitrogen Effect
Group 1N 1Y 2N 3N 4N 4Y
y i• 95 82.25 81.5 68.25 50.5 52

, MSE = 17.97

The contrast we consider is

C =
µ1N + µ1Y

2
− µ4N + µ4Y

2

which is estimated to be

Ĉ =
y1N• + y1Y•

2
− y4N• + y4Y•

2
=

95 + 82.25

2
− 50.5 + 52

2
= 37.375.

with the standard error

SE(Ĉ ) =

√√√√MSE

g∑
i=1

ω2
i

ni
=

√
17.97

(0.52

4
+

0.52

4
+

(−0.5)2

4
+

(−0.5)2

4

)
≈ 2.12.

To test H0: C = 0 v.s. Ha: C 6= 0, the t-statistic is

t =
Ĉ

SE(Ĉ )
≈ 37.375

2.12
≈ 17.63.
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A Contrast for Nitrogen Effect
With Scheffé Method, the critical value controlling FWER at 0.05
is √

(g − 1)Fα,g−1,N−g =
√

(6− 1)F0.05,6−1,24−6

≈
√

(6− 1)× 2.77 ≈ 3.72

> qf(0.05, df1=6-1, df2=24-6, lower.tail=F)

[1] 2.772853

> sqrt((6-1)*qf(0.05, df1=6-1, df2=24-6, lower.tail=F))

[1] 3.723475

The critical value 3.72 for Scheffé’s method means that: if all
treatments are equal, the contrast with the greatest t-statistic will
exceed 3.72 for only 5% of the time. The magnitude of the
t-statistic 17.63 for the contrast we considered is far above the
critical value 3.72.

Conclusion: We can be certain that the contrast is really
significant, even if the contrast was suggested by data snooping.
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5.4.7 Fisher’s Least Significant Difference (LSD)

I The least significant difference (LSD) is the minimum
amount by which two means must differ in order to be
considered statistically different.

I LSD = the usual t-tests and t-intervals
NO adjustment is made for multiple comparisons

I least conservative (most likely to reject) among all procedures,
FWER can be large when family of tests is large

I too liberal, but greater power (more likely to reject)

Chapter 5 - 31



Summary of Multiple Comparison Adjustments

Critical Value to
Method Family of Tests Keep FWER < α

Fisher’s LSD a single pairwise tα/2,N−g
comparison

Tukey-Kramer all pairwise qα(g ,N − g)/
√

2
comparisons

Bonferroni varies tα/(2k),N−g ,
where k = # of tests

Scheffé all contrasts
√

(g − 1)Fα,g−1,N−g
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Which Procedures to Use?

I Use BONFERRONI when only interested in a small number of
planned contrasts (or pairwise comparisons)

I Use TUKEY when only interested in all (or most) pairwise
comparisons of means

I Use SCHEFFE when doing anything that could be considered
data snooping – i.e. for any unplanned contrasts
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Significance Level vs. Power

Most Least
Powerful LSD Conservativex Tukey yBonferroni

(for all pariwise comparisons)

Least Scheffe Most
Powerful Conservative

In the figure above, Bonferroni is the Bonferroni for all pairwise
comparisons.

For a smaller family of, say k tests, one can divide α by k rather
than by r = g(g−1)

2 . The resulting C.I. or tests may have stronger
power than Tukey or Dunnett, will keeping FWER < α.

Remember to use Bonferroni the contrasts should be pre-planned.
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Multiple Comparisons in Balanced Block Designs

All the multiple comparison procedures apply to all balanced block
designs just change the degree of freedom from N − g to the d.f.
of MSE

Critical Value to
Method Family of Tests Keep FWER < α

Fisher’s LSD a single pairwise tα/2,df of MSE
comparison

Tukey-Kramer all pairwise qα(g , df of MSE)/
√

2
comparisons

Bonferroni all pairwise tα/(2r),df of MSE,

comparisons where r = g(g−1)
2

Scheffé all contrasts
√

(g − 1)Fα,g−1,df of MSE
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Recall Example 13.1 (Mealybugs on Cycads)
I Treatment: water (control), fungal spores, and horticultural oil
I 5 infested cycads, 3 branches are randomly chosen on each

cycad, and 2 patches (3 cm × 3 cm) are marked on each
branch

I 3 branches on each cycad are randomly assigned to the 3
treatments

I Response: difference of the # of mealybugs in the patches
before and 3 days after treatments are applied

I As the patches are measurement units, we take the average of
the two patches on each branch as the response

13.2 The Randomized Complete Block Design 317

Table 13.1:Changes in mealybug counts on cycads after treatment.
Treatments are water,Beauveria bassianaspores, and horticultural oil.

Plant
1 2 3 4 5

Water -9 18 10 9 -6
-6 5 9 0 13

Spores -4 29 4 -2 11
7 10 -1 6 -1

Oil 4 29 14 14 7
11 36 16 18 15

branches on each cycad are randomly assigned to the three treatments. After
three days, the patches are counted again, and the response is the change in
the number of mealybugs (before− after). Data for this experiment are given
in Table 13.1 (data from Scott Smith).

How can we decode the experimental design from the description just
given?Follow the randomization!Looking at the randomization, we see that
the treatments were applied to the branches (or pairs of patches). Thus the
branches (or pairs) must be experimental units. Furthermore, the randomiza-
tion was done so that each treatment was applied once on each cycad. There
was no possibility of two branches from the same plant receiving the same
treatment. This is a restriction on the randomization, withcycads acting as
blocks. The patches are measurement units. When we analyze these data, we
can take the average or sum of the two patches on each branch asthe response
for the branch. To recap, there wereg = 3 treatments applied toN = 15
units arranged inr = 5 blocks of size3 according to an RCB design; there
were two measurement units per experimental unit.

Why did the experimenter block? Experience and intuition lead the ex-
perimenter to believe that branches on the same cycad will tend to be more
alike than branches on different cycads—genetically, environmentally, and
perhaps in other ways. Thus blocking by plant may be advantageous.

It is important to realize that tables like Table 13.1 hide the randomization
that has occurred. The table makes it appear as though the first unit in every
block received the water treatment, the second unit the spores, and so on.
This is not true. The table ignores the randomization for theconvenience of
a readable display. The water treatment may have been applied to any of the
three units in the block, chosen at random.

You cannot determine the design used in an experiment just bylooking at
a table of results, you have to know the randomization. Theremay be many
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Example 13.1 (Mealybugs on Cycads)

Treatment Water Spore Oil MSE = 17.725
y i• 4.3 5.9 16.4 df of MSE = 8

The SE for pairwise comparison is√
MSE

(
1

r
+

1

r

)
=

√
17.725

(
1

5
+

1

5

)
≈ 2.663.

Tukey’s critical value is 2.857.

> qtukey(0.95, 3, df = 8)/sqrt(2)

[1] 2.857444

Tukey’s HSD controlling FWER at 0.05 is 2.857× 2.663 ≈ 7.608.

Water Spore Oil

We see that spores treatment cannot be distinguished from the
control (water) (their mean did not differ by more than 7.608), but
both can be distinguished from the oil treatment.
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Example 13.1 (Mealybugs on Cycads)

> aov1 = aov(avechange ~ trt + as.factor(plant), data=cycad)

> TukeyHSD(aov1)

Tukey multiple comparisons of means

95% family-wise confidence level

$trt

diff lwr upr p adj

Spore-Water 1.6 -6.008532 9.208532 0.8235730

Oil-Water 12.1 4.491468 19.708532 0.0047478

Oil-Spore 10.5 2.891468 18.108532 0.0105848

$‘as.factor(plant)‘

diff lwr upr p adj

2-1 20.666667 8.790833 32.5425005 0.0021283

3-1 8.166667 -3.709167 20.0425005 0.2154812

4-1 7.000000 -4.875834 18.8758339 0.3302742

5-1 6.000000 -5.875834 17.8758339 0.4607553

3-2 -12.500000 -24.375834 -0.6241661 0.0390953

4-2 -13.666667 -25.542501 -1.7908328 0.0248443

5-2 -14.666667 -26.542501 -2.7908328 0.0169882

4-3 -1.166667 -13.042501 10.7091672 0.9965298

5-3 -2.166667 -14.042501 9.7091672 0.9657205

5-4 -1.000000 -12.875834 10.8758339 0.9980873

I Tukey’s HSD at 5%
level for pairwise
comparisons of the 3
treatments agrees
with our computation

I Tukey’s HSD for
pairwise comparisons
of the 5 plants is
nonsense here.
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Example: Problem 13.4 in Oehlert’s Book (HW12)

I 2 replications of
5× 5 Latin Squares

I two blocking factors:
grader and student

I graders are reused but
students are not

I treatment: exam

Student Grader
1 2 3 4 5

1 68 D 65 A 76 E 74 C 76 B
2 68 A 77 E 84 B 65 D 75 C
3 73 C 85 B 72 D 68 E 62 A
4 74 E 76 C 57 A 79 B 64 D
5 80 B 71 D 76 C 59 A 68 E
6 69 D 75 E 81 B 68 A 68 C
7 60 C 62 D 62 E 66 B 40 A
8 70 B 55 A 62 C 57 E 40 D
9 61 E 67 C 53 A 63 D 69 B

10 37 A 53 B 31 D 48 C 33 E

Model:
yijk = µ + αi + βj + γk +εijk

(score) (exam) (student) (grader)

In HW12, we tested the contrast

C = αA −
αC + αD + αE

3
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> mydata = read.table(

"http://users.stat.umn.edu/~gary/book/fcdae.data/pr13.4", h=T)

> lm1 = lm(score ~ as.factor(student)+as.factor(grader)+as.factor(exam),

data=mydata)

> anova(lm1)

Response: score

Df Sum Sq Mean Sq F value Pr(>F)

as.factor(student) 9 5050.3 561.15 40.3376 5.785e-15 ***

as.factor(grader) 4 443.3 110.83 7.9669 0.0001417 ***

as.factor(exam) 4 1889.9 472.48 33.9639 4.246e-11 ***

Residuals 32 445.2 13.91

> library(mosaic)

> mean(score ~ exam, data=mydata)

1 2 3 4 5

56.4 74.3 67.9 60.5 65.1

Ĉ = ȳA•• −
ȳC•• + ȳD•• + ȳE••

3
= 56.4− 67.9 + 60.5 + 65.1

3
= −8.1

SE(Ĉ ) =
√

13.91

√
1

10
+

(1/3)2

10
+

(1/3)2

10
+

(1/3)2

10
≈ 1.362

t-stat =
Ĉ1

SE(Ĉ1)
=
−8.1

1.362
≈ −5.948
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Scheffé’s critical value for controlling FWER at 0.05 is√
(g − 1)Fα,g−1,df of MSE =

√
(5− 1)F0.05,5−1,32

≈
√

(5− 1)× 2.668 ≈ 3.27

> qf(0.05, df1=5-1, df2=32, lower.tail=F)

[1] 2.668437

> sqrt((5-1)*qf(0.05, df1=5-1, df2=32, lower.tail=F))

[1] 3.26707

The critical value 3.27 for Scheffé’s method means that: if all
treatments (exams) are equal, the contrast of exam effects with
the greatest t-statistic will exceed 3.27 for only 5% of the time.
The magnitude of the t-statistic −5.948 for the contrast we
considered is above the critical value 3.72.

Conclusion: We can be certain that the contrast is really
significant, even if the contrast was suggested by data snooping.
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Tukey’s HSD for Comparing Graders (Problem 13.4)
The SE for comparing the 5 graders pairwise is

SE =

√
MSE

(
1

10
+

1

10

)
=

√
13.91× 1

5
≈ 1.668.

The critical value for Tukey’s method

> qtukey(0.95, 5, 32)/sqrt(2)

[1] 2.889395

Tukey’s HSD = SE× (critical value) ≈ 1.668× 2.889 ≈ 4.89
Underline Diagram based on HSD:

5 4 3 1 2
(59.5) (64.7) (65.4) (66.0) (68.6)

Compared ww/ Underline Diagram based on LSD = 3.40 in HW12

5 4 3 1 2
(59.5) (64.7) (65.4) (66.0) (68.6)
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aov1 = aov(score ~ as.factor(student)+as.factor(grader)+as.factor(exam),data=mydata)

TukeyHSD(aov1)

Tukey multiple comparisons of means

95% family-wise confidence level

$‘as.factor(student)‘

diff lwr upr p adj

2-1 2.0 -6.009101 10.0091013 0.9970289

3-1 0.2 -7.809101 8.2091013 1.0000000

...(omitted)...

10-9 -22.2 -30.209101 -14.1908987 0.0000000

$‘as.factor(grader)‘

diff lwr upr p adj

2-1 2.6 -2.219533 7.4195329 0.5335412

3-1 -0.6 -5.419533 4.2195329 0.9962326

4-1 -1.3 -6.119533 3.5195329 0.9347241

5-1 -6.5 -11.319533 -1.6804671 0.0039855

3-2 -3.2 -8.019533 1.6195329 0.3285045

4-2 -3.9 -8.719533 0.9195329 0.1593064

5-2 -9.1 -13.919533 -4.2804671 0.0000493

4-3 -0.7 -5.519533 4.1195329 0.9931866

5-3 -5.9 -10.719533 -1.0804671 0.0102914

5-4 -5.2 -10.019533 -0.3804671 0.0293100

$‘as.factor(exam)‘
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Tukey-Kramer for BIBD
Recall for BIBD, the estimate of αi1 − αi2 is

α̂i1 − α̂i2 =
k

λg
(Qi1 − Qi2)

where Qi = yi• − 1
k

∑
j Iijy•j and Iij = 1 if treatment i appears in

block j , or 0 otherwise.

I SE(α̂i1 − α̂i2) =

√
MSE

(
2k

λg

)
I t-statistic =

α̂i1 − α̂i2

SE
with df = df of MSE

I Tukey-Kramer: reject H0: αi1 = αi2 if

|t| > qα(g , df of MSE)/
√

2.

> qtukey(1-alpha, g, df = df of MSE)/sqrt(2)
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Recall Problem 14.3 — Exam Grading
382 Incomplete Block Designs

Exam Grader Score Exam Grader Score

1 1 2 3 4 5 60 59 51 64 53 16 1 9 12 20 23 61 67 69 68 65
2 6 7 8 9 10 64 69 63 63 71 17 2 10 13 16 24 78 75 76 75 72
3 11 12 13 14 15 84 85 86 85 83 18 3 6 14 17 25 67 72 72 75 76
4 16 17 18 19 20 72 76 77 74 77 19 4 7 15 18 21 84 81 76 79 77
5 21 22 23 24 25 65 73 70 71 70 20 5 8 11 19 22 81 84 85 84 81
6 1 6 11 16 21 52 54 62 54 55 21 1 8 15 17 24 70 65 61 66 66
7 2 7 12 17 22 56 51 52 57 51 22 2 9 11 18 25 84 82 86 85 86
8 3 8 13 18 23 55 60 59 60 61 23 3 10 12 19 21 72 85 77 82 79
9 4 9 14 19 24 88 76 77 77 74 24 4 6 13 20 22 85 75 78 82 83

10 5 10 15 20 25 65 68 72 74 77 25 5 7 14 16 23 58 64 58 57 58
11 1 10 14 18 22 79 77 77 77 79 26 1 7 13 19 25 66 71 73 70 70
12 2 6 15 19 23 70 66 63 62 66 27 2 8 14 20 21 73 67 63 70 66
13 3 7 11 20 24 48 49 51 48 50 28 3 9 15 16 22 58 70 69 61 71
14 4 8 12 16 25 75 64 75 68 65 29 4 10 11 17 23 95 84 88 88 87
15 5 9 13 17 21 79 77 81 79 83 30 5 6 12 18 24 47 47 51 49 56

Analyze these data to determine if graders differ, and if so,how. Be sure to
describe the design.

Thirty consumers are asked to rate the softness of clothes washed by tenProblem 14.4
different detergents, but each consumer rates only four different detergents.
The design and responses are given below:

Trts Softness Trts Softness

1 A B C D 37 23 37 41 16 A B C D 52 41 45 48
2 A B E F 35 32 39 37 17 A B E F 46 42 45 42
3 A C G H 39 45 39 41 18 A C G H 44 43 41 36
4 A D I J 44 42 46 44 19 A D I J 32 42 36 29
5 A E G I 44 44 45 50 20 A E G I 43 42 44 44
6 A F H J 55 45 53 49 21 A F H J 46 41 43 45
7 B C F I 47 50 48 52 22 B C F I 43 51 40 42
8 B D G J 37 42 40 37 23 B D G J 38 37 36 34
9 B E H J 32 34 39 29 24 B E H J 40 49 43 44

10 B G H I 36 41 39 43 25 B G H I 23 20 27 29
11 C E I J 45 44 40 36 26 C E I J 46 49 48 43
12 C F G J 42 38 39 39 27 C F G J 48 43 48 41
13 C D E H 47 48 46 47 28 C D E H 35 35 31 26
14 D E F G 43 47 48 41 29 D E F G 45 47 47 42
15 D F H I 39 32 32 31 30 D F H I 43 39 38 39

Analyze these data for treatment effects and report your findings.

I g = 25 graders (treatments)
I b = 30 exams (blocks)
I Each exam was graded by 5 graders (size of block k = 5)
I Each grader graded 6 exams (number of replicates per

treatment r = 6)
I Every pair of graders graded 1 exam in common (λ = 1)
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Problem 14.3 — Exam Grading – Tukey’s HSD
How to identify inconsistent graders?

Recall the SE for pairwise comparisons for the grader effects
αi1 − αi2 is

SE =

√
MSE

(
2k

λg

)
=

√
7.17

(
2× 5

1× 25

)
≈ 1.6935

with df = (df of MSE) = 96.

By Tukey-Kramer: we reject H0: αi1 = αi2 if

|t| > qα(g , df of MSE)/
√

2.

> qtukey(0.95, 25, df = 96)/sqrt(2)

[1] 3.767619

Tukey’s HSD =
q0.05(25, 96)√

2
SE = 3.768× 1.6935 ≈ 6.38.
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Problem 14.3 — Exam Grading
We have obtained α̂1, α̂2, . . . , α̂24 in R on p. 21 of Ch14 Slides.

> sort(alphahat)

GRADER3 GRADER5 GRADER16 GRADER6 GRADER15 GRADER14 GRADER8 GRADER21

-6.36 -3.48 -2.60 -2.36 -1.60 -1.60 -1.56 -1.24

GRADER9 GRADER1 GRADER19 GRADER23 GRADER24 GRADER18 GRADER10 GRADER13

-1.12 -0.84 -0.40 -0.12 0.16 0.20 0.48 0.76

GRADER17 GRADER25 GRADER12 GRADER22 GRADER7 GRADER20 GRADER11 GRADER2

1.24 1.32 1.32 1.52 1.60 1.80 2.16 3.24

GRADER4

7.48

Underline Diagram for pairwise comparison between graders:
(at FWER = 5%, Tukey’s HSD = 6.38)

3 5 16 6 15 14 8 21 9 1 19 23 24 18 10 13 17 25 12 22 7 20 11 2 4

After Tukey’s adjustment, only Grader #3 and # 4 are significantly
inconsistent with most other graders.

Grader #2 and #5 were consistent with all the rest except #3 and #4.
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Problem 14.3 — Exam Grading

Please note that the R function TukeyHSD() doesn’t perform
Tukey’s adjustment correctly for BIBD.

Do NOT use TukeyHSD() on BIBD.
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