Section 4.1-4.2
 Pairwise Comparisons \& Contrasts

Yibi Huang

- Inference for a Single Mean μ_{i} in a Multi-Sample Problem
- Pairwise Comparisons
- Contrasts

Chapter 4-1

Last Lecture

One-way ANOVA F-test for the Grass/Weed Competition Study:

$$
\begin{aligned}
& H_{0}: \mu_{1 \mathrm{~N}}=\mu_{1 \mathrm{Y}}=\mu_{2 \mathrm{~N}}=\mu_{3 \mathrm{~N}}=\mu_{4 \mathrm{~N}}=\mu_{4 \mathrm{Y}} \\
& H_{a}: \mu_{1 \mathrm{~N}}, \mu_{1 \mathrm{Y}}, \mu_{2 \mathrm{~N}}, \mu_{3 \mathrm{~N}}, \mu_{4 \mathrm{~N}}, \mu_{4 \mathrm{Y}} \text { are not all equal }
\end{aligned}
$$

```
> lm1 = lm(percent ~ trt, data=grass)
> anova(lm1)
Analysis of Variance Table
```

Response: percent
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
trt $\quad 56398.31279 .67 \quad 71.203$ 3.197e-11 ***
Residuals $18 \quad 323.5 \quad 17.97$

- The tiny P-value means there exists differences among the means. What's the next?
- Want to determine which means are different and identify treatments statistically of the same effect

Chapter 4-2

Section 1

Inference for a Single Group Mean μ_{i} in a Multi-Sample Problem

Notations for the t-Critical Values

In the remainder of the course, we use $t_{\alpha / 2, d f}$ to denote the value that

$$
P\left(-t_{\alpha / 2, d f}<T<t_{\alpha / 2, d f}\right)=1-\alpha
$$

where T has a t-distribution w / df degrees of freedom

How to find $t_{\alpha / 2, d f}$ using \mathbf{R} and the t-Table?
$t_{0.05 / 2,3} \approx 3.182$
$t_{0.1 / 2} \approx 2.101$
$>$ qt $(0.05 / 2$, df=3, lower.tail=F)
[1] 3.182446
$>$ qt $(0.05 / 2$, df=18, lower.tail=F)
[1] 2.100922

Chapter 4-4

Confidence Interval (CI) for One-Sample Mean (Review)

If $y_{1}, y_{2}, \ldots, y_{n}$ are i.i.d. $\sim\left(\mu, \sigma^{2}\right)$,
by CLT $\Rightarrow Z=\frac{\bar{y}-\mu}{\sigma / \sqrt{n}} \sim N(0,1)$.

- valid for all n if y_{i} 's are normal
- approx. valid for large n if y_{i} 's are not normal

However, σ is unknown. We estimate it with $s=\sqrt{\frac{\sum_{i}\left(y_{i}-\bar{y}\right)^{2}}{n-1}}$

$$
t=\frac{\bar{y}-\mu}{s / \sqrt{n}} \sim t_{n-1}
$$

- valid for all n if y_{i} 's are normal
- approx. valid for large n
if y_{i} 's are not normal
Inverting $P\left(-t_{\alpha / 2, n-1}<t=\frac{\bar{y}-\mu}{s / \sqrt{n}}<t_{\alpha / 2, n-1}\right)=1-\alpha$, we get the $(1-\alpha) 100 \% \mathrm{Cl}$ for μ :

$$
\bar{y} \pm t_{\alpha / 2, n-1} \times \frac{s}{\sqrt{n}}
$$

Chapter 4-5

A Naive Cl for a Group Mean in a Multi-Sample Problem

Model for the multi-sample problem:

$$
\begin{aligned}
y_{i j} & =\mu_{i}+\varepsilon_{i j}, \quad \varepsilon_{i j} \sim N\left(0, \sigma^{2}\right) \\
\Rightarrow \quad Z & =\frac{\bar{y}_{k \bullet}-\mu_{k}}{\sigma / \sqrt{n_{k}}} \sim N(0,1)
\end{aligned}
$$

A naive estimate for the unknown σ is

$$
s_{k}=\text { the sample SD of the } k \text { th group }=\sqrt{\frac{\sum_{j=1}^{n_{k}}\left(y_{k j}-\bar{y}_{k \bullet}\right)^{2}}{n_{k}-1}}
$$

From that

$$
t=\frac{\bar{y}_{i \bullet}-\mu_{k}}{s_{k} / \sqrt{n_{k}}} \sim t_{n_{k}-1}
$$

a naive but valid $100(1-\alpha) \% \mathrm{Cl}$ for μ_{k} would be

$$
\bar{y}_{k \bullet} \pm t_{\alpha / 2, n_{k}-1} \times \frac{s_{k}}{\sqrt{n_{k}}}
$$

- using only data in the k th group, ignoring the rest, not optimal
Chapter 4-6

A Better Cl for a Group Mean in a Multi-Sample Problem

As all the groups have a common SD σ, data in other groups cannot help estimating μ_{k} but they can help estimating σ. A better estimate for σ is

$$
\widehat{\sigma}=\sqrt{\mathrm{MSE}}=\sqrt{\frac{\sum_{i=1}^{g} \sum_{j=1}^{n_{i}}\left(y_{i j}-\bar{y}_{i \bullet}\right)^{2}}{N-g}}
$$

We have

$$
t=\frac{\bar{y}_{k \bullet}-\mu_{k}}{\hat{\sigma} / \sqrt{n_{k}}}=\frac{\bar{y}_{i \bullet}-\mu_{k}}{\sqrt{\mathrm{MSE}} / \sqrt{n_{k}}} \sim t_{N-g}
$$

from which, a better $100(1-\alpha) \% \mathrm{Cl}$ for μ_{k} is

$$
\bar{y}_{k \bullet} \pm t_{\alpha / 2, N-g} \frac{\sqrt{\mathrm{MSE}}}{\sqrt{n_{k}}}
$$

- using observations in all groups to estimate the unknown σ
- with a higher $\mathrm{df}=N-g$, not $n_{k}-1$

Chapter 4-7

Case Study: Grass/Weed Competition

Treatment	1 N	1 Y	2 N	3 N	4 N	4 Y
Mean $\bar{y}_{i \bullet}$	95	82.25	81.5	68.25	50.5	52
SD s_{i}	2.16	3.775	3.512	5.56	5.00	4.546

The naive $95 \% \mathrm{Cl}$ for $\mu_{4 \mathrm{Y}}$ using only data in Group 4Y:

$$
\bar{y}_{4 Y \bullet} \pm t_{\alpha / 2, n_{4 Y}-1} \frac{s_{4 Y}}{\sqrt{n_{4 Y}}} \approx 52 \pm 3.182 \times \frac{4.546}{\sqrt{4}} \approx 52 \pm 7.23
$$

The better $95 \% \mathrm{Cl}$ for $\mu_{4 \mathrm{Y}}$ using the MSE is

$$
\bar{y}_{i \bullet} \pm t_{\alpha / 2, N-g} \frac{\sqrt{\mathrm{MSE}}}{\sqrt{n_{4 \mathrm{Y}}}}=52 \pm 2.101 \times \frac{\sqrt{17.97}}{\sqrt{4}} \approx 52 \pm 4.45
$$

where $n_{4 Y}=4, N=24, g=6, \alpha=0.05$. Using R, we can find
$t_{\alpha / 2, n_{4 Y}-1}=t_{0.05 / 2,4-1} \approx 3.182$ and $t_{\alpha / 2, N-g}=t_{0.05 / 2,24-6} \approx 2.101$.
> qt (0.05/2, df = 4-1, lower.tail=F)
[1] 3.182446
> qt (0.05/2, df = 24-6, lower.tail=F)
[1] 2.100922
Observe the naive Cl has a bigger margin of error 7.23 than the margin of error 4.45 for the Cl using the MSE.

Chapter 4-8

Interpretation of the better $95 \% \mathrm{Cl}$ for $\mu_{4 \mathrm{Y}}: 52 \pm 4.45$
For plots received $800 \mathrm{mg} \mathrm{N} / \mathrm{kg}$ soil and 1 cm of irrigation per week, we estimate that 52.0% of living material is bluestem (grass) on average with a margin of error of 4.45% at 95% confidence.

Section 2

Pairwise Comparison

Chapter 4-10

Pairwise Comparison of Group Means

Model for the multi-sample problem:

$$
y_{i j}=\mu_{i}+\varepsilon_{i j}, \quad \varepsilon_{i j} \sim N\left(0, \sigma^{2}\right)
$$

Consider the pairwise comparison of group means $\mu_{k}-\mu_{\ell}$:

- the estimator is $\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet}$
- Since $\bar{y}_{k \bullet}$ and $\bar{y}_{\ell \bullet}$ are independent, we have

$$
\begin{array}{r}
\operatorname{Var}\left(\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet}\right)=\operatorname{Var}\left(\bar{y}_{k \bullet}\right)+\operatorname{Var}\left(\bar{y}_{\ell \bullet}\right)=\frac{\sigma^{2}}{n_{k}}+\frac{\sigma^{2}}{n_{\ell}} \\
\rightarrow \mathrm{SD}\left(\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet}\right)=\sqrt{\operatorname{Var}\left(\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet}\right)}=\sqrt{\sigma^{2}\left(\frac{1}{n_{k}}+\frac{1}{n_{\ell}}\right)}, \\
\operatorname{SE}\left(\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet}\right)=\widehat{\mathrm{SD}}\left(\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet}\right)=\sqrt{\operatorname{MSE}\left(\frac{1}{n_{k}}+\frac{1}{n_{\ell}}\right)} \\
\rightarrow t=\frac{\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet}-\left(\mu_{k}-\mu_{\ell}\right)}{\operatorname{SE}\left(\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet}\right)}=\frac{\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet}-\left(\mu_{k}-\mu_{\ell}\right)}{\sqrt{\operatorname{MSE}\left(\frac{1}{n_{k}}+\frac{1}{n_{\ell}}\right)}} \sim t_{N-g}
\end{array}
$$

Chapter 4-11

Confidence Intervals for Pairwise Differences

The $100(1-\alpha) \%$ confidence interval (C.I.) for $\mu_{k}-\mu_{\ell}$ is

$$
\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet} \pm t_{\alpha / 2, N-g} \sqrt{\operatorname{MSE}\left(\frac{1}{n_{k}}+\frac{1}{n_{\ell}}\right)} .
$$

Note this is neither the two-sample Cl assuming equal SDs
$\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet} \pm t_{\alpha / 2, n_{k}+n_{\ell}-2} \sqrt{s_{p}^{2}\left(\frac{1}{n_{k}}+\frac{1}{n_{\ell}}\right)}$, where $s_{p}^{2}=\frac{\left(n_{k}-1\right) s_{k}^{2}+\left(n_{\ell}-1\right) s_{\ell}^{2}}{n_{k}+n_{\ell}-2}$,
nor the two-sample Cl not assuming equal SDs

$$
\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet} \pm t_{\alpha / 2, d f} \sqrt{\frac{s_{k}^{2}}{n_{k}}+\frac{s_{\ell}^{2}}{n_{\ell}}}, \quad \text { where } d f=\frac{\left(\frac{s_{k}^{2}}{n_{k}}+\frac{s_{\ell}^{2}}{n_{\ell}}\right)^{2}}{\frac{1}{n_{k}-1}\left(\frac{s_{k}^{2}}{n_{k}}\right)^{2}+\frac{1}{n_{\ell}-1}\left(\frac{s_{\ell}^{2}}{n_{\ell}}\right)^{2}}
$$

- MSE $=\frac{\sum_{i=1}^{g} \sum_{j=1}^{n_{i}}\left(y_{j j}-\bar{y}_{\boldsymbol{\bullet}}\right)^{2}}{N-g}$ calculated using the entire dataset is a more accurate estimator of σ^{2} than s_{p}^{2} or s_{k}^{2}, s_{ℓ}^{2} calculated using only data in the two groups compared
- The critical value for the two-sample C.I. is larger

$$
t_{\alpha / 2, n_{k}+n_{\ell}-2}>t_{\alpha / 2, N-g}
$$

Chapter 4-12

Hypothesis Testing for Difference

For testing the hypothesis $\mathrm{H}_{0}: \mu_{k}-\mu_{\ell}=0$, the test statistic is

$$
t=\frac{\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet}}{\operatorname{SE}\left(\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet}\right)}=\frac{\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet}}{\sqrt{\operatorname{MSE}\left(\frac{1}{n_{k}}+\frac{1}{n_{\ell}}\right)}} \sim t_{N-g}
$$

The calculation of the p-value depends on H_{a} as follows

The bell curve above is the t-curve with $\mathrm{df}=N-g$.
Chapter 4-13

Case Study: Grass/Weed Competition

Group	1 N	1 Y	2 N	3 N	4 N	4 Y
Mean $\bar{y}_{i \bullet}$	95	82.25	81.5	68.25	50.5	52
SD		s_{i}	2.16	3.775	3.512	5.56
	5.00	4.546				

A 95% confidence interval for $\mu_{1 \mathrm{~N}}-\mu_{1 \mathrm{Y}}$ is

$$
\begin{aligned}
& \bar{y}_{1 N \bullet}-\bar{y}_{1 Y \bullet} \pm t_{0.025,18} \times \sqrt{\operatorname{MSE}\left(\frac{1}{n_{1 N}}+\frac{1}{n_{1 Y}}\right)} \\
= & 95-82.25 \pm 2.101 \times \sqrt{17.97\left(\frac{1}{4}+\frac{1}{4}\right)}=12.75 \pm 6.65
\end{aligned}
$$

in which $t_{0.025,18}=2.101$ is found using the R command
> qt(0.05/2, df $=18$, lower.tail=F)
[1] 2.100922
Irrigation reduced the percentage of grass (bluestem) by 12.75\% on average, with a margin of error of 6.65%, at 95% confidence.

Chapter 4-14

Case Study: Grass/Weed Competition

To test whether treatment 1 N and treatment 1 Y have the same effect

$$
H_{0}: \mu_{1 N}-\mu_{1 Y}=0 \quad \text { v.s. } \quad H_{a}: \mu_{1 N}-\mu_{1 Y} \neq 0
$$

the test statistic is

$$
t=\frac{\bar{y}_{1 N \bullet}-\bar{y}_{1 Y \bullet}}{\sqrt{\operatorname{MSE}\left(\frac{1}{n_{1 N}}+\frac{1}{n_{1 Y}}\right)}}=\frac{95-82.25}{\sqrt{17.97\left(\frac{1}{4}+\frac{1}{4}\right)}} \approx \frac{12.75}{2.9975} \approx 4.253
$$

with $\mathrm{df}=N-g=24-6=18$. The two-sided P-value is
> 2 *pt(4.235, df = 18, lower.tail=F)
[1] 0.0004979698
As the P-value <0.05, we again confirm that irrigation made grass (bluestem) less competitive.

Chapter 4-15

Pairwise t-Tests in R

The R command pairwise.t.test can perform pairwise comparisons between all pairs of treatments, but it shows the P-values only.
> pairwise.t.test(grass\$percent, grass\$trt, p.adjust="none")
Pairwise comparisons using t tests with pooled SD
data: grass\$percent and grass\$trt

	$1 N$	1 Y	2 N	3 N	4 N
1 Y	0.00048	-	-	-	-
2N	0.00027	0.80527	-	-	-
3 N	$5.0 \mathrm{e}-08$	0.00019	0.00033	-	-
4 N	$1.5 \mathrm{e}-11$	$3.7 \mathrm{e}-09$	$5.3 \mathrm{e}-09$	$1.3 \mathrm{e}-05$	-
4 Y	$2.7 \mathrm{e}-11$	$7.8 \mathrm{e}-09$	$1.1 \mathrm{e}-08$	$3.8 \mathrm{e}-05$	0.62287

P value adjustment method: none
Note that we must include p.adjust="none" in the command. Otherwise the P-value is not calculated using t-tests.

Chapter 4-16

Underline Diagrams (p.88, Section 5.4.1)

a concise way to summarize pairwise comparisons

	$1 N$	1 Y	2 N	3 N	4 N
1 Y	0.00048	-	-	-	-
2N	0.00027	0.80527	-	-	-
3N	$5.0 \mathrm{e}-08$	0.00019	0.00033	-	-
4 N	$1.5 \mathrm{e}-11$	$3.7 \mathrm{e}-09$	$5.3 \mathrm{e}-09$	$1.3 \mathrm{e}-05$	-
4 Y	$2.7 \mathrm{e}-11$	$7.8 \mathrm{e}-09$	$1.1 \mathrm{e}-08$	$3.8 \mathrm{e}-05$	0.62287

How to make a underline diagram?

1. Write out group labels horizontally in increasing order sorted by group means
2. (Write the group mean $\bar{y}_{i \bullet}$ under each corresponding group) (may skip)
3. Draw a line segment under a set of groups if no two groups in that set of groups are significantly different from each other

4 Y	4 N	3 N	2 N	1 Y	1 N
50.5	52	68.25	81.5	82.25	95

Chapter 4-17

Underline Diagrams

In an experiment with 5 treatments A, B, C, D and E, the underline diagram for all pairwise comparisons of the 5 treatments is as follows.

$$
\begin{array}{lllll}
C & B & A & D & E
\end{array}
$$

Answer the following questions:

- Order the means of the 5 groups from low to high.

$$
C<B<A<D<E
$$

- Check all the pairs that are significantly different from each other.

Chapter 4-18

Least Significant Difference (LSD)

- It's an awful lot of work to to compare every pair of groups. One needs to compute the SE, the t-statistic, and P-value for each pair of groups. When there are g groups, there are $\binom{g}{2}=g(g-1) / 2$ pairs to compare with.
- When all groups are of the same size n, an easier way to do pairwise comparisons of all treatments is to compute the least significant difference (LSD), which is the minimum amount by which two means must differ in order to be considered statistically different.

Least Significant Difference (LSD)

- When all groups are of the same size n, the SEs of pairwise comparisons all equal to

$$
\mathrm{SE}=\sqrt{\operatorname{MSE}\left(\frac{1}{n}+\frac{1}{n}\right)}
$$

- To be significant at level α, the t-statistic for pairwise comparison

$$
t=\frac{\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet}}{\mathrm{SE}}
$$

must be at least $t_{\alpha / 2, N-g}$ in absolute value

- So μ_{k} and μ_{ℓ} are significantly different at level α if and only if $\bar{y}_{k \bullet}-\bar{y}_{\ell \bullet}$ is at least

$$
t_{\alpha / 2, N-g} \sqrt{\operatorname{MSE}\left(\frac{1}{n}+\frac{1}{n}\right)}=\mathrm{LSD}
$$

in absolute value, which is called the least significant difference (LSD)

Chapter 4-20

Least Significant Difference (LSD)

For the Grass/Weed experiment, the critical value at $\alpha=5 \%$ significance is $t_{\alpha / 2, N-g}=t_{0.025,24-6} \approx 2.101$, the LSD at 5% level is
$\operatorname{LSD}=t_{\alpha / 2, N-g} \sqrt{\operatorname{MSE}\left(\frac{1}{n}+\frac{1}{n}\right)}=2.101 \sqrt{17.97\left(\frac{1}{4}+\frac{1}{4}\right)} \approx 6.30$
Two treatments are significantly different at 5% level if and only if their mean differ by 6.30 or more.

The only two pairs with no significantly difference are (4Y, 4N) and $(2 \mathrm{~N}, 1 \mathrm{Y})$, as they are the only pairs differ less than 6.30 in mean.

4 Y	4 N	3 N	2 N	1 Y	1 N
50.5	52	68.25	81.5	82.25	95

Chapter 4-21

Section 3

Contrasts

Chapter 4-22

Quantities of Interest Other Than Pairwise Differences (1)

For the Grass/Weed experiment, we are also interested in
Q1 Irrigation effect: $\mu_{1 \mathrm{~N}}-\mu_{1 \mathrm{Y}}$ or $\mu_{4 \mathrm{~N}}-\mu_{4 \mathrm{Y}}$ or the combination

$$
\frac{\mu_{1 \mathrm{~N}}+\mu_{4 \mathrm{~N}}}{2}-\frac{\mu_{1 \mathrm{Y}}+\mu_{4 \mathrm{Y}}}{2}
$$

Quantities of Interest Other Than Pairwise Differences (2)

Q2 Does the irrigation effect change with nitrogen levels?

$$
(\underbrace{\mu_{1 \mathrm{~N}}-\mu_{1 \mathrm{Y}}}_{\begin{array}{c}
\text { irrigation effect at } \\
\text { nitrogen level 200 }
\end{array}})-(\underbrace{\mu_{4 \mathrm{~N}}-\mu_{4 \mathrm{Y}}}_{\begin{array}{c}
\text { irrigation effect at } \\
\text { nitrogen level } 800
\end{array}})
$$

Quantities of Interest Other Than Pairwise Differences (3)

For the Grass/Weed experiment, we are also interested in
Q3 Nitrogen effect: $\mu_{1 \mathrm{~N}}-\mu_{2 \mathrm{~N}}, \mu_{2 \mathrm{~N}}-\mu_{3 \mathrm{~N}}$, etc.

Chapter 4-25

Quantities of Interest Other Than Pairwise Differences (4)

Q4 Is the nitrogen effect linear?

$$
\frac{\mu_{1 \mathrm{~N}}-\mu_{2 \mathrm{~N}}}{200}-\frac{\mu_{2 \mathrm{~N}}-\mu_{3 \mathrm{~N}}}{200}, \quad \text { or } \quad \frac{\mu_{2 \mathrm{~N}}-\mu_{3 \mathrm{~N}}}{200}-\frac{\mu_{3 \mathrm{~N}}-\mu_{4 \mathrm{~N}}}{200}, \quad \text { etc. }
$$

Chapter 4-26

Definition of Contrasts

All the quantities above are contrasts.
A contrast is a linear combination of group means μ_{i} 's

$$
C=\sum_{i=1}^{g} \omega_{i} \mu_{i}
$$

where the ω_{i} 's are known coefficients that add up to 0 , $\sum_{i=1}^{g} \omega_{i}=0$.
Ex. Irrigation Effect Contrast:

Observe that $\quad \omega_{1 N}+\omega_{4 N}+\omega_{1 Y}+\omega_{4 Y}+\omega_{2 N}+\omega_{3 N}$

$$
=0.5+0.5+(-0.5)+(-0.5)+0+0=0
$$

Chapter 4-27

Example of Contrasts

Q2 Does the irrigation effect change with nitrogen levels?

$$
\begin{aligned}
C= & \left(\mu_{1 \mathrm{~N}}-\mu_{1 \mathrm{Y}}\right)-\left(\mu_{4 \mathrm{~N}}-\mu_{4 \mathrm{Y}}\right) \\
= & \begin{array}{cccccc}
1 & \mu_{1 \mathrm{~N}}+(-1) \mu_{1 \mathrm{Y}}+(-1) \mu_{4 \mathrm{~N}}+ & 1 & \mu_{4 \mathrm{Y}}+ & 0 & \mu_{2 \mathrm{~N}}+ \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \mu_{3 \mathrm{~N}} \\
\omega_{1 N} & \omega_{1 Y} & \omega_{4 N} & \omega_{4 Y} & \omega_{2 N} & \omega_{3 N}
\end{array}
\end{aligned}
$$

Observe that $\sum_{i} \omega_{i}=1+(-1)+(-1)+1+0+0=0$.
Q4 Is the nitrogen effect linear?

$$
\begin{array}{rlllll}
C= & \frac{\mu_{1 \mathrm{~N}}-\mu_{2 \mathrm{~N}}}{200}-\frac{\mu_{2 \mathrm{~N}}-\mu_{3 \mathrm{~N}}}{200} \\
= & \frac{1}{200} \mu_{1 \mathrm{~N}}+\left(\frac{-2}{200}\right) \mu_{2 \mathrm{~N}}+\frac{1}{200} & \mu_{3 \mathrm{~N}}+ & 0 & \mu_{4 \mathrm{~N}}+ & 0 \\
& \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \mathrm{H}+ \\
& \downarrow & 0 & \mu_{4 \mathrm{Y}} \\
\omega_{1 N} & \omega_{2 N} & \omega_{3 N} & \omega_{4 N} & \omega_{1 \mathrm{Y}} & \omega_{4 \mathrm{Y}}
\end{array}
$$

Observe that $\sum_{i} \omega_{i}=\frac{1}{200}+\left(\frac{-2}{200}\right)+\frac{1}{200}+0+0+0=0$.
Chapter 4-28

More Examples of Contrasts

- Every pairwise comparison is a contrast! ($C=\mu_{k}-\mu_{\ell}$)

$$
\begin{aligned}
& \omega_{k}=1, \omega_{\ell}=-1, \text { all other } \omega_{i} \text { 's are } 0, \text { and } \\
& \sum_{i=1}^{g} \omega_{i}=1+(-1)+0+\cdots+0=0
\end{aligned}
$$

- A single treatment mean $C=\mu_{k}$ is NOT a contrast

$$
\begin{aligned}
& \text { Is } C=\frac{\mu_{1}+\mu_{2}}{2}-\frac{\mu_{3}+\mu_{4}+\mu_{5}}{3} \text { a contrast? Yes. } \\
& \omega_{1}=\omega_{2}=\frac{1}{2}, \omega_{3}=\omega_{4}=\omega_{5}=-\frac{1}{3}, \text { which add up to } 0 . \\
& \text { Is } C=\frac{\mu_{1}+\mu_{2}}{2}-\frac{\mu_{3}+\mu_{4}}{2}+\mu_{5} \text { a contrast? No. } \\
\omega_{1}= & \omega_{2}=\frac{1}{2}, \omega_{3}=\omega_{4}=-\frac{1}{2}, \omega_{5}=1, \text { which add up to } 1, \text { not } 0 .
\end{aligned}
$$

Estimator and Confidence Interval for a Contrast

A natural estimator for a contrast $C=\sum_{i=1}^{g} \omega_{i} \mu_{i}$ is

$$
\widehat{C}=\sum_{i=1}^{g} \omega_{i} \bar{y}_{i \bullet}
$$

As $\bar{y}_{1 \bullet}, \bar{y}_{2 \bullet}, \ldots$, and $\bar{y}_{g \bullet}$ are indep. of each other, we know

$$
\operatorname{Var}\left(\sum_{i=1}^{g} \omega_{i} \bar{y}_{i \bullet}\right)=\sum_{i=1}^{g} \operatorname{Var}\left(\omega_{i} \bar{y}_{i \bullet}\right)=\sum_{i=1}^{g} \omega_{i}^{2} \operatorname{Var}\left(\bar{y}_{i \bullet}\right)=\sum_{i=1}^{g} \omega_{i}^{2} \frac{\sigma^{2}}{n_{i}}
$$

The SD and SE of the estimator \widehat{C} :

$$
\mathrm{SD}(\widehat{C})=\sqrt{\sigma^{2} \sum_{i=1}^{g} \frac{\omega_{i}^{2}}{n_{i}}}, \quad \mathrm{SE}(\widehat{C})=\sqrt{\mathrm{MSE} \times \sum_{i=1}^{g} \frac{\omega_{i}^{2}}{n_{i}}}
$$

A $(1-\alpha) 100 \%$ confidence interval for the contrast C is

$$
\widehat{C} \pm t_{\alpha / 2, N-g} \times \operatorname{SE}(\widehat{C})
$$

Chapter 4-30

Hypothesis Testing for a Contrast

To test whether a contrast C is $0, H_{0}: C=0$, the test statistic is

$$
t=\frac{\widehat{C}}{\operatorname{SE}(\widehat{C})}=\frac{\sum_{i=1}^{g} \omega_{i} \bar{y}_{i \bullet}}{\sqrt{\mathrm{MSE} \times \sum_{i=1}^{g} \frac{\omega_{i}^{2}}{n_{i}}}} \sim t_{N-g}
$$

The calculation of the p-value depends on H_{a} as follows

The bell curve above is the t-curve with $\mathrm{df}=N-g$.
Chapter 4-31

Does the Irrigation Effect Change with Nitrogen Levels?

| Group | 1 N | 1 Y | 2 N | 3 N | 4 N | 4 Y |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |,$\quad \mathrm{MSE}=17.97$

The contrast we consider is

$$
C=\underbrace{\mu_{1 \mathrm{~N}}-\mu_{1 Y}}_{\begin{array}{c}
\text { irrigation effect at } \\
\text { nitro level }=200
\end{array}})-\underbrace{\mu_{4 \mathrm{~N}}-\mu_{4 \mathrm{Y}}}_{\begin{array}{c}
\text { irrigation effect at } \\
\text { nitro level }=800
\end{array}})
$$

in which $\left(\omega_{1 \mathrm{~N}}, \omega_{1 \mathrm{Y}}, \omega_{2 \mathrm{~N}}, \omega_{3 \mathrm{~N}}, \omega_{4 \mathrm{~N}}, \omega_{4 \mathrm{Y}}\right)=(1,-1,0,0,-1,1)$.
The contrast is estimated by

$$
\widehat{C}=\bar{y}_{1 N_{\bullet} \bullet}-\bar{y}_{1 Y_{\bullet}}-\left(\bar{y}_{4 N \bullet}-\bar{y}_{4 Y_{\bullet}}\right)=95-82.25-(50.5-52)=14.25 .
$$

with the standard error

$$
\operatorname{SE}(\widehat{C})=\sqrt{\operatorname{MSE} \sum_{i=1}^{g} \frac{\omega_{i}^{2}}{n_{i}}}=\sqrt{17.97\left(\frac{1^{2}}{4}+\frac{(-1)^{2}}{4}+\frac{(-1)^{2}}{4}+\frac{1^{2}}{4}\right)} \approx 4.24
$$

Chapter 4-32

Does the Irrigation Effect Change with Nitrogen Levels?

To test whether the irrigation effect changes with nitrogen level $\mathrm{H}_{0}: C=0$ v.s. $\mathrm{H}_{\mathrm{a}}: C \neq 0$, the t-statistic is

$$
t=\frac{\widehat{C}}{\mathrm{SE}(\widehat{C})}=\frac{14.25}{4.24} \approx 3.36
$$

with $\mathrm{df}=N-g=24-6=18$.
The two-sided p-value is
> 2*pt(3.36,df=18, lower.tail=F)
[1] 0.003486951
The small P-value indicates the irrigation effects are significantly different at the nitrogen level 200 and $800 \mathrm{mg} \mathrm{N} / \mathrm{kg}$ soil.

Chapter 4-33

Does the Irrigation Effect Change with Nitrogen Levels?

The 95% confidence interval for $C=\left(\mu_{1 \mathrm{~N}}-\mu_{1 \mathrm{Y}}\right)-\left(\mu_{4 \mathrm{~N}}-\mu_{4 \mathrm{Y}}\right)$ is

$$
\widehat{C} \pm t_{0.025, N-g} \times \mathrm{SE}(\widehat{C}) \approx 14.25 \pm 2.101 \times 4.24 \approx(5.34,23.16)
$$

in which $t_{0.025,24-6} \approx 2.101$ is found by the R command
> qt (0.025, df=18, lower.tail=F)
[1] 2.100922
This means that the irrigation effect (\% of grass w/ irrigation w/o irrigation) is on average 5.34% to 23.16% higher at nitrogen level 200 than at level $800 \mathrm{mg} \mathrm{N} / \mathrm{kg}$ soil, with 95% confidence.

Chapter 4-34

Is the Nitrogen Effect Linear?

Treatment	1 N	1 Y	2 N	3 N	4 N	4 Y
Mean $\bar{y}_{i \bullet}$	95	82.25	81.5	68.25	50.5	52

The contrast we consider is

$$
C=\frac{\mu_{1 \mathrm{~N}}-\mu_{2 \mathrm{~N}}}{200}-\frac{\mu_{2 \mathrm{~N}}-\mu_{3 \mathrm{~N}}}{200}=\frac{\mu_{1 \mathrm{~N}}-2 \mu_{2 \mathrm{~N}}+\mu_{3 \mathrm{~N}}}{200}
$$

with the coefficients $\left(\omega_{1 \mathrm{~N}}, \omega_{2 \mathrm{~N}}, \omega_{3 \mathrm{~N}}\right)=\left(\frac{1}{200}, \frac{-2}{200}, \frac{1}{200}\right)$.
The contrast is estimated by

$$
\widehat{C}=\frac{\bar{y}_{1 N_{\bullet}}-2 \bar{y}_{2 N_{\bullet}}+\bar{y}_{3 N_{\bullet}}}{200}=\frac{95-2 \times 81.5+68.25}{200}=\frac{0.25}{200}=0.00125 .
$$

with
$\operatorname{SE}(\widehat{C})=\sqrt{\operatorname{MSE} \sum_{i=1}^{g} \frac{\omega_{i}^{2}}{n_{i}}}=\sqrt{17.97\left(\frac{(1 / 200)^{2}}{4}+\frac{\left(\frac{-2}{200}\right)^{2}}{4}+\frac{(1 / 200)^{2}}{4}\right)} \approx 0.026$
Chapter 4-35

Is the Nitrogen Effect Linear?

To test whether the nitrogen effect is linear, the t-statistic is

$$
t=\frac{\widehat{C}}{\operatorname{SE}(\widehat{C})}=\frac{0.00125}{0.026} \approx 0.048
$$

$$
\text { with } \mathrm{df}=N-g=24-6=18
$$

The two-sided p-value is
> 2*pt ($0.048, \mathrm{df}=18$, lower.tail=F)
[1] 0.9622448
Conclusion: The huge P-value gives little evidence of nonlinearity
 (at nitrogen level 1,2, and 3). Remark: One can also test the linearity at level 2,3 , and 4

$$
C=\frac{\mu_{2 N}-\mu_{3 N}}{200}-\frac{\mu_{3 N}-\mu_{4 N}}{200}=\frac{\mu_{2 N}-2 \mu_{3 N}+\mu_{4 N}}{200} .
$$

which is left as an exercise.
Chapter 4-36

