Section 3.9 Experiments with Quantitative Factors, Goodness of Fit

Yibi Huang

3.9 Experiments with Quantitative Factors, Goodness of Fit (Dose Response Modeling)

Ch3B-1

Example - Resin Glue Failure Time - Background

- How to measure the lifetime of things like computer disk drives, light bulbs, and glue bonds?
E.g., a computer drive is claimed to have a lifetime of 800,000 hours (>90 years).
Clearly the manufacturer did not have disks on test for 90 years; how do they make such claims?
- Accelerated life test: Parts under stress (higher load, higher temperature, etc.) will usually fail sooner than parts that are unstressed. By modeling the lifetimes of parts under various stresses, we can estimate (extrapolate to) the lifetime of parts that are unstressed.
- Example: resin glue failure time

Example - Resin Glue Failure Time ${ }^{1}$

- Goal: to estimate the life time (in hours) of an encapsulating resin for gold-aluminum bonds in integrated circuits (operating at $120^{\circ} \mathrm{C}$)
- Method: accelerated life test
- Design: Randomly assign 37 units to one of 5 different temperature stresses (in Celsius)

$$
175^{\circ}, 194^{\circ}, 213^{\circ}, 231^{\circ}, 250^{\circ}
$$

- Treatments: temperature in Celsius
- Response: $Y=\log _{10}$ (time to failure in hours) of the tested material.

[^0]
Example - Resin Glue Failure Time - Data

$$
Y=\log _{10}(\text { Failure time in hours })
$$

Temperature $\left({ }^{\circ} \mathrm{C}\right)$				
175	194	213	231	250
2.04	1.66	1.53	1.15	1.26
1.91	1.71	1.54	1.22	0.83
2.00	1.42	1.38	1.17	1.08
1.92	1.76	1.31	1.16	1.02
1.85	1.66	1.35	1.21	1.09
1.96	1.61	1.27	1.28	1.06
1.88	1.55	1.26	1.17	
1.90	1.66	1.38		

Data file: resin.txt

> Ch3B-4

Example - Resin Glue Failure Time - $\mathrm{SS}_{t r t}$

$$
\begin{aligned}
& \bar{y}_{\bullet \bullet}=\frac{\sum n_{i} \bar{y}_{i \bullet}}{N} \\
& =\frac{1}{37}(8 \cdot 1.9325+8 \cdot 1.62875+8 \cdot 1.3775+7 \cdot 1.1943+6 \cdot 1.0567) \\
& \approx 1.4651 \\
& S S_{t r t}=\sum_{i=1}^{g} \sum_{j=1}^{n_{i}}\left(\bar{y}_{i_{\bullet}}-\bar{y}_{\bullet \bullet}\right)^{2}=\sum_{i=1}^{5} n_{i}\left(\bar{y}_{i \bullet}-\bar{y}_{\bullet \bullet}\right)^{2} \\
& =8(1.9325-1.4651)^{2}+8(1.62875-1.4651)^{2}+8(1.3775-1.4651)^{2} \\
& +7(1.1943-1.4651)^{2}+6(1.0567-1.4651)^{2} \\
& \approx 3.543
\end{aligned}
$$

Ch3B-5

Example: Resin Glue Failure Time - SSE, F, and P-value

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	175
Size n_{i}	8

Example: Resin Glue Failure Time - SSE, F, and P-value

Temperature (${ }^{\circ} \mathrm{C}$)	175	194	213	231	25
Size n_{i}	8	8	8	7	6
Mean \bar{y}_{i}	1.9325	1.62875	1.3775	1.1943	1.0567
SD s_{i}	0.0634	0.1048	0.1071	0.0458	0.1384
$\begin{aligned} S S E= & \sum_{i=1}^{g} \sum_{j=1}^{n_{i}}\left(y_{i j}-\bar{y}_{i \bullet}\right)^{2}=\sum_{i=1}^{g}\left(n_{i}-1\right) s_{i}^{2} \\ = & (8-1)(0.0634)^{2}+(8-1)(0.1048)^{2}+(8-1)(0.1071)^{2} \\ & +(7-1)(0.0458)^{2}+(6-1)(0.1384)^{2} \\ \approx & 0.2937 \end{aligned}$					

$$
F \text {-statistic }=\frac{S S_{\text {trt }} /(g-1)}{S S E /(N-g)}=\frac{3.543 /(5-1)}{0.2937 /(37-5)} \approx 96.52
$$

with $g-1=5-1=4$ and $N-g=37-5=32$ degrees of freedom.

Example: Resin Glue Failure Time - SSE, F, and P-value

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	175	194	213	231	250
Size n_{i}	8	8	8	7	6
Mean $\bar{y}_{i} \bullet$	1.9325	1.62875	1.3775	1.1943	1.0567
SD s_{i}	0.0634	0.1048	0.1071	0.0458	0.1384

$$
\begin{aligned}
S S E= & \sum_{i=1}^{g} \sum_{j=1}^{n_{i}}\left(y_{i j}-\bar{y}_{i \bullet}\right)^{2}=\sum_{i=1}^{g}\left(n_{i}-1\right) s_{i}^{2} \\
= & (8-1)(0.0634)^{2}+(8-1)(0.1048)^{2}+(8-1)(0.1071)^{2} \\
& +(7-1)(0.0458)^{2}+(6-1)(0.1384)^{2} \\
\approx & 0.2937
\end{aligned}
$$

$$
F \text {-statistic }=\frac{S S_{t r t} /(g-1)}{S S E /(N-g)}=\frac{3.543 /(5-1)}{0.2937 /(37-5)} \approx 96.52
$$

with $g-1=5-1=4$ and $N-g=37-5=32$ degrees of freedom.
The P-value is $\approx 2.189 \times 10^{-17}$. The data exhibit strong evidence against the H_{0} that all means are equal.

```
> pf(96.52, df1 = 4, df2 = 32, lower.tail=F)
[1] 2.188913e-17
```

Ch3B-6

Always Check the Degrees of Freedom!

6

```
> resin = read.table(
        "http://www.stat.uchicago.edu/~ yibi/s222/resin.txt", h=T)
> str(resin)
'data.frame': 37 obs. of 2 variables:
    $ tempC: int 175 175 175 175 175 175 175 175 194 194 ...
    $ y : num 2.04 1.91 2 1.92 1.85 1.96 1.88 1.9 1.66 1.71 ...
> lm1 = lm(y ~ tempC, data=resin)
> anova(lm1)
    Df Sum Sq Mean Sq F value Pr (>F)
tempC 1 3.4593 3.4593 325.41<2.2e-16 ***
Residuals 35 0.3721 0.0106
```

Something wrong?

Always Check the Degrees of Freedom!

6

```
> resin = read.table(
        "http://www.stat.uchicago.edu/~ yibi/s222/resin.txt", h=T)
> str(resin)
'data.frame': 37 obs. of 2 variables:
    $ tempC: int 175 175 175 175 175 175 175 175 194 194 ...
    $ y : num 2.04 1.91 2 1.92 1.85 1.96 1.88 1.9 1.66 1.71 \ldots
> lm1 = lm(y ~ tempC, data=resin)
> anova(lm1)
    Df Sum Sq Mean Sq F value Pr (>F)
tempC 1 3.4593 3.4593 325.41<2.2e-16 ***
Residuals 35 0.3721 0.0106
```

Something wrong?
d.f. for tempC should be $g-1=5-1=4$, not 1 .

Always Check the Degrees of Freedom!

```
> resin = read.table(
    "http://www.stat.uchicago.edu/~yibi/s222/resin.txt", h=T)
> str(resin)
'data.frame': 37 obs. of 2 variables:
    $ tempC: int 175 175 175 175 175 175 175 175 194 194 ...
    $ y : num 2.04 1.91 2 1.92 1.85 1.96 1.88 1.9 1.66 1.71 ...
> lm1 = lm(y ~ tempC, data=resin)
> anova(lm1)
    Df Sum Sq Mean Sq F value Pr(>F)
tempC 1 3.4593 3.4593 325.41< 2.2e-16 ***
Residuals 35 0.3721 0.0106
```

Something wrong?
d.f. for tempC should be $g-1=5-1=4$, not 1 . As tempC is numerical, by default, R will fit the regression model

$$
y_{i j}=\beta_{0}+\beta_{1} \mathrm{tempC}_{i}+\varepsilon_{i j} .
$$

The ANOVA table above is for comparing the regression model above with the null model $y_{i j}=\beta_{0}+\varepsilon_{i j}$.

Always Check the Degrees of Freedom

To fit the multi-sample model in Lecture 1, which the textbook called the means model

$$
y_{i j}=\mu_{i}+\varepsilon_{i j} .
$$

we need to let R treat tempC as categorical by as.factor()ing it.

```
> lmmeans = lm(y ~ as.factor(tempC), data=resin)
> anova(lmmeans)
    Df Sum Sq Mean Sq F value }\operatorname{Pr}(>F
as.factor(tempC) 4 3.5376 0.88441 96.363<2.2e-16 ***
Residuals }320.2937 0.0091
```


Always Check the Degrees of Freedom

To fit the multi-sample model in Lecture 1, which the textbook called the means model

$$
y_{i j}=\mu_{i}+\varepsilon_{i j} .
$$

we need to let R treat tempC as categorical by as.factor()ing it.

```
> lmmeans = lm(y ~ as.factor(tempC), data=resin)
> anova(lmmeans)
    Df Sum Sq Mean Sq F value Pr(>F)
as.factor(tempC) 4 3.5376 0.88441 96.363< 2.2e-16 ***
Residuals 32 0.2937 0.00918
```

What's the difference between the regression model and the means model?

Means Model Is a Multiple Linear Regression Model

For an experiment with g treatments, the Means model

$$
y_{i j}=\mu_{i}+\varepsilon_{i j}
$$

can be written as a multiple linear regression model by defining a dummy variable for each treatment group. The dummy variable for the i th treatment is defined as

$$
D_{i}= \begin{cases}1 & \text { if the experimental unit receives the ith treatment } \\ 0 & \text { otherwise }\end{cases}
$$

The means model can then be written as a regression model

$$
y=\mu_{1} D_{1}+\mu_{2} D_{2}+\cdots+\mu_{g} D_{g}+\varepsilon
$$

Means Model Is a Multiple Linear Regression Model

For an experiment with g treatments, the Means model

$$
y_{i j}=\mu_{i}+\varepsilon_{i j}
$$

can be written as a multiple linear regression model by defining a dummy variable for each treatment group. The dummy variable for the i th treatment is defined as

$$
D_{i}= \begin{cases}1 & \text { if the experimental unit receives the ith treatment } \\ 0 & \text { otherwise }\end{cases}
$$

The means model can then be written as a regression model

$$
y=\mu_{1} D_{1}+\mu_{2} D_{2}+\cdots+\mu_{g} D_{g}+\varepsilon
$$

- If a unit receives the 2nd treatment, then $D_{2}=1$ and $D_{i}=0$ for $i \neq 2$, then

$$
y=\mu_{1} \cdot 0+\mu_{2} \cdot 1+\mu_{3} \cdot 0+\cdots+\mu_{g} \cdot 0+\varepsilon=\mu_{2}+\varepsilon
$$

Means Model Is a Multiple Linear Regression Model

For an experiment with g treatments, the Means model

$$
y_{i j}=\mu_{i}+\varepsilon_{i j}
$$

can be written as a multiple linear regression model by defining a dummy variable for each treatment group. The dummy variable for the i th treatment is defined as

$$
D_{i}= \begin{cases}1 & \text { if the experimental unit receives the ith treatment } \\ 0 & \text { otherwise }\end{cases}
$$

The means model can then be written as a regression model

$$
y=\mu_{1} D_{1}+\mu_{2} D_{2}+\cdots+\mu_{g} D_{g}+\varepsilon
$$

- If a unit receives the 2nd treatment, then $D_{2}=1$ and $D_{i}=0$ for $i \neq 2$, then

$$
y=\mu_{1} \cdot 0+\mu_{2} \cdot 1+\mu_{3} \cdot 0+\cdots+\mu_{g} \cdot 0+\varepsilon=\mu_{2}+\varepsilon
$$

- This regression model has no intercept

Ch3B-9

In R, putting -1 in the model formula tells R to fit a regression model with no intercept.

	Estimate	Std. Error t	value	$\operatorname{Pr}(>\|\mathrm{t}\|)$	
as.factor (tempC) 175	1.93250	0.03387	57.05	$<2 \mathrm{e}-16$	***
as.factor (tempC) 194	1.62875	0.03387	48.09	$<2 \mathrm{e}-16$	***
as.factor (tempC) 213	1.37750	0.03387	40.67	$<2 \mathrm{e}-16$	***
as.factor (tempC) 231	1.19429	0.03621	32.98	$<2 \mathrm{e}-16$	***
as.factor (tempC) 250	1.05667	0.03911	27.02	$<2 \mathrm{e}-16$	***

In R, putting -1 in the model formula tells R to fit a regression model with no intercept.
$>\operatorname{lmmeans}=\operatorname{lm}\left(\mathrm{y}^{\sim}-1+\right.$ as.factor (tempC), data $=$ resin $)$
> summary(lmmeans)
Estimate Std. Error t value $\operatorname{Pr}(>|\mathrm{t}|)$

as.factor (tempC) 175	1.93250	0.03387	57.05	$<2 \mathrm{e}-16 * * *$
as.factor (tempC) 194	1.62875	0.03387	48.09	$<2 \mathrm{e}-16 * * *$
as.factor (tempC)213	1.37750	0.03387	40.67	$<2 \mathrm{e}-16 * * *$
as.factor (tempC)231	1.19429	0.03621	32.98	$<2 \mathrm{e}-16 * * *$
as.factor (tempC)250	1.05667	0.03911	27.02	$<2 \mathrm{e}-16 * * *$

Temp	n_{i}	$\bar{y}_{i \bullet}$	
175	8	1.93250	
194	8	1.62875	
213	8	1.37750	
231	7	1.19429	
250	6	1.05667	

In R, putting -1 in the model formula tells R to fit a regression model with no intercept.

	Estimate	Std. Error t	value	$\operatorname{Pr}(>\|t\|)$	
as.factor (tempC) 175	1.93250	0.03387	57.05	$<2 \mathrm{e}-16$	***
as.factor (tempC) 194	1.62875	0.03387	48.09	<2e-16	**
as.factor (tempC) 213	1.37750	0.03387	40.67	<2e-16	*
as.factor (tempC) 231	1.19429	0.03621	32.98	<2e-16	***
as.factor (tempC) 250	1.05667	0.03911	27.02	$<2 \mathrm{e}-16$	***

Temp	n_{i}	$\bar{y}_{i \bullet}$	$\mathrm{SE}\left(\bar{y}_{i \bullet}\right)=\sqrt{\mathrm{MSE} / n_{i}}$
175	8	1.93250	$\sqrt{0.00918 / 8}=0.03387$
194	8	1.62875	$\sqrt{0.00918 / 8}=0.03387$
213	8	1.37750	$\sqrt{0.00918 / 8}=0.03387$
231	7	1.19429	$\sqrt{0.00918 / 7}=0.03621$
250	6	1.05667	$\sqrt{0.00918 / 6}=0.03911$

In R, putting -1 in the model formula tells R to fit a regression model with no intercept.

```
> lmmeans = lm(y ~ -1 + as.factor(tempC), data = resin)
> summary(lmmeans)
                                Estimate Std. Error t value Pr (>|t|)
\begin{tabular}{lllll} 
as.factor (tempC) 175 & 1.93250 & 0.03387 & 57.05 & \(<2 \mathrm{e}-16 * * *\) \\
as.factor (tempC) 194 & 1.62875 & 0.03387 & 48.09 & \(<2 \mathrm{e}-16 * * *\) \\
as.factor (tempC)213 & 1.37750 & 0.03387 & 40.67 & \(<2 \mathrm{e}-16 * * *\) \\
as.factor (tempC)231 & 1.19429 & 0.03621 & 32.98 & \(<2 \mathrm{e}-16 * * *\) \\
as.factor (tempC)250 & 1.05667 & 0.03911 & 27.02 & \(<2 \mathrm{e}-16 * * *\)
\end{tabular}
```

Temp	n_{i}	$\bar{y}_{i \bullet}$	$\mathrm{SE}\left(\bar{y}_{i \bullet}\right)=\sqrt{\mathrm{MSE} / n_{i}}$
175	8	1.93250	$\sqrt{0.00918 / 8}=0.03387$
194	8	1.62875	$\sqrt{0.00918 / 8}=0.03387$
213	8	1.37750	$\sqrt{0.00918 / 8}=0.03387$
231	7	1.19429	$\sqrt{0.00918 / 7}=0.03621$
250	6	1.05667	$\sqrt{0.00918 / 6}=0.03911$

Observe the Estimate coefficients are simply group means $\bar{y}_{i \bullet}$ and Std. Error is the $\operatorname{SE}\left(\bar{y}_{i_{\bullet}}\right)=\sqrt{\mathrm{MSE} / n_{i}}$, for a group mean μ_{i} introduced in Lecture 2, where MSE $=0.00918$ for the resin data.

Means Model and the Effects Model

The textbook models for multi-sample data in two forms:

$$
\begin{aligned}
y_{i j} & =\mu_{i}+\varepsilon_{i j} & & (\text { means model }) \\
& =\mu+\alpha_{i}+\varepsilon_{i j} & & (\text { effects model })
\end{aligned}
$$

- Observe the effects model has $g+1$ parameters $\mu, \alpha_{1}, \ldots, \alpha_{g}$, while the means model only has g parameters μ_{1}, \ldots, μ_{g}

Means Model and the Effects Model

The textbook models for multi-sample data in two forms:

$$
\begin{aligned}
y_{i j} & =\mu_{i}+\varepsilon_{i j} & & (\text { means model }) \\
& =\mu+\alpha_{i}+\varepsilon_{i j} & & (\text { effects model })
\end{aligned}
$$

- Observe the effects model has $g+1$ parameters $\mu, \alpha_{1}, \ldots, \alpha_{g}$, while the means model only has g parameters μ_{1}, \ldots, μ_{g}
- The effects model is overparameterized, meaning it has more parameters than required. One can change the values of μ and α_{i} 's as follows without changing the value of $\mu+\alpha_{i}$.

$$
\begin{gathered}
\mu \rightarrow \mu+c \\
\alpha_{1} \rightarrow \alpha_{1}-c \\
\vdots \\
\alpha_{g} \rightarrow \alpha_{g}-c
\end{gathered}
$$

Thus parameters in the effects model cannot be uniquely determined.

Means Model and the Effects Model

The textbook models for multi-sample data in two forms:

$$
\begin{aligned}
y_{i j} & =\mu_{i}+\varepsilon_{i j} & & (\text { means model }) \\
& =\mu+\alpha_{i}+\varepsilon_{i j} & & (\text { effects model })
\end{aligned}
$$

- Observe the effects model has $g+1$ parameters $\mu, \alpha_{1}, \ldots, \alpha_{g}$, while the means model only has g parameters μ_{1}, \ldots, μ_{g}
- The effects model is overparameterized, meaning it has more parameters than required. One can change the values of μ and α_{i} 's as follows without changing the value of $\mu+\alpha_{i}$.

$$
\begin{gathered}
\mu \rightarrow \mu+c \\
\alpha_{1} \rightarrow \alpha_{1}-c \\
\vdots \\
\alpha_{g} \rightarrow \alpha_{g}-c
\end{gathered}
$$

Thus parameters in the effects model cannot be uniquely determined.

- The two models are equivalent in the sense that they give identical fitted values

How to Deal With Overparametrization?

A common way to deal with overparametrization is forcing, α_{1}, or one of the α_{i} 's, to be 0 . Then

$$
\mathbb{E}\left[y_{i j}\right]=\left\{\begin{array}{llc}
\mu_{1}=\mu & \text { for trt } 1 & \\
\mu_{2}=\mu+\alpha_{2} & \text { for trt } 2 \\
\vdots & \vdots &
\end{array} \Rightarrow \begin{array}{c}
\mu=\mu_{1} \\
= \\
\end{array}\right.
$$

- Testing $\alpha_{i}=0$ is equivalent to testing $\mu_{i}=\mu_{1}$ Useful for comparing treatments

How to Deal With Overparametrization?

A common way to deal with overparametrization is forcing, α_{1}, or one of the α_{i} 's, to be 0 . Then

$$
\mathbb{E}\left[y_{i j}\right]=\left\{\begin{array}{llc}
\mu_{1}=\mu & \text { for trt } 1 & \\
\mu_{2}=\mu+\alpha_{2} & \text { for trt } 2 \\
\vdots & \vdots &
\end{array} \Rightarrow \begin{array}{c}
\mu=\mu_{1} \\
\vdots
\end{array}\right.
$$

- Testing $\alpha_{i}=0$ is equivalent to testing $\mu_{i}=\mu_{1}$

Useful for comparing treatments
Another way to cope with overparametrization is forcing α_{i} 's add up to 0

$$
\sum_{i=1}^{g} \alpha_{i}=0
$$

This sum-to-zero constraint seems to come up abruptly, but it can greatly simplify the formulas for factorial design models in Chapter 8. We will come back to it in Chapter 8.

Effects Model

> lmeffects = lm(y ~ as.factor (tempC), data = resin)
> summary (lmeffects)
Coefficients:

(Intercept)	1.93250	0.03387	57.055	< 2e-16	***
as.factor (tempC) 194	-0.30375	0.04790	-6.341	$4.06 \mathrm{e}-07$	*
as.factor (tempC) 213	-0.55500	0.04790	-11.586	$5.49 \mathrm{e}-13$	***
as.factor (tempC) 231	-0.73821	0.04958	-14.889	$6.13 \mathrm{e}-16$	
as.factor (tempC) 250	-0.87583	0.05174	-16.928	< 2e-16	***

Note there is no as.factor (temp) 175 since R sets $\alpha_{175}=0$.

Temp	n_{i}	$\bar{y}_{i \bullet}$	$\widehat{\alpha}_{i}=\bar{y}_{i \bullet}-\bar{y}_{1 \bullet}$	
175	8	1.933	$1.933-1.933=0$	
194	8	1.629	$1.629-1.933=-0.304$	
213	8	1.378	$1.378-1.933=-0.555$	
231	7	1.194	$1.194-1.933=-0.737$	
250	6	1.057	$1.057-1.933=-0.876$	

Effects Model

> lmeffects $=\operatorname{lm}\left(y^{\sim}\right.$ as.factor (tempC), data $=$ resin $)$
> summary (lmeffects)
Coefficients:

(Intercept)	1.93250	0.03387	57.055	$<2 \mathrm{e}-16$	***
as.factor (tempC) 194	-0.30375	0.04790	-6.341	$4.06 \mathrm{e}-07$	
as.factor (tempC) 213	-0.55500	0.04790	-11.586	$5.49 \mathrm{e}-13$	
as.factor (tempC) 231	-0.73821	0.04958	-14.889	$6.13 \mathrm{e}-16$	
as.factor (tempC) 250	-0.87583	0.05174	-16.928	< 2e-16	

Note there is no as.factor (temp) 175 since R sets $\alpha_{175}=0$.

Temp	n_{i}	$\bar{y}_{i \bullet}$	$\widehat{\alpha}_{i}=\bar{y}_{i \bullet}-\bar{y}_{1 \bullet}$	$\mathrm{SE}\left(\bar{y}_{i \bullet}-\bar{y}_{1 \bullet}\right)=\sqrt{\operatorname{MSE}\left(\frac{1}{n_{i}}+\frac{1}{n_{1}}\right)}$
175	8	1.933	$1.933-1.933=0$	0
194	8	1.629	$1.629-1.933=-0.304$	$\sqrt{0.00918\left(\frac{1}{8}+\frac{1}{8}\right)}=0.04790$
213	8	1.378	$1.378-1.933=-0.555$	$\sqrt{0.00918\left(\frac{1}{8}+\frac{1}{8}\right)}=0.04790$
231	7	1.194	$1.194-1.933=-0.737$	$\sqrt{0.00918\left(\frac{1}{7}+\frac{1}{8}\right)}=0.04958$
250	6	1.057	$1.057-1.933=-0.876$	$\sqrt{0.00918\left(\frac{1}{6}+\frac{1}{8}\right)}=0.05174$

Ch3B - 13

Comparison of Two ANOVA Tables

For comparing the means models $y_{i j}=\mu_{i}+\varepsilon_{i j}$ against the null models $y_{i j}=\mu+\varepsilon_{i j}$:

Source	df	SS	MS	F
Treatments	$g-1$	$\mathrm{SS}_{\text {trt }}=\sum_{i=1}^{g} \sum_{j=1}^{n_{i}}\left(\bar{y}_{i \bullet}-\bar{y}_{\bullet \bullet}\right)^{2}$	$\mathrm{MS}_{t r t}=\frac{\mathrm{SS}}{\mathrm{trt}}$	
Error	$N-g$	$\mathrm{MS} \mathrm{MS}_{t r t}$		
MSE $=\sum_{i=1}^{g} \sum_{j=1}^{n_{i}}\left(y_{i j}-\bar{y}_{\bullet \bullet}\right)^{2}$	$\mathrm{MSE}=\frac{\mathrm{SSE}}{N-g}$			
Total	$N-1$	$\mathrm{SST}=\sum_{i=1}^{g} \sum_{j=1}^{n_{i}}\left(y_{i j}-\bar{y}_{\bullet \bullet}\right)^{2}$		

For comparing the MLR models $y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\ldots+\beta_{p} x_{i p}+\varepsilon_{i}$ against the null model $y_{i}=\beta_{0}+\varepsilon_{i}$:

Source	df	SS	MS	F
Regression Error	$\begin{gathered} p \\ n-p-1 \end{gathered}$	$\begin{aligned} & \mathrm{SSR}=\sum_{i=1}^{n}\left(\widehat{y}_{i}-\bar{y}\right)^{2} \\ & \mathrm{SSE}=\sum_{i=1}^{n}\left(y_{i}-\widehat{y}_{i}\right)^{2} \end{aligned}$	$\begin{gathered} \mathrm{MSR}=\frac{\mathrm{SSR}}{p} \\ \mathrm{MSE}=\frac{\mathrm{SSE}}{n-p-1} \end{gathered}$	$F=\frac{\mathrm{MSR}}{\mathrm{MSE}}$
Total	$n-1$	$S S T=\sum \operatorname{chs}^{4}\left(\mathbb{B}_{i}-1 \%\right)^{2}$		

Limitation of ANOVA F-Tests

The tiny P-value of ANOVA F-test merely shows resin glue at different temperatures has different lifetimes.

However, our ultimate goal is to predict the lifetime of the glue at temperature $120^{\circ} \mathrm{C}$.
(red cross marks group means)
Ch3B - 15

Dose-Response Modeling

In some experiments, the treatments are associated with numerical levels x_{i} such as drug dose, baking time, or temperature.
Textbook refers to such levels as doses.

Dose-Response Modeling

In some experiments, the treatments are associated with numerical levels x_{i} such as drug dose, baking time, or temperature.
Textbook refers to such levels as doses.

- The means model $y_{i j}=\mu_{i}+\varepsilon_{i j}$ doesn't specify how the response y changes with the treatment levels x_{i}. Hence it cannot predict y at dose levelx not observed in the experiment

Dose-Response Modeling

In some experiments, the treatments are associated with numerical levels x_{i} such as drug dose, baking time, or temperature.
Textbook refers to such levels as doses.

- The means model $y_{i j}=\mu_{i}+\varepsilon_{i j}$ doesn't specify how the response y changes with the treatment levels x_{i}. Hence it cannot predict y at dose levelx not observed in the experiment
- With a numerical treatment factor, researchers are usually more interested on how the response is affected as a function of the dose level x_{i}

$$
y_{i j}=f\left(x_{i} ; \theta\right)+\varepsilon_{i j}
$$

e.g.,

$$
\begin{aligned}
f\left(x_{i} ; \beta_{0}, \beta_{1}\right) & =\beta_{0}+\beta_{1} x_{i} ; \\
f\left(x_{i} ; \beta_{0}, \beta_{1}, \beta_{2}\right) & =\beta_{0}+\beta_{1} x_{i}+\beta_{2} x_{i}^{2} ; \text { or } \\
f\left(x_{i} ; \beta_{0}, \beta_{1}\right) & =\beta_{0}+\beta_{1} \log \left(x_{i}\right) .
\end{aligned}
$$

$$
y_{i j}=f\left(x_{i} ; \theta\right)+\varepsilon_{i j}
$$

Advantages of dose-response modeling

- less complex (fewer parameters)
- easier to interpret (sometimes)
- can predict y at dose levels not observed in the experiment

$$
y_{i j}=f\left(x_{i} ; \theta\right)+\varepsilon_{i j}
$$

Advantages of dose-response modeling

- less complex (fewer parameters)
- easier to interpret (sometimes)
- can predict y at dose levels not observed in the experiment

Issues to consider:

- How to choose the function f ?

$$
y_{i j}=f\left(x_{i} ; \theta\right)+\varepsilon_{i j}
$$

Advantages of dose-response modeling

- less complex (fewer parameters)
- easier to interpret (sometimes)
- can predict y at dose levels not observed in the experiment

Issues to consider:

- How to choose the function f ?
- One commonly used family of functions f are polynomials:

$$
f\left(x_{i} ; \beta\right)=\beta_{0}+\beta_{1} x_{i}+\beta_{2} x_{i}^{2}+\cdots+\beta_{k} x_{i}^{k},
$$

$$
y_{i j}=f\left(x_{i} ; \theta\right)+\varepsilon_{i j}
$$

Advantages of dose-response modeling

- less complex (fewer parameters)
- easier to interpret (sometimes)
- can predict y at dose levels not observed in the experiment

Issues to consider:

- How to choose the function f ?
- One commonly used family of functions f are polynomials:

$$
f\left(x_{i} ; \beta\right)=\beta_{0}+\beta_{1} x_{i}+\beta_{2} x_{i}^{2}+\cdots+\beta_{k} x_{i}^{k}
$$

Polynomials are NOT always the best choice.

$$
y_{i j}=f\left(x_{i} ; \theta\right)+\varepsilon_{i j}
$$

Advantages of dose-response modeling

- less complex (fewer parameters)
- easier to interpret (sometimes)
- can predict y at dose levels not observed in the experiment

Issues to consider:

- How to choose the function f ?
- One commonly used family of functions f are polynomials:

$$
f\left(x_{i} ; \beta\right)=\beta_{0}+\beta_{1} x_{i}+\beta_{2} x_{i}^{2}+\cdots+\beta_{k} x_{i}^{k},
$$

Polynomials are NOT always the best choice.

- How to assess how well f fits the data? Goodness of fit

Polynomial Models

Let t_{i} denote the temperature in treatment group i.
Consider the following polynomial models for the resin glue data.

$$
\begin{aligned}
\text { Null : } y_{i j} & =\mu+\varepsilon_{i j} \\
\text { Linear : } y_{i j} & =\beta_{0}+\beta_{1} t_{i}+\varepsilon_{i j} \\
\text { 2nd order : } y_{i j} & =\beta_{0}+\beta_{1} t_{i}+\beta_{2} t_{i}^{2}+\varepsilon_{i j} \\
\text { 3rd order : } y_{i j} & =\beta_{0}+\beta_{1} t_{i}+\beta_{2} t_{i}^{2}+\beta_{3} t_{i}^{3}+\varepsilon_{i j} \\
\text { 4th order : } y_{i j} & =\beta_{0}+\beta_{1} t_{i}+\beta_{2} t_{i}^{2}+\beta_{3} t_{i}^{3}+\beta_{4} t_{i}^{4}+\varepsilon_{i j}
\end{aligned}
$$

- For simplicity, we would choose the lowest possible order of polynomial that adequately fits the data.

Polynomial Models

Let t_{i} denote the temperature in treatment group i.
Consider the following polynomial models for the resin glue data.

$$
\begin{aligned}
\text { Null : } y_{i j} & =\mu+\varepsilon_{i j} \\
\text { Linear : } y_{i j} & =\beta_{0}+\beta_{1} t_{i}+\varepsilon_{i j} \\
\text { 2nd order : } y_{i j} & =\beta_{0}+\beta_{1} t_{i}+\beta_{2} t_{i}^{2}+\varepsilon_{i j} \\
\text { 3rd order : } y_{i j} & =\beta_{0}+\beta_{1} t_{i}+\beta_{2} t_{i}^{2}+\beta_{3} t_{i}^{3}+\varepsilon_{i j} \\
\text { 4th order : } y_{i j} & =\beta_{0}+\beta_{1} t_{i}+\beta_{2} t_{i}^{2}+\beta_{3} t_{i}^{3}+\beta_{4} t_{i}^{4}+\varepsilon_{i j}
\end{aligned}
$$

- For simplicity, we would choose the lowest possible order of polynomial that adequately fits the data.
- Every model is nested in the model below it. (Why?)

Polynomial Models

Let t_{i} denote the temperature in treatment group i.
Consider the following polynomial models for the resin glue data.

$$
\begin{aligned}
\text { Null : } y_{i j} & =\mu+\varepsilon_{i j} \\
\text { Linear : } y_{i j} & =\beta_{0}+\beta_{1} t_{i}+\varepsilon_{i j} \\
\text { 2nd order : } y_{i j} & =\beta_{0}+\beta_{1} t_{i}+\beta_{2} t_{i}^{2}+\varepsilon_{i j} \\
\text { 3rd order : } y_{i j} & =\beta_{0}+\beta_{1} t_{i}+\beta_{2} t_{i}^{2}+\beta_{3} t_{i}^{3}+\varepsilon_{i j} \\
\text { 4th order : } y_{i j} & =\beta_{0}+\beta_{1} t_{i}+\beta_{2} t_{i}^{2}+\beta_{3} t_{i}^{3}+\beta_{4} t_{i}^{4}+\varepsilon_{i j}
\end{aligned}
$$

- For simplicity, we would choose the lowest possible order of polynomial that adequately fits the data.
- Every model is nested in the model below it. (Why?)
- Never skip a term. If a higher order term is significant, e.g., t_{i}^{3}, than all lower order terms have to be kept $\left(1, t_{i}, t_{i}^{2}\right)$, even if they are not significant.

Polynomial Models

Let t_{i} denote the temperature in treatment group i.
Consider the following polynomial models for the resin glue data.

$$
\begin{aligned}
\text { Null : } y_{i j} & =\mu+\varepsilon_{i j} \\
\text { Linear : } y_{i j} & =\beta_{0}+\beta_{1} t_{i}+\varepsilon_{i j} \\
\text { 2nd order : } y_{i j} & =\beta_{0}+\beta_{1} t_{i}+\beta_{2} t_{i}^{2}+\varepsilon_{i j} \\
\text { 3rd order : } y_{i j} & =\beta_{0}+\beta_{1} t_{i}+\beta_{2} t_{i}^{2}+\beta_{3} t_{i}^{3}+\varepsilon_{i j} \\
\text { 4th order : } y_{i j} & =\beta_{0}+\beta_{1} t_{i}+\beta_{2} t_{i}^{2}+\beta_{3} t_{i}^{3}+\beta_{4} t_{i}^{4}+\varepsilon_{i j}
\end{aligned}
$$

- For simplicity, we would choose the lowest possible order of polynomial that adequately fits the data.
- Every model is nested in the model below it. (Why?)
- Never skip a term. If a higher order term is significant, e.g., t_{i}^{3}, than all lower order terms have to be kept $\left(1, t_{i}, t_{i}^{2}\right)$, even if they are not significant.
- Why not consider 5th order or higher order models?

In general, for an experiment with g treatment groups, if the treatment factor is numeric, one can fit a polynomial model up to degree $g-1$

$$
y_{i j}=\beta_{0}+\beta_{1} x_{i}+\cdots+\beta_{g-1} x_{i}^{g-1}+\varepsilon_{i j}
$$

Question: For the resin glue data, what will happen if a 5th-order polynomial model is fitted?

$$
y_{i j}=\beta_{0}+\beta_{1} t_{i}+\beta_{2} t_{i}^{2}+\beta_{3} t_{i}^{3}+\beta_{4} t_{i}^{4}+\beta_{5} t_{i}^{5}+\varepsilon_{i j}
$$

In general, for an experiment with g treatment groups, if the treatment factor is numeric, one can fit a polynomial model up to degree $g-1$

$$
y_{i j}=\beta_{0}+\beta_{1} x_{i}+\cdots+\beta_{g-1} x_{i}^{g-1}+\varepsilon_{i j}
$$

Question: For the resin glue data, what will happen if a 5th-order polynomial model is fitted?

$$
y_{i j}=\beta_{0}+\beta_{1} t_{i}+\beta_{2} t_{i}^{2}+\beta_{3} t_{i}^{3}+\beta_{4} t_{i}^{4}+\beta_{5} t_{i}^{5}+\varepsilon_{i j}
$$

- There are 6 parameters $\left(\beta_{0}, \beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \beta_{5}\right)$, but only 5 groups - overparametrization!

In general, for an experiment with g treatment groups, if the treatment factor is numeric, one can fit a polynomial model up to degree $g-1$

$$
y_{i j}=\beta_{0}+\beta_{1} x_{i}+\cdots+\beta_{g-1} x_{i}^{g-1}+\varepsilon_{i j}
$$

Question: For the resin glue data, what will happen if a 5th-order polynomial model is fitted?

$$
y_{i j}=\beta_{0}+\beta_{1} t_{i}+\beta_{2} t_{i}^{2}+\beta_{3} t_{i}^{3}+\beta_{4} t_{i}^{4}+\beta_{5} t_{i}^{5}+\varepsilon_{i j}
$$

- There are 6 parameters $\left(\beta_{0}, \beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \beta_{5}\right)$, but only 5 groups - overparametrization!
- There exist more than one 5th-order polynomial passing through the 5 points $\left(175, \mu_{1}\right),\left(194, \mu_{2}\right),\left(213, \mu_{3}\right),\left(231, \mu_{4}\right)$, and $\left(250, \mu_{5}\right)$. Thus the 6 coefficients $\beta_{0}, \beta_{1}, \ldots, \beta_{5}$ CANNOT be uniquely determined.

In general, for an experiment with g treatment groups, if the treatment factor is numeric, one can fit a polynomial model up to degree $g-1$

$$
y_{i j}=\beta_{0}+\beta_{1} x_{i}+\cdots+\beta_{g-1} x_{i}^{g-1}+\varepsilon_{i j}
$$

Question: For the resin glue data, what will happen if a 5th-order polynomial model is fitted?

$$
y_{i j}=\beta_{0}+\beta_{1} t_{i}+\beta_{2} t_{i}^{2}+\beta_{3} t_{i}^{3}+\beta_{4} t_{i}^{4}+\beta_{5} t_{i}^{5}+\varepsilon_{i j}
$$

- There are 6 parameters $\left(\beta_{0}, \beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \beta_{5}\right)$, but only 5 groups - overparametrization!
- There exist more than one 5th-order polynomial passing through the 5 points $\left(175, \mu_{1}\right),\left(194, \mu_{2}\right),\left(213, \mu_{3}\right),\left(231, \mu_{4}\right)$, and $\left(250, \mu_{5}\right)$. Thus the 6 coefficients $\beta_{0}, \beta_{1}, \ldots, \beta_{5}$ CANNOT be uniquely determined.
A rule of thumb: for an experiment with g treatments, we can fit a model with at most g parameters.

Ch3B-19

Linear Model (1)

Let's try fitting the linear model: $y_{i j}=\beta_{0}+\beta_{1} t_{i}+\varepsilon_{i j}$.
> lm1 $=\operatorname{lm}(\mathrm{y} \sim$ tempC, data $=$ resin $)$
$>$ summary (lm1)

$$
\text { Estimate Std. Error } t \text { value } \operatorname{Pr}(>|t|)
$$

$\begin{array}{lrrrr}\text { (Intercept) } & 3.9560075 & 0.1391174 & 28.44 & <2 \mathrm{e}-16 * * * \\ \text { tempC } & -0.0118567 & 0.0006573 & -18.04 & <2 \mathrm{e}-16 * * *\end{array}$

- Fitted equation: $\log _{10}$ (failure time) $=3.956-0.01186 T$
- Predicted $\log _{10}$ (failure time) at 120° is

$$
3.956-0.01186 \times 120 \approx 2.5332
$$

and hence the failure time at 120° is predicted as

$$
10^{2.5332} \approx 341 \text { hours }
$$

Ch3B-20

Linear Model (2)

R commands for the predicted $\log 10$ (failure time) along with a 95\% prediction interval:
> predict(lm1, newdata=data.frame(tempC=120), interval="prediction")
fit lwr upr
12.5332012 .2893922 .777011

By imposing the regression line on the top of the scatter plot, we can see y is a slightly curved with temperature. Using the linear model, the failure time at 120° will be underestimated.

2nd Order Model

```
> lm2 = lm(y ~ tempC+I(tempC^2), data=resin)
> summary(lm2)
(... part of the output is omitted ...)
```

Coefficients:

	Esti	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$	
(Intercept)	7.4179987	1.1564331	6.415	2.51e-07	***
tempC	-0.0450981	0.0110542	-4.080	0.000258	***
$\mathrm{I}\left(\right.$ (tempC) ${ }^{\text {~ } 2) ~}$	0.0000786	0.0000261	3.011	0.004879	**

- Fitted model: $\log _{10}($ time $)=7.418-0.0451 T+0.0000786 T^{2}$
- Predicted $\log 10$ (time) at 120° is

$$
7.418-0.0451 \times 120+0.0000786 \times(120)^{2} \approx 3.138
$$

The predicted failure time at 120° is $10^{3.138} \approx 1374$ hours.

Ch3B-22

3rd and 4th Order Models

```
> lm3 = lm(y ~ tempC+I(tempC^2)+I(tempC^3), data = resin)
> summary(lm3)
    Estimate Std. Error t value Pr(>|t|)
\begin{tabular}{lrrrr} 
(Intercept) & \(6.827 \mathrm{e}+00\) & \(1.299 \mathrm{e}+01\) & 0.526 & 0.603 \\
tempC & \(-3.659 \mathrm{e}-02\) & \(1.865 \mathrm{e}-01\) & -0.196 & 0.846 \\
I(tempC^2) & \(3.815 \mathrm{e}-05\) & \(8.860 \mathrm{e}-04\) & 0.043 & 0.966 \\
I (tempC^3) & \(6.357 \mathrm{e}-08\) & \(1.392 \mathrm{e}-06\) & 0.046 & 0.964
\end{tabular}
```

$>\operatorname{lm} 4=\operatorname{lm}\left(y \sim\right.$ tempC+I $\left(t e m p C^{\wedge} 2\right)+I(t e m p C \wedge 3)+I(t e m p C \wedge 4)$, data $=$ resin $)$
Coefficients:

| | Estimate | Std. Error | t value | $\operatorname{Pr}(>\|t\|)$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | $9.699 \mathrm{e}-01$ | $1.957 \mathrm{e}+02$ | 0.005 | 0.996 |
| tempC | $7.573 \mathrm{e}-02$ | $3.750 \mathrm{e}+00$ | 0.020 | 0.984 |
| I(tempC^2) | $-7.649 \mathrm{e}-04$ | $2.679 \mathrm{e}-02$ | -0.029 | 0.977 |
| I (tempC^3) | $2.600 \mathrm{e}-06$ | $8.459 \mathrm{e}-05$ | 0.031 | 0.976 |
| I(tempC^4) | $-2.988 \mathrm{e}-09$ | $9.962 \mathrm{e}-08$ | -0.030 | 0.976 |

Arrhenius Law

The Arrhenius rate law in Thermodynamics says, the log of failure time is linear in the inverse of absolute Kelvin temperature, which equals the Centigrade temperature plus 273.15 degrees.

Arrhenius Model: $y_{i j}=\beta_{0}+\frac{\beta_{1}}{T+273.15}$.

Ch3B-24
> lmarr $=\operatorname{lm}\left(y^{\sim} I(1 /(\right.$ tempC+273.15) $)$, data=resin $)$
> summary(lmarr)

	Estimate Std. Error t value $\operatorname{Pr}(>\|t\|)$			
(Intercept)	-4.3120	0.3007	-14.34	$3.2 \mathrm{e}-16 * * *$
$\mathrm{I}(1 /($ tempC +273.15$))$	2783.7764	144.6808	19.24	$<2 \mathrm{e}-16 * * *$

Predicted $\log _{10}$ (failure time) at 120° is $-4.312+\frac{2783.78}{120+273.15} \approx 2.77$. The predicted failure time is $e^{2.77} \approx 588$ hours.

Ch3B - 25

Data Can Distinguish Models Only at Observed Dose Levels

 In addition to polynomial models and the Arrhenius model, many other models can be considered$$
\begin{aligned}
& y_{i j}=\beta_{0}+\beta_{1} \log \left(t_{i}\right)+\varepsilon_{i j} \\
& y_{i j}=\beta_{0}+\beta_{1} \exp \left(t_{i}\right)+\varepsilon_{i j} \\
& y_{i j}=\beta_{0}+\beta_{1} \sin \left(t_{i}\right)+\varepsilon_{i j}, \\
& y_{i j}=\beta_{0}+f\left(t_{i}\right)+\varepsilon_{i j}
\end{aligned}
$$

Data Can Distinguish Models Only at Observed Dose Levels

 In addition to polynomial models and the Arrhenius model, many other models can be considered$$
\begin{aligned}
& y_{i j}=\beta_{0}+\beta_{1} \log \left(t_{i}\right)+\varepsilon_{i j} \\
& y_{i j}=\beta_{0}+\beta_{1} \exp \left(t_{i}\right)+\varepsilon_{i j} \\
& y_{i j}=\beta_{0}+\beta_{1} \sin \left(t_{i}\right)+\varepsilon_{i j} \\
& y_{i j}=\beta_{0}+f\left(t_{i}\right)+\varepsilon_{i j}
\end{aligned}
$$

As we only have observations at 5 temperatures:

$$
175,194,213,231,250
$$

the data cannot distinguish between two models:

$$
y_{i j}=f\left(t_{i}\right)+\varepsilon_{i j} \quad \text { and } \quad y_{i j}=g\left(t_{i}\right)+\varepsilon_{i j},
$$

if $f(t)$ and $g(t)$ coincide at $t=175,194,213,231,250$, even if f and g behave differently in other places.

Ch3B-26

The Model that Fits the Data the Best

If no restriction is placed on f, how well the model $y_{i j}=f\left(t_{i}\right)+\varepsilon_{i j}$ can possibly fit the data?

The Model that Fits the Data the Best

If no restriction is placed on f, how well the model $y_{i j}=f\left(t_{i}\right)+\varepsilon_{i j}$ can possibly fit the data?
The least square method will choose the f that minimize

$$
\sum_{i=1}^{g} \sum_{j=1}^{n_{i}}\left(y_{i j}-f\left(t_{i}\right)\right)^{2}=\sum_{j=1}^{n_{1}}\left(y_{1 j}-f\left(t_{1}\right)\right)^{2}+\cdots+\sum_{j=1}^{n_{g}}\left(y_{g j}-f\left(t_{g}\right)\right)^{2}
$$

The Model that Fits the Data the Best

If no restriction is placed on f, how well the model $y_{i j}=f\left(t_{i}\right)+\varepsilon_{i j}$ can possibly fit the data?
The least square method will choose the f that minimize
$\sum_{i=1}^{g} \sum_{j=1}^{n_{i}}\left(y_{i j}-f\left(t_{i}\right)\right)^{2}=\sum_{j=1}^{n_{1}}\left(y_{1 j}-f\left(t_{1}\right)\right)^{2}+\cdots+\sum_{j=1}^{n_{g}}\left(y_{g j}-f\left(t_{g}\right)\right)^{2}$
Recall that given a list of numbers $x_{1}, x_{2}, \ldots, x_{n}$ the c that minimize $\sum_{i=1}^{n}\left(x_{i}-c\right)^{2}$ is the mean $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$.

The Model that Fits the Data the Best

If no restriction is placed on f, how well the model $y_{i j}=f\left(t_{i}\right)+\varepsilon_{i j}$ can possibly fit the data?
The least square method will choose the f that minimize
$\sum_{i=1}^{g} \sum_{j=1}^{n_{i}}\left(y_{i j}-f\left(t_{i}\right)\right)^{2}=\sum_{j=1}^{n_{1}}\left(y_{1 j}-f\left(t_{1}\right)\right)^{2}+\cdots+\sum_{j=1}^{n_{g}}\left(y_{g j}-f\left(t_{g}\right)\right)^{2}$
Recall that given a list of numbers $x_{1}, x_{2}, \ldots, x_{n}$ the c that minimize $\sum_{i=1}^{n}\left(x_{i}-c\right)^{2}$ is the mean $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$.
Thus the least square method will choose the f that

$$
f\left(t_{i}\right)=\bar{y}_{i \bullet} .
$$

The Model that Fits the Data the Best

If no restriction is placed on f, how well the model $y_{i j}=f\left(t_{i}\right)+\varepsilon_{i j}$ can possibly fit the data?
The least square method will choose the f that minimize
$\sum_{i=1}^{g} \sum_{j=1}^{n_{i}}\left(y_{i j}-f\left(t_{i}\right)\right)^{2}=\sum_{j=1}^{n_{1}}\left(y_{1 j}-f\left(t_{1}\right)\right)^{2}+\cdots+\sum_{j=1}^{n_{g}}\left(y_{g j}-f\left(t_{g}\right)\right)^{2}$
Recall that given a list of numbers $x_{1}, x_{2}, \ldots, x_{n}$ the c that minimize $\sum_{i=1}^{n}\left(x_{i}-c\right)^{2}$ is the mean $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$.
Thus the least square method will choose the f that

$$
f\left(t_{i}\right)=\bar{y}_{i \bullet} .
$$

Thus the smallest SSE a model $y_{i j}=f\left(t_{i}\right)+\varepsilon_{i j}$ can possibly achieve is

$$
\sum_{i=1}^{g} \sum_{j=1}^{n_{i}}\left(y_{i j}-\bar{y}_{i \bullet}\right)^{2}
$$

which is the SSE for the means model $y_{i j}=\mu_{i}+\varepsilon_{i j}$.

The Model that Fits the Data the Best

If no restriction is placed on f, how well the model $y_{i j}=f\left(t_{i}\right)+\varepsilon_{i j}$ can possibly fit the data?
The least square method will choose the f that minimize
$\sum_{i=1}^{g} \sum_{j=1}^{n_{i}}\left(y_{i j}-f\left(t_{i}\right)\right)^{2}=\sum_{j=1}^{n_{1}}\left(y_{1 j}-f\left(t_{1}\right)\right)^{2}+\cdots+\sum_{j=1}^{n_{g}}\left(y_{g j}-f\left(t_{g}\right)\right)^{2}$
Recall that given a list of numbers $x_{1}, x_{2}, \ldots, x_{n}$ the c that minimize $\sum_{i=1}^{n}\left(x_{i}-c\right)^{2}$ is the mean $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$.
Thus the least square method will choose the f that

$$
f\left(t_{i}\right)=\bar{y}_{i \bullet} .
$$

Thus the smallest SSE a model $y_{i j}=f\left(t_{i}\right)+\varepsilon_{i j}$ can possibly achieve is

$$
\sum_{i=1}^{g} \sum_{j=1}^{n_{i}}\left(y_{i j}-\bar{y}_{i \bullet}\right)^{2}
$$

which is the SSE for the means model $y_{i j}=\mu_{i}+\varepsilon_{i j}$.
Conclusion: no other models can beat the means model in minimizing the SSE.

Ch3B-27

Goodness of Fit

As the means model is the model that fit the data the best, we can access the goodness of a model $y_{i j}=f\left(t_{i}\right)+\varepsilon_{i j}$ by comparing it with the means model.

$$
\begin{aligned}
\text { Full Model : } y_{i j} & =\mu_{i}+\varepsilon_{i j} \\
\text { Reduced Model : } y_{i j} & =f\left(t_{i}\right)+\varepsilon_{i j}
\end{aligned}
$$

This comparison is legitimate because any model $y_{i j}=f\left(t_{i}\right)+\varepsilon_{i j}$ is nested in the means model $y_{i j}=\mu_{i}+\varepsilon_{i j}$ (letting $\mu_{i}=f\left(t_{i}\right)$).
We can use the F-statistic below for comparing a reduced model and a full model

$$
F=\frac{\left(S S E_{\text {reduced }}-S S E_{\text {full }}\right) /\left(d f_{\text {reduced }}-d f_{\text {full }}\right)}{S S E_{\text {full }} / d f_{\text {full }}}
$$

If we get a small P -value, H 0 is rejected, which means that the reduced model doens't fit as good as the means model.
If we get a large P -value, fail to reject H 0 , then it means the reduced model fit the data nearly as good as therester means model).

Goodness of Fit of the Linear Model

Since the linear model (reduced model) is nested in the means model (full), use the F-statistic for model comparison we get

```
> lm1 = lm(y ~ tempC, data = resin)
    # linear model
> lmmeans = lm(y ~ as.factor(tempC), data = resin) # means model
> anova(lm1,lmmeans)
Analysis of Variance Table
Model 1: y ~ tempC
Model 2: y ~ as.factor(tempC)
    Res.Df RSS Df Sum of Sq F Pr (>F)
1 35 0.37206
2 32 0.29369 3 0.07837 2.8463 0.05303.
```

The P-value 0.05303 is moderate evidence showing the linear doesn't fit the data so well.

Goodness of Fit of the 2nd-Order Model

Since the 2 nd-order model (reduced model) is also nested in the means model (full model), again using the F-statistic for model comparison we get

```
> lm2 = lm(y ~ tempC+I((tempC)^2), data=resin) # 2nd-order model
> lmmeans = lm(y ~ as.factor(tempC), data = resin) # means model
> anova(lm2,lmmeans)
Analysis of Variance Table
Model 1: y ~ tempC + I((tempC)^2)
Model 2: y ~ as.factor(tempC)
    Res.Df RSS Df Sum of Sq F Pr (>F)
1 34 0.29372
2 32 0.29369 2 2.6829e-05 0.0015 0.9985
```

The large p-value 0.9985 shows the 2 nd-order model fits the data nearly as good as the best model. Does this indicate the 2nd-order model is an adequate model?

Shall We Consider a 3rd- or 4th-Order Model?

No. Because

$$
\text { 2nd-order } \subset 3 \text { rd-order } \subset 4 \text { th-order } \subset \text { Means Model }
$$

the 3rd- or 4th-order model won't fit the data better than the means model does. As the 2nd-order model fits the data nearly as well as the means model, the 4 models just fit as well as each other. In this case we simply choose the model of lowest complexity.

Be Cautious About Extrapolation

Though the 2nd-, 3rd-, 4th-order model fit the 5 points nearly as well, their predicted values at $120^{\circ} \mathrm{C}$ are quite different, 2nd-order $>$ 3rd-order $>$ 4th-order $>$ linear Ch3B-32

Since the Arrhenius model is nested in the means model, we can check its goodness of fit.

```
> lmarr = lm(y ~ I(1/(tempC+273.15)), data=resin) # Arrhenius model
> lmmeans = lm(y ~ as.factor(tempC), data = resin) # means model
> anova(lmarr, lmmeans)
Analysis of Variance Table
Model 1: y ~ I(1/(tempC + 273.15))
Model 2: y ~ as.factor(tempC)
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 35 0.33093
2 32 0.29369 3 0.037239 1.3525 0.2749
```

The moderately large P-value 0.2749 told us the Arrhenius Model is acceptable relative to the best model.

[^0]: ${ }^{1}$ Source: p. 448-449, Accelerated Testing (Nelson 2004). Original data is provided by Dr. Muhib Khan of AMD.
 Ch3B-3

