
STAT 220 Lecture Slides
Inference for Linear Regression

Yibi Huang
Department of Statistics
University of Chicago



Simple Linear Regression Models



Example: Pearson’s Father-and-Son Data

Father-son pairs are grouped by father’s height, to the nearest inch.

● ●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●
●
●

● ●

●
●

●

●

●

●

●
●

●

●●

●● ●

●
●

●

●

●●

●

●

● ●

● ●

●●

●

●

●

●

●

●

● ● ●

●
● ● ●

● ●
● ●●

●

●

●

●

●

●

●
● ●
●

●

●
●

●

●

●

●

●● ●

●
●

●

● ● ●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

● ●

●
●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

● ●● ●

●

●

●

● ●

●

●

● ●

●

●
●

●

●

● ●

● ●
●

●

●●●

●
●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●●

●

● ●●

●

●

●
●

●

●

●
●

●

●

●●
●

●

● ●●●●
●

●
●
●

●
●

●

●● ●

●
●

●

●

●
●

●

●

●

●

●●

●
●

●

●
●

●●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●
●
●

●

●●

●

●
●

●

●
●

●●
●

●

●
●

● ●

●

●

●

●

●●

●
●

●●

● ●
●

●

●

●
●

●

●

● ●

●

●

●

● ●
●

●

●

●

●
●

●

●● ●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●

● ●

● ●

●

● ●
●

●

●●

●

● ●
●

●

●

●

●

●●

●●

●●

●

●

●●
●●

● ●

●

●
●

●

●

●

●●

●
● ●

●
●●●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●
●

●
●●

●

●

●
●

●
●●

●

●

●

●

●

●
●

●
●

● ●

●

●
●

●

●

●

●

●
●

●●●

●●

●

●

●
●

●

●

●
●

●

● ●
● ●

●

●●●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●● ●

●●
●

●
●

●

●●

●

●

●

●

●
●●

●

● ●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●●

●

●●
● ●

●●

●

●

●

●

●
●

●

● ●

●

● ●

●
● ●

●

●

● ●

●
●●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

● ●

●
●

●

●
● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●
●●

●

●

●

● ●

●

●

●

●●

●●

●
●

●

●
● ●● ●●

●

● ●

●

●

● ● ●
●

●
●

●

●

●

●
●

● ●

●

●

●

●●

● ●
●

●

●

●

●

●
●●

●

●
●

● ●

●
●

●

●
●

●

●●

●

●
●

●
●

●

● ●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●
●

● ●

●

●●
●

●

●
●

● ●

●

●●
●

●

●

●

●

●●
●

●●

● ●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●
●

●

●●

●

●

●
●

●
●●

●

● ●
●

●
●

● ●●
●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●
●●

●

●
●

●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●●

●

●
●
●

● ●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●
● ●

●

●

●●
●

●

●

●

●●

●

●● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●●

●
●

● ● ●●

● ●

●
●

●
●

●

●

●

●
●

●

●●

●

●

● ● ●

●
●

●
●
● ● ●

●
●

●

●●
●

●
●

●
●● ●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

● ●
●

●

●
●

●

●

●

●●

●
●

●
● ●●

● ●
●

●

●
●

●

●

●
●

●●

● ●

●

●

●

● ●

●
●

●

● ●

●

●

●

●

●

●

●

Father's height (inches)

S
on

's
 h

ei
gh

t (
in

ch
es

)

60 62 64 66 68 70 72 74 76

60
62

64
66

68
70

72
74

76
78 How do the

• mean of son’s
height (SH),

• SD of SH, and

• distribution of SH
(histogram of SH)?

within each group
change with father’s
height (FH)?

1



P
er

ce
nt

 p
er

 in
ch

0
5

15
25

Son's Height (inches)

64−inch fathers

60 62 64 66 68 70 72 74 76 78 80

P
er

ce
nt

 p
er

 in
ch

0
5

15
25

Son's Height (inches)

67−inch fathers

60 62 64 66 68 70 72 74 76 78 80

P
er

ce
nt

 p
er

 in
ch

0
5

15
25

Son's Height (inches)

70−inch fathers

60 62 64 66 68 70 72 74 76 78 80

2



Simple Linear Regression Model

Pearson’s father-and-son data inspire the following assumptions for the
simple linear regression (SLR) model:

1. The means of Y is a linear function of X , i.e.,

E(Y |X = x) = β0 + β1x

2. The SD of Y does not change with x, i.e.,

SD(Y |X = x) = σ for every x

3. (Optional) Within each subpopulation, the distribution of Y is
normal.

3



Simple Linear Regression Model

Equivalently, the SLR model asserts the values of X and Y for
individuals in a population are related as follows

Y = β0 + β1X + ε,

• the value of ε, called the error or the noise, varies from
observation to observation, follows a normal distribution

ε ∼ N(0, σ)

In the model, the line y = β0 + β1x is called the population
regression line.

4



Inference for Simple Linear
Regression Models



Data for a Simple Linear Regression Model

Suppose we have a SRS of n individuals from a population.
From individual i we observe the response yi and the explanatory
variable xi :

(x1, y1), (x2, y2), (x3, y3), . . . , (xn, yn)

The SLR model states that

yi = β0 + β1xi + εi

Recall in the previous lecture, the least square line of the data
above is

y = b0 + b1x

in which

b1 = r
sy

sx
=

∑
i(xi − x)(yi − y)∑

i(xi − x)2
, b0 = y − b1x

We can use b1 to estimate β1 and b0 to estimate β0.
5



Caution: Sample v.s. Population

Note the population regression line

y = β0 + β1x

is different from the least square regression line

y = b0 + b1x

we learned in the previous lecture.

• The latter is merely the least square line for a sample, while
the former is the least square line for the entire population.

• The values of b0 and b1 will change from sample to sample.

b1 = r
sy

sx
=

∑
i(xi − x)(yi − y)∑

i(xi − x)2
, b0 = y − b1x

• We are interested in the population intercept β0 and slope β1,
NOT the sample counterparts b0 and b1.

6



How Close Is b1 to β1?

Recall the slope of the least square line is

b1 =

∑
i(xi − x)(yi − y)∑

i(xi − x)2

Under the SLR model: yi = β0 + β1xi + εi , replacing yi in the
formula above by β0 + β1xi + εi , we can show after some algebra
that

b1 = β1 +

∑
i(xi − x)εi∑
i(xi − x)2

From the above, one can get the mean, the SD, and the sampling
distribution of b1.

• E(b1) = β1 . . . . . . . . . . . . . . . . (b1 is an unbiased estimate of β1)

• SD(b1) = ?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (See the next slide)
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Variability of b1

One can show that

SD(b1) =
σ√∑

(xi − x)2
=

σ

sx
√

n − 1
,

where sx =

√∑
(xi−x)2

n−1 is the sample SD of xi ’s.

How to reduce the SD of b1 (and make b1 closer to β1):

• increase the sample size n

• increase the range of xi ’s (and hence sx is increased)

But σ is unknown, we need to estimate it.

8



Estimate of σ

We want to estimate σ, SD of the error εi .

• An intuitive estimate of σ is the sample SD of the errors εi

σ̂ =

√∑
(εi − ε)2

n − 1
where εi = yi − β0 − β1xi

However, this is not possible β0 and β1 are unknown.

• We can estimate β0 and β1 with b0 and b1 and approximate
the errors εi with the residuals

ei = yi − (b0 + b1xi) = yi − ŷi

We use the “sample SD” of the residuals ei to estimate σ:

se =

√∑
e2

i

n − 2

9



Estimate of σ

We use the “sample SD” of the residuals ei to estimate σ:

se =

√∑
(ei − e)2

n − 2
=

√∑
e2

i

n − 2

• Recall that the mean of residuals is 0, e =
∑

i ei/n = 0

• Note here we divide by n − 2, not n − 1. Why?
• We lose two degrees of freedom because we estimate two

parameters, β0 and β1.
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Standard Error of b1

Recall that
SD(b1) =

σ√∑
(xi − x)2

.

But σ is unknown, we estimate it with se . The estimated SD of b1

is called the standard error (SE) of b1

SE(b1) =
se√∑
(xi − x)2

11



Sampling distribution of β1

The sampling distribution of b1 is normal

b1 ∼ N

β1,
σ√∑

(xi − x)2

 ⇒ z =
b1 − β1

σ/
√∑

(xi − x)2
∼ N(0, 1)

This is (approx.) valid

• either if the errors εi are i.i.d. N(0, σ)

• or if the errors εi are independent and the sample size n is
large

As σ is unknown, if replaced with se , the t-statistic below has a
t-distribution with n − 2 degrees of freedom

T =
b1 − β1

se/
√∑

(xi − x)2
=

b1 − β1

SE(b1)
∼ tn−2,

12



Confidence Intervals for β1

The (1 − α) confidence interval for β1 is given as

b1 ± t∗SE(b1)

where t∗ is the critical value for the t(n−2) distribution at confidence
level 1 − α.

13



Tests for β1

To test the hypothesis H0 : β1 = a, we use the t-statistic

t =
b1 − a
SE(b1)

∼ tn−2

The p-value can be computed using the t-table based on the Ha :

Ha β1 , a β1 < a β1 > a

P-value

|t|−|t| t t

Observe that testing H0 : β1 = 0 is equivalent to testing whether x
is useful in predicting y linearly.

• It is possible that r is small but β1 is significantly different from
0.

14



Inference for the Intercept β0

Though the population intercept β0 is rarely of interest, all the
results for the population slope β1 have their counterparts for β0.

• b0 = β0 + ε −
∑

i x(xi−x)εi∑
i(xi−x)2

• E(b0) = β0 . . . . . . . . . . . . . . . (b0 is an unbiased estimate of β0)

• SD(b0) = σ

√
1
n + x2∑

(xi−x)2

• SE(b0) = se

√
1
n + x2∑

(xi−x)2

• The sampling distribution of b0 (when n is large) is

b0 ∼ N

β0, σ

√
1
n
+

x2∑
(xi − x)2


• (1 − α) C.I. for β0: b0 ± t∗SE(b0)

• The test statistic for H0 : β0 = a is t =
b0 − a
SE(b0)

∼ tn−2 and the

P-value can be computed similarly as for β1
15



Example: Restaurant Tips

The owner of a bistro called First Crush in Potsdam, NY, collected
157 restaurant bills over a 2-week period that he believes provide a
good sample of his customers.

He wanted to study
the payment and
tipping patterns of
its patrons.
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Regression in R

Regression in R is as simple as lm(y ˜ x), in which “lm” stands for
“linear model”

> tips = read.table("RestaurantTips.txt",h=T)

> lm(Tip ˜ Bill, data=tips)

Call:

lm(formula = Tip ˜ Bill, data = tips)

Coefficients:

(Intercept) Bill

-0.2923 0.1822

It is better to save the model as an object,

lmtips = lm(Tip ˜ Bill, data=tips)

and then we can get a more detailed output by viewing the summary() of
the model object. The output is shown in the next slide

17



Regression in R

> summary(lmtips)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.292267 0.166160 -1.759 0.0806 .

Bill 0.182215 0.006451 28.247 <2e-16 ***

---

Residual standard error: 0.9795 on 155 degrees of freedom

Multiple R-squared: 0.8373,Adjusted R-squared: 0.8363

F-statistic: 797.9 on 1 and 155 DF, p-value: < 2.2e-16

• The column “Estimate” gives the LS estimate for the intercept
b0 = −0.292267 and the slope b1 = 0.182215

• The column “Std. Error” gives SE(b0) and SE(b1):

SE(b0) = 0.166160, SE(b1) = 0.006451

18



Example: Confidence Interval for β1

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.292267 0.166160 -1.759 0.0806

Bill 0.182215 0.006451 28.247 <2e-16

As df = n − 2 = 157 − 2 = 155, t∗ for a 95% CI is 1.975 (between
1.97 and 1.98).

one tail 0.1 0.05 0.025 0.01 0.005
two tails 0.2 0.10 0.050 0.02 0.010
df 150 1.29 1.66 1.98 2.35 2.61

200 1.29 1.65 1.97 2.35 2.60

Hence the 95% CI for β1 is

b1 ± t∗SE(b1) = 0.182215 ± 1.975 × 0.006451

= 0.182215 ± 0.01274 ≈ (0.169, 0.195).

Interpretation: With 95% confidence, for each additional dollar in
the bill, the customers gave 16.9 cents to 19.5 cents more tips on
average. 19



Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.292267 0.166160 -1.759 0.0806 .

Bill 0.182215 0.006451 28.247 <2e-16 ***

• Note t-values bi/SE(bi) are simply the ratio of the numbers in
the “Estimate” column and the numbers in the “Std. Error”
column, e.g.,

−1.759 =
−0.292267
0.166160

, 28.247 =
0.182215
0.006451

• Testing H0 : β1 = 0 is equivalent to testing whether the
amount of tips is linearly related to the amount of the bill. The
small P-value < 2 × 10−16 asserts that the relation is
significant

20



Example: Test for the Slope β1

A general rule for waiters is to tip 15 to 20% of the pre-tax bill. That is,
β0 = 0 and β1 is between 0.15 to 0.20.

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.292267 0.166160 -1.759 0.0806

Bill 0.182215 0.006451 28.247 <2e-16

• R tests β0 = 0 for us: t-statistic = −1.759, 2-sided p-value = 0.0806

• To test H0 : β1 = 0.2 v.s. HA : β1 < 0.2. The t-statistic is

t =
b1 − 0.2
SE(b1)

=
0.182215 − 0.2

0.006451
= −2.757

with df = 155, the one-sided p-value is < 0.005.

one tail 0.1 0.05 0.025 0.01 0.005
two tails 0.2 0.10 0.050 0.02 0.010
df 150 1.29 1.66 1.98 2.35 2.61

200 1.29 1.65 1.97 2.35 2.60

Conclusion: Customers of this restaurant gave less than 20% the bill as

tips on average. 21



How to Read R Outputs for Regression?

Residual standard error: 0.9795 on 155 degrees of freedom

Multiple R-squared: 0.8373,Adjusted R-squared: 0.8363

F-statistic: 797.9 on 1 and 155 DF, p-value: < 2.2e-16

• Residual standard error: 0.9795 on 155 degrees of freedom

This gives the estimate se of σ, which is 0.9795.
df = n − 2 = 157 − 2 = 155

• Multiple R-squared: 0.8373 gives r2 = 0.8373, Bill size
explained 83.73% of the variation in tipping amount.
The correlation between bill size and tips is
r =
√

r2 =
√

0.8373 = 0.915.

• Adjusted R-squared: Ignore this.

• F-statistic: 797.9 on 1 and 155 DF, p-value: < 2.2e-16 Skip.

22



Checking Conditions for Simple
Linear Regression Model



Conditions for Simple Linear Regression Model

1. Linearity

2. Constant variability

3. (Optional) Nearly normal
residuals

Tools for checking conditions:

• Residual plot

If conditions are satisfied, points
should scatter evenly around the
zero line in the residual plot.
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Checking Conditions – Linearity
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What condition is this linear model
obviously violating?

(a) Constant variability

(b) Linear relationship

(c) Linear relationship

(d) Normal residuals

(e) No extreme outliers

Note the correlation between the
residuals and x remains zero, but
zero correlation , no association.
It can be a non-linear association
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Checking Conditions – Constant Variability
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The variability of points around the
least-squares line should be
roughly constant, implying the
variability of residuals around the 0
line should be roughly constant as
well, called homoscedasticity.

If not, called heterocedasticity,
predictions made in areas of larger
variability will be worse. May try
weighted least-square method or
transforming the response.
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Conditions: Nearly Normal Residuals

• Less relevant than the first
two conditions

• Diagnosis: Check the
histogram or boxplot of
residuals

• If the linearity or constant
variability condition is clearly
violated, there is no need to
check the normality of
residuals.
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Checking Conditions for the Restaurant Tip Data

0 10 20 30 40 50 60 70

0
5

10
15

Bill ($)

T
ip

 (
$)

0 10 20 30 40 50 60 70

−
2

0
2

4
6

Bill ($)

R
es

id
ua

ls

Residuals
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The constant variability condition seems to be violated.
The size of residual seems to increase with Bill.

27



Types of Outliers



Types of Outliers
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How do outliers influence the
least squares line in this plot?

To answer this question think of
where the regression line would
be with and without the outlier(s).
Without the outliers the
regression line would be steeper,
and lie closer to the larger group
of observations. With the outliers
the line is pulled up and away
from some of the observations in
the larger group.
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Types of Outliers — Influential Points
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How do outliers influence the
least squares line in this plot?

Without the outlier there is no
evident relationship between
x and y.

29



Types of Outliers — Outlier but Not Influential
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Does this outlier influence the
slope of the regression line?

Not much...
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Some Terminology

• Outliers are points that lie away from the cloud of points.

• Outliers that lie away from the center of the cloud in the
x-direction are called high leverage points.

• A point is influential if including or excluding the point would
considerably change the slope of the regression line.

• Influential points must be outliers with high leverages.
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Types of Outliers
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Which of the below best de-
scribes the outlier?

(a) influential

(b) high leverage

(c) high leverage

(d) none of the above

(e) there are no outliers
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Recap

Which of following is true?

(a) Influential points always change the intercept of the regression
line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . change the slope

(b) Influential points always reduce R2. . . False. See the next slide

(c) It is much more likely for a low leverage point to be influential,
than a high leverage point.

(d) When the data set includes an influential point, the relationship
between the explanatory variable and the response variable is
always nonlinear.

(e) None of the above.

(f) None of the above.
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Recap (cont.)

Influential point may also increase R2

r = 0.08, R2 = r2 = 0.0064
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r = 0.79, R2 = r2 ≈ 0.627
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More Examples



Example: GPA and MathSAT

The scatter plot below shows the GPA and MathSAT of a random
sample of 345 students in a college.
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r = 0.28

The correlation r = 0.28 is weak.
Can the slope β1 of the line be significantly different from 0? 35



> summary(lm(GPA ˜ VerbalSAT, data=stu))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.1466877 0.1867166 11.497 < 2e-16 ***

MathSAT 0.0016544 0.0003036 5.449 9.68e-08 ***

To test H0 : β1 = 0 v.s. H1 : β1 , 0, the t-statistic is

t =
b1

SE(b1)
=

0.0016544
0.0003036

= 5.449

with df = 345 − 2 = 343. Two-sided P-value = 9.68 × 10−8.

• There is strong evidence that students’ GPA is linearly related with
their MathSAT, despite of their small correlation r = 0.28.

• It is possible that r is small but β1 is significantly different from 0,
especially when the sample size n is large.

• Students with higher MathSAT indeed have significantly higher GPA
on average, despite of the huge variability in GPA.

• As R2 = r2 = (0.28)2 = 0.0784, MathSAT merely explains 7.84% of
the variation in GPA. 36



Example: GPA and MathSAT – 95% CI for β1

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.1466877 0.1867166 11.497 < 2e-16 ***

MathSAT 0.0016544 0.0003036 5.449 9.68e-08 ***

df = 345 − 2 = 343. The t∗ for a 95% CI is 1.97.

one tail 0.1 0.05 0.025 0.01 0.005
two tails 0.2 0.10 0.050 0.02 0.010
df 300 1.28 1.65 1.97 2.34 2.59

400 1.28 1.65 1.97 2.34 2.59

So a 95% confidence interval for β1 is

b1±t∗SE(b1) = 0.0016544±1.97×0.0003036 ≈ (0.00106, 0.00225)

Interpretation: We have 95% confidence that for students with 100
more points in their MathSAT scores, their GPA are 0.106 to 0.225
higher on average. 37



Example: GPA and MathSAT – Checking Conditions
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Residuals
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The linearity and constant variability conditions are fine.
The slight left-skewness of residuals is fine because of the large
sample size 38



Example: Fire Damage and Distance to Fire Station

A fire insurance company wanted to relate the amount of fire
damage in major residential fires to the distance between the
burning house and the nearest fire station. The study was

Distance Damage
(mile) ($1000)
0.7 14.1
1.1 17.3
1.8 17.8
2.1 24.0
2.3 23.1
2.6 19.6
3.0 22.3
3.1 27.5
3.4 26.2
3.8 26.1
4.3 31.3
4.6 31.3
4.8 36.4
5.5 36.0
6.1 43.2

conducted in a large suburb of a major city; a
sample of 15 recent fires in this suburb was
selected. The amount of damage and the
distance between the fire and the nearest fire
station were recorded in each fire.
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> fire = read.table("fire.txt",h=T)

> summary(lm(damage ˜ dist, data=fire))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.2779 1.4203 7.237 6.59e-06 ***

dist 4.9193 0.3927 12.525 1.25e-08 ***

• estimate for the intercept b0 = 10.2779 and the slope b1 = 4.9193

• SE(b0) = 1.4203, SE(b1) = 0.3927

one tail 0.1 0.05 0.025 0.01 0.005
two tails 0.2 0.10 0.050 0.02 0.010

df 13 1.35 1.77 2.16 2.65 3.011

So a 95% confidence interval for β1 is

b1 ± t∗SE(b1) = 4.9193± 2.16× 0.3927 ≈ 4.919± 0.848 ≈ (4.071, 5.767)

Interpretation: We have 95% confidence that every extra mile from the

nearest fire station increases the amount of damage by $4071 to $5767.
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Example: Test for the Slope β1

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.2779 1.4203 7.237 6.59e-06 ***

dist 4.9193 0.3927 12.525 1.25e-08 ***

To test H0 : β1 = 4 v.s. H1 : β1 > 4, the t-statistic is

t =
b1 − 4
SE(b1)

=
4.9193 − 4

0.3927
= 2.3409

Looking at the t-table for the row with df = 13, the one-sided
P-value is between 0.01 and 0.025.

one tail 0.1 0.05 0.025 0.01 0.005
two tails 0.2 0.10 0.050 0.02 0.010

df 13 1.35 1.77 2.16 2.65 3.011

Conclusion: At 5% level, the extra amount of damage for every
extra mile from the nearest fire station is significantly higher than
$4000.
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