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Recall when we introduced scatter plots in Chapter 1, we assessed
the strength of the association between two variables by eyeballs.
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Recall when we introduced scatter plots in Chapter 1, we assessed
the strength of the association between two variables by eyeballs.
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Correlation = Correlation Coefficient, r

Correlation r is a numerical measure of the direction and strength
of the linear relationship between two numerical variables.

“r” always lies between −1 and 1; the strength increases as you
move away from 0 to either −1 or 1.

• r > 0: positive association

• r < 0: negative association

• r ≈ 0: very weak linear relationship

• large |r|: strong linear relationship

• r = −1 or r = 1: only when all the data points on the
scatterplot lie exactly along a straight line

−1 0 1

Neg. Assoc. Pos. Assoc.

Strong Weak No Assoc Weak Strong

Perfect Perfect 2



Positive Correlations
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Negative Correlations
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Formula for Computing the Correlation Coefficient “r”

(x1, y1)

(x2, y2)

(x3, y3)
...

(xn, yn)

The correlation coefficient r
(or simply, correlation) is defined as:

r =
1

n − 1

n∑
i=1

(
xi − x̄

sx

)
︸   ︷︷   ︸

z-score of xi

(
yi − ȳ

sy

)
︸   ︷︷   ︸

z-score of yi

.

where sx and sy are respectively the sample SD of X
and of Y.

Usually, we find the correlation using softwares
rather than by manual computation.
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Why r Measures the Strength of a Linear Relationship?
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x

y
xi −− x >> 0xi −− x << 0

xi −− x >> 0xi −− x << 0

yi −− y >> 0

yi −− y << 0

yi −− y >> 0

yi −− y << 0

What is the sign of(
xi − x̄

sx

) (
yi − ȳ

sy

)
??

Here r > 0;
more positive
contributions than
negative.

What kind of points
have large
contributions to the
correlation?
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Correlation r Has No Unit

r =
1

n − 1

n∑
i=1

(
xi − x̄

sx

)
︸   ︷︷   ︸

z-score of xi

(
yi − ȳ

sy

)
︸   ︷︷   ︸

z-score of yi

.

After standardization, the z-score of neither xi nor yi has a unit.

• So r is unit-free.
• So we can compare r between data sets, where variables are

measured in different units or when variables are different.
E.g. we may compare the

r between [swim time and pulse],

with the

r between [swim time and breathing rate].
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Correlation r Has No Unit (2)

Changing the units of variables does not change the correlation
coefficient r, because we get rid of all the units when we
standardize them (get z-scores).

E.g., no matter the temperatures are recorded in ◦F, or ◦C, the
correlations obtained are equal because

C =
5
9

(F − 32).
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“r” Does Not Distinguish x & y

Sometimes one use the X variable to predict the Y variable. In this
case, X is called the explanatory variable, and Y the response.
The correlation coefficient r does not distinguish between the two.
It treats x and y symmetrically.

r =
1

n − 1

n∑
i=1

(
xi − x̄

sx

) (
yi − ȳ

sy

)
Swapping the x-, y-axes doesn’t change r (both r = 0.74.)
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Correlation r Describes Linear Relationships Only

The scatter plot below shows a perfect nonlinear association. All
points fall on the quadratic curve y = 1 − 4(x − 0.5)2.
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r of all black dots = 0.803,
r of all dots = −0.019.
(black + white)

No matter how strong the association,
the r of a curved relationship is NEVER 1 or −1.

It can even be 0, like the plot above. 10



Correlation Is VERY Sensitive to Outliers

Sometimes a single outlier can change r drastically.

● ●

●

●●
●

●
●

●

●
● For the plot on the left,

r =

0.0031 with the outlier

0.6895 without the outlier

Outliers that may remarkably change the form of associations
when removed are called influential points.

Remark: Not all outliers are influential points.
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When Data Points Are Clustered ...
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In the plot above, each of the two
clusters exhibits a weak negative
association (r = −0.336 and −0.323).

But the whole diagram shows a
moderately strong positive association
(r = 0.849).

• This is an example of the Simpson’s paradox.

• An overall r can be misleading when data points are clustered.

• Cluster-wise r’s should be reported as well.
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Always Check the Scatter Plots (1)

The 4 data sets below have identical x, y, sx, sy, and r.

Dataset 1 Dataset 2 Dataset 3 Dataset 4
x y x y x y x y

10 8.04 10 9.14 10 7.46 8 6.58
8 6.96 8 8.14 8 6.77 8 5.76

13 7.58 13 8.75 13 12.76 8 7.71
9 8.81 9 8.77 9 7.11 8 8.84

11 8.33 11 9.26 11 7.81 8 8.47
14 9.96 14 8.10 14 8.84 8 7.04
6 7.24 6 6.13 6 6.08 8 5.25
4 4.26 4 3.10 4 5.36 19 12.50

12 10.84 12 9.13 12 8.15 8 5.56
7 4.82 7 7.26 7 6.42 8 7.91
5 5.68 5 4.74 5 5.73 8 6.89

Ave 9 7.5 9 7.5 9 7.5 9 7.5
SD 3.16 1.94 3.16 1.94 3.16 1.94 3.16 1.94
r 0.82 0.82 0.82 0.82

How about their scatter plots?
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Always Check the Scatter Plots (2)
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• In Dataset 2, y can be predicted exactly from x. But r < 1,
because r only measures linear association.

• In Dataset 3, r would be 1 instead of 0.82 if the outlier were
actually on the line.

The correlation coefficient can be misleading in the presence of
outliers, multiple clusters, or nonlinear association.
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Correlation Indicates Association, Not Causation

Source: http://www.nejm.org/doi/full/10.1056/NEJMon1211064
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Questions

• Why do both variables have to be numerical when computing
their correlation coefficient?

• If the law requires women to marry only men 2 years older
than themselves, what is the correlation of the ages between
husbands and wives?
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