STAT 22000 Lecture Slides Analysis of Two-Sample Data

Yibi Huang Department of Statistics University of Chicago This set of slides covers Section 5.3 in the text.

• analysis of two-sample data (5.3)

Analysis of Two Sample Data

- E.g., is the air more polluted in Chicago than in LA?
- E.g., are smokers suffering less from depression than non-smokers?
- E.g., are the response in the treatment group different from that in the control group?

Two Sample Problems (2)

- Goal: comparing the means (of some quantity) μ₁ and μ₂ of the two populations.
- Suppose the SDs of the two populations are respectively σ_1 and σ_2 .
- To compare μ₁ and μ₂, an i.i.d. sample from each of the two populations is taken.

i.i.d. sample of size n_1 from population $1 : X_{1,1}, X_{1,2}, ..., X_{1,n_1}$ i.i.d. sample of size n_2 from population $2 : X_{2,1}, X_{2,2}, ..., X_{2,n_2}$

• The responses in each group are **independent** of those in the other group

A natural estimate of $\mu_1 - \mu_2$ is the difference of the two sample means $\overline{X}_1 - \overline{X}_2$.

How close is $\overline{X}_1 - \overline{X}_2$ to $\mu_1 - \mu_2$?

Two Sample Problems (4)

Recall that

$$E(\overline{X}_1) = \mu_1, \quad V(\overline{X}_1) = \sigma_1^2/n_1$$
$$E(\overline{X}_2) = \mu_2, \quad V(\overline{X}_2) = \sigma_2^2/n_2.$$

Observe $\overline{X}_1 - \overline{X}_2$ is an **unbiased estimate** of $\mu_1 - \mu_2$ because $E(\overline{X}_1 - \overline{X}_2) = E(\overline{X}_1) - E(\overline{X}_2) = \mu_1 - \mu_2.$

Furthermore, since the two samples are *independent*, \overline{X}_1 and \overline{X}_2 are independent, we have

$$V(\overline{X}_1 - \overline{X}_2) = V(\overline{X}_1) + V(\overline{X}_2) = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$$

Thus the **standard error** of $\overline{X}_1 - \overline{X}_2$ is

$$SD(\overline{X}_1 - \overline{X}_2) = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

Two-Sample *t*-Statistic When σ_1 , σ_2 Are Unknown

Of course, σ_1^2 and σ_2^2 are often unknown. Thus we substitute them by the sample variances s_1^2 and s_2^2 .

$$t = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \quad \text{where} \quad \begin{aligned} s_1^2 &= \frac{\sum_{i=1}^{n_1} (X_{1,i} - X_1)^2}{n_1 - 1} \\ s_2^2 &= \frac{\sum_{i=1}^{n_2} (X_{2,i} - \overline{X}_2)^2}{n_2 - 1} \end{aligned}$$

- Unfortunately, the two-sample *t*-statistic does NOT have a *t*-distribution
- Fortunately, it can be approximated by a *t*-distribution with a certain degrees of freedom.

See the next slide for the approximation

Approximate Distribution of the Two-Sample *t*-Statistic

The two-sample *t*-statistic has an **approximate** t_k **distribution**. For the degrees of freedom *k* we have two formulas:

1. software formula:

$$k = \frac{(w_1 + w_2)^2}{w_1^2/(n_1 - 1) + w_2^2/(n_2 - 1)}, \text{ where } \begin{array}{l} w_1 = s_1^2/n_1, \\ w_2 = s_2^2/n_2. \end{array}$$
2. simple formula: $\boxed{k = \min(n_1 - 1, n_2 - 1)}$

Comparison of the two formulas:

- The software formula is more accurate. It gives larger d.f. and yields shorter CIs and smaller *p*-value
- The simple formula is conservative. I.e., it yields wider CIs and larger *p*-values than the actual *p*-value
- In STAT 220, it is fine to just use the simple formula.

Confidence Intervals for $\mu_1 - \mu_2$

A
$$(1 - \alpha)$$
100% CI for $\mu_1 - \mu_2$ is given by

$$(\overline{X}_1 - \overline{X}_2) \pm t^* \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

where t^* is the value of the tdistribution with k degrees of freedom such that

0.100	0.050	0.025	0.010	0.005
0.200		0.050	0.020	
3.08	6.31	12.71	31.82	63.66
1.89	2.92	4.30	6.96	9.92
1.64	2.35	3.18	4.54	5.84
1.53	2.13	2.78	3.75	4.60
1.48	2.02	2.57	3.36	4.03
1.44	1.94	2.45	3.14	3.71
1.41	1.89	2.36	3.00	3.50
1.40	1.86	2.31	2.90	3.36
		·	÷	·
:			:	
	\uparrow	↑		↑
	t* for	t* for		t* for
	90% CI	95% CI		99% CI
	0.100 0.200 3.08 1.89 1.64 1.53 1.48 1.44 1.41 1.40	0.100 0.050 0.200 0.100 3.08 6.31 1.89 2.92 1.64 2.35 1.53 2.13 1.48 2.02 1.44 1.94 1.41 1.89 1.40 1.86 \vdots \vdots \vdots t^* for 90% CI	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

20 northern red oak seedlings

half received nitrogen, and half didn't.

All grown in same type of soil in same greenhouse

After 140 days, stem weights (in milligrams) were:

Control		Treatment		
no nitrogen		nitrogen		
320	430	260	750	
530	360	430	790	
280	420	470	860	
370	380	490	620	
470	430	520	460	
mean = 399		mean = 565		
SD = 72.79		SD = 186.74		
n _C =	= 10	$n_{T} = 10$		

Example: CI for the Nitrogen Effect on Tree Growth

The df is min(10 - 1, 10 - 1) = 9. The t^* for 95% Cl is $t^* = 2.26$.

one tail	0.1	0.05	0.025	0.01	0.005
two tails	0.2	0.10	0.050	0.02	0.010
df 9	1.38	1.83	2.26	2.82	3.25

So the 95% CI for $\mu_T - \mu_C$ (treatment mean - control mean) is

$$\overline{X}_{T} - \overline{X}_{C} \pm t^{*} \sqrt{\frac{s_{T}^{2}}{n_{1}} + \frac{s_{C}^{2}}{n_{2}}} = 565 - 399 \pm 2.26 \sqrt{\frac{(186.74)^{2}}{10} + \frac{(72.79)^{2}}{10}} \\ \approx 166 \pm 143.4 = (22.6, 309.4)$$

Since 0 (zero) is NOT inside the CI, it appears that there **is** a difference in the population mean stem weights of the treatment and control groups.

We conclude that Nitrogen has an effect on stem weight.

Hypothesis Tests for $\mu_1 - \mu_2$

To test the null hypothesis H_0 : $\mu_1 - \mu_2 = \delta_0$, the two-sample *t*-statistic is

$$t = \frac{(\overline{X}_1 - \overline{X}_2) - \delta_0}{\sqrt{s_1^2/n_1 + s_2^2/n_2}},$$

which has an approximate t_k -distribution, where the degrees of freedom is $k = \min(n_1 - 1, n_2 - 1)$, and the *p*-value is computed as follows depending on the alternative hypothesis H_a.

The bell curve above is the *t*-curve with *k* degrees of freedom.

Example: Test for the Nitrogen Effect on Tree Growth

For testing H_0 : $\mu_T - \mu_C = 0$ v.s. H_a : $\mu_T - \mu_C \neq 0$, the *t*-statistic is

$$t = \frac{\overline{X}_T - \overline{X}_C}{\sqrt{s_T^2/n_T + s_C^2/n_C}} = \frac{565 - 399}{\sqrt{\frac{(186.74)^2}{10} + \frac{(72.79)^2}{10}}} = \frac{166}{63.38} \approx 2.62.$$

The degrees of freedom is 10 - 1 = 9.

From the *t* Table D, the two-sided *p*-value is between 0.02 and 0.05.

one tail	0.1	0.05	0.025	0.01	0.005
two tails	0.2	0.10	<u>0.050</u>	<u>0.02</u>	0.010
df 9	1.38	1.83	2.26	2.82	3.25

The difference is significant at 5% level.

We conclude that Nitrogen has an effect on stem weight.

What if $\sigma_1 = \sigma_2$?

So far we have assumed that $\sigma_1 \neq \sigma_2$. What if we have reason to believe $\sigma_1 = \sigma_2 = \sigma$ albeit σ is unknown?

When $\sigma_1^2 = \sigma_2^2 = \sigma^2$, both s_1^2 and s_2^2 are unbiased estimates of σ^2 . We can combine s_1^2 and s_2^2 to get a better estimate for σ^2 , which is the so-called **pooled sample variances**

$$s_p^2 = rac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

Observe that s_p^2 is a weighted average of s_1^2 and s_2^2 , and it gives more weights to the sample with larger size.

Moreover, as $s^2 = \frac{1}{n-1} \sum_i (X_i - \overline{X})^2$, we can see that $s_p^2 = \frac{\sum_i (X_{1,i} - \overline{X}_1)^2 + \sum_i (X_{2,i} - \overline{X}_2)^2}{n_1 + n_2 - 2}$

is simply an "average" of the squared deviations from the corresponding means, though we divide by $n_1 + n_2 - 2$ but not $n_1 + n_2$.

The Pooled Two-Sample *t*-Statistic (When $\sigma_1 = \sigma_2$)

The two-sample *t*-statistic then becomes

$$T = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}}} = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

which is specifically called the pooled two-sample t-statistic.

- It has an exact *t*-distribution with n₁ + n₂ 2 degrees of freedom when the two populations are normal.
- It is approximately t_(n1+n2-2) as long as the sample size n₁, n₂ is not too small.
- The degrees of freedom, n₁ + n₂ 2 is greater the degrees of freedom given by the software formula or the simple formula when σ₁ ≠ σ₂

Two Sample Problems w/ Equal but Unknown σ s

A $(1 - \alpha)$ 100% CI for $\mu_1 - \mu_2$ is

$$(\overline{X}_1 - \overline{X}_2) \pm t^* s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

where where t^* is the value of the *t* distribution with $n_1 + n_2 - 2$

degrees of freedom such that

To test the hypothesis $H_0: \mu_1 - \mu_2 = \delta_0$, we use

$$t = \frac{\overline{X}_1 - \overline{X}_2 - \delta_0}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t_{n_1 + n_2 - 2} \quad \text{ under } H_0$$

Tree Growth Example Revisit: Assuming $\sigma_1 = \sigma_2$

If assuming $\sigma_1 = \sigma_2$, the pooled SD is

$$s_{p} = \sqrt{rac{(10-1)(186.74)^{2} + (10-1)(72.79)^{2}}{10+10-2}} \approx 141.72$$

The degrees of freedom is $n_T + n_C - 2 = 10 + 10 - 2 = 18$. From the *t*-table, the *t*^{*} for 95% CI is $t^* = 2.10$.

one tail	0.1	0.05	0.025	0.01	0.005
two tails	0.2	0.10	0.050	0.02	0.010
df 18	1.33	1.73	2.10	2.55	2.88

So the 95% CI for $\mu_T - \mu_C$ (treatment mean - control mean) is

$$\overline{X}_{T} - \overline{X}_{C} \pm t^{*} s_{p} \sqrt{\frac{1}{n_{T}} + \frac{1}{n_{C}}} = 565 - 399 \pm 2.101 \times 141.72 \times \sqrt{\frac{1}{10} + \frac{1}{10}} \approx 166 \pm 133.2 = (32.8, 299.2)$$

Observe the CI become shorter. As the degrees of freedom k increases, the critical value t^* decreases.

Tree Growth Example Revisit: Assuming $\sigma_1 = \sigma_2$

For testing $H_0: \mu_T - \mu_C = 0$ v.s. $H_a: \mu_T - \mu_C \neq 0$, assuming $\sigma_1 = \sigma_2$ the pooled *t*-statistic is

$$t = \frac{\overline{X}_T - \overline{X}_C}{s_p \sqrt{1/n_T + 1/n_C}} = \frac{565 - 399}{141.72 \sqrt{1/10 + 1/10}} = \frac{166}{63.38} \approx 2.619.$$

The df is $n_T + n_C - 2 = 10 + 10 - 2 = 18$.

From the *t*-Table, we see the two-sided *p*-value is between 0.01 and 0.02.

one tail two tails	0.1	0.05 0.10	0.025 0.050	0.01	0.005
df 18	1.33	1.73	2.10	2.55	2.88

The pooled *t*-test gives smaller *p*-value and the result appears more significant.

Two-Sample Tests/Cls in R

- > ctrl = c(320, 430, 530, 360, 280, 420, 370, 380, 470, 430)
- > trt = c(260,750,430,790,470,860,490,620,520,460)

By default, the R command t.test does NOT assume $\sigma_1 = \sigma_2$.

```
> t.test(ctrl, trt)
```

```
Welch Two Sample t-test
```

Note the df = 11.673 given above is based on the software formula, which is more accurate than the simple formula.

One can force σ_1, σ_2 to be equal by the argument var.equal = T.

```
> t.test(ctrl, trt, var.equal = T)
```

```
Two Sample t-test
```

We have introduced two different two-sample tests/CIs:

- the one assuming $\sigma_1 = \sigma_2$ used the **pooled SD**.
- the one w/o assuming $\sigma_1 = \sigma_2$ is called **Welch's method**.

Though in many cases, the two methods agree in the conclusion, but they can provide different answers when:

- the sample SDs are very different, and
- · the sizes of the groups are also very different

So which method should I use?

- When σ_1 and σ_2 are indeed equal, the method based on pooled SD is more powerful
- However, it is usually hard to check whether σ₁ = σ₂. So it's safer to use Welch's method.

Robustness of Two-Sample *t*-**Procedures (1)**

Strictly speaking, unless the two samples are both drawn from normal distributions, neither

$$t = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

nor

$$t = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

has a *t*-distribution.

Nonetheless, the actual distributions of the two-sample *t*-statistics are well approximated by *t*-distributions, even when the populations are not normal, as long as the sample sizes are not too small.

This is the so-called **robustness** of the two-sample *t*-procedures.

- Given a fixed sum of the sample sizes $n = n_1 + n_2$ the *t*-approximation works the best when the sample sizes are equal $n_1 = n_2$
 - In planning a two-sample study, choose equal sample sizes if you can
- The *t*-approximation is generally good if n₁ + n₂ is not too small (say, ≥ 15), the data are not strongly skewed, and there are no outliers.
 - · Check histograms or side-by-side boxplots of the data
- With n₁ + n₂ sufficiently large (say n₁ + n₂ ≥ 40), the approximation is good even when the data are clearly skewed.