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Outline

This set of slides covers Section 5.3 in the text.

• analysis of two-sample data (5.3)
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Analysis of Two Sample Data



Two Sample Problems (1)

• E.g., is the air more polluted in Chicago than in LA?

• E.g., are smokers suffering less from depression than
non-smokers?

• E.g., are the response in the treatment group different from
that in the control group?
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Two Sample Problems (2)

• Goal: comparing the means (of some quantity) µ1 and µ2 of
the two populations.

• Suppose the SDs of the two populations are respectively σ1

and σ2.

• To compare µ1 and µ2, an i.i.d. sample from each of the two
populations is taken.

i.i.d. sample of size n1 from population 1 : X1,1,X1,2, . . .X1,n1

i.i.d. sample of size n2 from population 2 : X2,1,X2,2, . . . . . . ,X2,n2

• The responses in each group are independent of those in the
other group
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Two Sample Problems (3)

A natural estimate of µ1 − µ2 is the difference of the two sample
means X1 − X2.

How close is X1 − X2 to µ1 − µ2?
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Two Sample Problems (4)

Recall that

E(X1) = µ1, V(X1) = σ2
1/n1

E(X2) = µ2, V(X2) = σ2
2/n2.

Observe X1 − X2 is an unbiased estimate of µ1 − µ2 because

E(X1 − X2) = E(X1) − E(X2) = µ1 − µ2.

Furthermore, since the two samples are independent, X1 and X2

are independent, we have

V(X1 − X2) = V(X1) + V(X2) =
σ2

1

n1
+
σ2

2

n2

Thus the standard error of X1 − X2 is

SD(X1 − X2) =

√
σ2

1

n1
+
σ2

2

n2
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Two-Sample t-Statistic When σ1, σ2 Are Unknown

Of course, σ2
1 and σ2

2 are often unknown. Thus we substitute them
by the sample variances s2

1 and s2
2 .

t =
(X1 − X2) − (µ1 − µ2)√

s2
1

n1
+

s2
2

n2

where
s2

1 =

∑n1
i=1(X1,i − X1)

2

n1 − 1

s2
2 =

∑n2
i=1(X2,i − X2)

2

n2 − 1

• Unfortunately, the two-sample t-statistic does NOT have a
t-distribution

• Fortunately, it can be approximated by a t-distribution with a
certain degrees of freedom.

See the next slide for the approximation
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Approximate Distribution of the Two-Sample t-Statistic

The two-sample t-statistic has an approximate tk distribution.
For the degrees of freedom k we have two formulas:

1. software formula:

k =
(w1 + w2)

2

w2
1/(n1 − 1) + w2

2/(n2 − 1)
, where

w1 = s2
1/n1,

w2 = s2
2/n2.

2. simple formula: k = min(n1 − 1, n2 − 1)

Comparison of the two formulas:

• The software formula is more accurate. It gives larger d.f. and
yields shorter CIs and smaller p-value

• The simple formula is conservative. I.e., it yields wider CIs
and larger p-values than the actual p-value

• In STAT 220, it is fine to just use the simple formula.
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Confidence Intervals for µ1 − µ2

A (1 − α)100% CI for µ1 − µ2 is given by

(X1 − X2) ± t∗

√
s2

1

n1
+

s2
2

n2

where t∗ is the value of the t
distribution with k degrees of
freedom such that

density curve of tk

−t* t*

α 2α 2
1 − α

one tail 0.100 0.050 0.025 0.010 0.005
two tails 0.200 0.100 0.050 0.020 0.010

df 1 3.08 6.31 12.71 31.82 63.66
2 1.89 2.92 4.30 6.96 9.92
3 1.64 2.35 3.18 4.54 5.84
4 1.53 2.13 2.78 3.75 4.60
5 1.48 2.02 2.57 3.36 4.03
6 1.44 1.94 2.45 3.14 3.71
7 1.41 1.89 2.36 3.00 3.50
8 1.40 1.86 2.31 2.90 3.36
.
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Example: Nitrogen Effect on Tree Growth

20 northern red oak seedlings
half received nitrogen, and half didn’t.
All grown in same type of soil in same greenhouse
After 140 days, stem weights (in milligrams) were:

Control Treatment
no nitrogen nitrogen

320 430 260 750
530 360 430 790
280 420 470 860
370 380 490 620
470 430 520 460
mean = 399 mean = 565
SD = 72.79 SD = 186.74

nC = 10 nT = 10 control treatment
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Example: CI for the Nitrogen Effect on Tree Growth

The df is min(10 − 1, 10 − 1) = 9. The t∗ for 95% CI is t∗ = 2.26.

one tail 0.1 0.05 0.025 0.01 0.005
two tails 0.2 0.10 0.050 0.02 0.010

df 9 1.38 1.83 2.26 2.82 3.25

So the 95% CI for µT − µC (treatment mean - control mean) is

XT − XC ± t∗

√
s2

T

n1
+

s2
C

n2
= 565−399 ± 2.26

√
(186.74)2

10
+

(72.79)2

10

≈ 166 ± 143.4 = (22.6, 309.4)

Since 0 (zero) is NOT inside the CI, it appears that there is a
difference in the population mean stem weights of the treatment
and control groups.

We conclude that Nitrogen has an effect on stem weight. 10



Hypothesis Tests for µ1 − µ2

To test the null hypothesis H0: µ1 − µ2 = δ0, the two-sample
t-statistic is

t =
(X1 − X2) − δ0√

s2
1/n1 + s2

2/n2

,

which has an approximate tk -distribution, where the degrees of
freedom is k = min(n1−1, n2−1), and the p-value is computed as
follows depending on the alternative hypothesis Ha .

Ha µ1 − µ2 , δ0 µ1 − µ2 < δ0 µ1 − µ2 > δ0

p-value

|t|−|t| t t

The bell curve above is the t-curve with k degrees of freedom.
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Example: Test for the Nitrogen Effect on Tree Growth

For testing H0 : µT − µC = 0 v.s. Ha : µT − µC , 0, the t-statistic is

t =
XT − XC√

s2
T/nT + s2

C/nC

=
565 − 399√

(186.74)2

10
+

(72.79)2

10

=
166

63.38
≈ 2.62.

The degrees of freedom is 10 − 1 = 9.

From the t Table D, the two-sided p-value is between 0.02 and
0.05.

one tail 0.1 0.05 0.025 0.01 0.005
two tails 0.2 0.10 0.050 0.02 0.010

df 9 1.38 1.83 2.26 2.82 3.25

The difference is significant at 5% level.

We conclude that Nitrogen has an effect on stem weight.
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What if σ1 = σ2?

So far we have assumed that σ1 , σ2. What if we have reason to believe
σ1 = σ2 = σ albeit σ is unknown?

When σ2
1 = σ2

2 = σ2, both s2
1 and s2

2 are unbiased estimates of σ2. We
can combine s2

1 and s2
2 to get a better estimate for σ2, which is the

so-called pooled sample variances

s2
p =

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2

Observe that s2
p is a weighted average of s2

1 and s2
2 , and it gives more

weights to the sample with larger size.

Moreover, as s2 = 1
n−1

∑
i(Xi − X)2, we can see that

s2
p =

∑
i(X1,i − X1)

2 +
∑

i(X2,i − X2)
2

n1 + n2 − 2
is simply an “average” of the squared deviations from the corresponding
means, though we divide by n1 + n2 − 2 but not n1 + n2.
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The Pooled Two-Sample t-Statistic (When σ1 = σ2)

The two-sample t-statistic then becomes

T =
(X1 − X2) − (µ1 − µ2)√

s2
p

n1
+

s2
p

n2

=
(X1 − X2) − (µ1 − µ2)

sp

√
1
n1

+ 1
n2

which is specifically called the pooled two-sample t-statistic.

• It has an exact t-distribution with n1 + n2 − 2 degrees of
freedom when the two populations are normal.

• It is approximately t(n1+n2−2) as long as the sample size n1, n2

is not too small.

• The degrees of freedom, n1 + n2 − 2 is greater the degrees of
freedom given by the software formula or the simple formula
when σ1 , σ2
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Two Sample Problems w/ Equal but Unknown σs

A (1 − α)100% CI for µ1 − µ2 is

(X1 − X2) ± t∗sp

√
1
n1

+
1
n2

where where t∗ is the value of the t distribution with n1 + n2 − 2

degrees of freedom such that

−t* t*

α 2α 2
1 − α .

To test the hypothesis H0 : µ1 − µ2 = δ0, we use

t =
X1 − X2 − δ0

sp

√
1
n1

+ 1
n2

∼ tn1+n2−2 under H0
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Tree Growth Example Revisit: Assuming σ1 = σ2

If assuming σ1 = σ2, the pooled SD is

sp =

√
(10 − 1)(186.74)2 + (10 − 1)(72.79)2

10 + 10 − 2
≈ 141.72

The degrees of freedom is nT + nC − 2 = 10 + 10 − 2 = 18. From
the t-table, the t∗ for 95% CI is t∗ = 2.10.

one tail 0.1 0.05 0.025 0.01 0.005
two tails 0.2 0.10 0.050 0.02 0.010

df 18 1.33 1.73 2.10 2.55 2.88

So the 95% CI for µT − µC (treatment mean - control mean) is

XT−XC ± t∗sp

√
1

nT
+

1
nC

= 565−399 ± 2.101 × 141.72 ×

√
1
10

+
1
10

≈ 166 ± 133.2 = (32.8, 299.2)

Observe the CI become shorter. As the degrees of freedom k
increases, the critical value t∗ decreases.
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Tree Growth Example Revisit: Assuming σ1 = σ2

For testing H0 : µT − µC = 0 v.s. Ha : µT − µC , 0, assuming
σ1 = σ2 the pooled t-statistic is

t =
XT − XC

sp
√

1/nT + 1/nC
=

565 − 399

141.72
√

1/10 + 1/10
=

166
63.38

≈ 2.619.

The df is nT + nC − 2 = 10 + 10 − 2 = 18.

From the t-Table, we see the two-sided p-value is between 0.01
and 0.02.

one tail 0.1 0.05 0.025 0.01 0.005
two tails 0.2 0.10 0.050 0.02 0.010

df 18 1.33 1.73 2.10 2.55 2.88

The pooled t-test gives smaller p-value and the result appears
more significant.
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Two-Sample Tests/CIs in R

> ctrl = c(320,430,530,360,280,420,370,380,470,430)

> trt = c(260,750,430,790,470,860,490,620,520,460)

By default, the R command t.test does NOT assume σ1 = σ2.

> t.test(ctrl, trt)

Welch Two Sample t-test

data: ctrl and trt

t = -2.6191, df = 11.673, p-value = 0.02286

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-304.52438 -27.47562

sample estimates:

mean of x mean of y

399 565

Note the df = 11.673 given above is based on the software
formula, which is more accurate than the simple formula.
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Two-Sample Tests/CIs in R

One can force σ1, σ2 to be equal by the argument var.equal = T.

> t.test(ctrl, trt, var.equal = T)

Two Sample t-test

data: ctrl and trt

t = -2.6191, df = 18, p-value = 0.01739

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-299.15788 -32.84212

sample estimates:

mean of x mean of y

399 565
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Which Two-Sample Tests/CIs to Use?

We have introduced two different two-sample tests/CIs:

• the one assuming σ1 = σ2 used the pooled SD.
• the one w/o assuming σ1 = σ2 is called Welch’s method.

Though in many cases, the two methods agree in the conclusion,
but they can provide different answers when:

• the sample SDs are very different, and
• the sizes of the groups are also very different

So which method should I use?

• When σ1 and σ2 are indeed equal, the method based on
pooled SD is more powerful

• However, it is usually hard to check whether σ1 = σ2. So it’s
safer to use Welch’s method.
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Robustness of Two-Sample t-Procedures (1)

Strictly speaking, unless the two samples are both drawn from
normal distributions, neither

t =
(X1 − X2) − (µ1 − µ2)√

s2
1

n1
+

s2
2

n2

nor

t =
(X1 − X2) − (µ1 − µ2)

sp

√
1
n1

+ 1
n2

has a t-distribution.

Nonetheless, the actual distributions of the two-sample t-statistics
are well approximated by t-distributions, even when the
populations are not normal, as long as the sample sizes are not
too small.

This is the so-called robustness of the two-sample t-procedures.
21



Robustness of Two-Sample t-Procedures (2)

• Given a fixed sum of the sample sizes n = n1 + n2 the
t-approximation works the best when the sample sizes are
equal n1 = n2

• In planning a two-sample study, choose equal sample
sizes if you can

• The t-approximation is generally good if n1 + n2 is not too
small (say, ≥ 15), the data are not strongly skewed, and there
are no outliers.

• Check histograms or side-by-side boxplots of the data

• With n1 + n2 sufficiently large (say n1 + n2 ≥ 40), the
approximation is good even when the data are clearly skewed.
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