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Outline

This set of slides covers Section 5.1 in the text.

• t-distributions

• t-tests

• t-confidence intervals
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What if σ is Unknown?

Recall that if X1,X2, . . . ,Xn are i.i.d. (or a SRS) from a population
with unknown mean µ and standard deviation σ, then when n is
large

z =
X − µ

σ/
√

n
is nearly N(0, 1)

We use this fact to construct confidence intervals and do
hypothesis test about µ in Section 4.2 and 4.3.

As the population SD σ is UNKNOWN, we replace it with the
sample SD s. with the restrictions that

• the sample size n need to be big enough, and
• the population distribution cannot be too skewed (no outlier).

This lecture we are going to introduce one way remove the
restriction on sample size. 2



Student’s t-Distributions

If X1,X2, . . . ,Xn are i.i.d. from N(µ, σ), the t-Statistic defined as

t =
X − µ

s/
√

n

can be shown to have a t distribution with n − 1 degrees of
freedom.

What’s is a t-distribution?
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Density Curves of t-Distributions

• Bell-shaped, symmetric about 0
• more spread out than normal — heavier tails
• Shape of the curves determined by the degrees of freedom

(df). The larger the df, the lighter the tails, the closer the
t-curve to the N(0, 1) curve

• As df = ∞, t-curve = standard normal curve
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The Extra Variability of t-Distribution Makes Sense

t =
X − µ

s/
√

n
has greater variability than z =

X − µ

σ/
√

n
because

• knowing the population SD σ means we have more info about
the population, and hence we can make a more accurate
inference about the population mean.

• not knowing the population SD σ means we are less certain
about the distribution we are sampling from, so that extra
uncertainty needs to be accounted for, and our inference will
be less accurate

• As we have more data, we have more information about the
distribution we are sampling from, so our inferences should
act more like the case when we know σ.
So as df increase, t-curve approaches N(0, 1) curve
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t Probability Table (p.430-431 in Text)

one tail 0.1 0.05 0.025 0.01 0.005
two tails 0.2 0.10 0.050 0.02 0.010

df 1 3.08 6.31 12.71 31.82 63.66
2 1.89 2.92 4.30 6.96 9.92
3 1.64 2.35 3.18 4.54 5.84
4 1.53 2.13 2.78 3.75 4.60
5 1.48 2.02 2.57 3.36 4.03
6 1.44 1.94 2.45 3.14 3.71
7 1.41 1.89 2.36 3.00 3.50
8 1.40 1.86 2.31 2.90 3.36
9 1.38 1.83 2.26 2.82 3.25

10 1.37 1.81 2.23 2.76 3.17
11 1.36 1.80 2.20 2.72 3.11
12 1.36 1.78 2.18 2.68 3.05
13 1.35 1.77 2.16 2.65 3.01
14 1.35 1.76 2.14 2.62 2.98
15 1.34 1.75 2.13 2.60 2.95
16 1.34 1.75 2.12 2.58 2.92
17 1.33 1.74 2.11 2.57 2.90
18 1.33 1.73 2.10 2.55 2.88
19 1.33 1.73 2.09 2.54 2.86
20 1.33 1.72 2.09 2.53 2.85
21 1.32 1.72 2.08 2.52 2.83
22 1.32 1.72 2.07 2.51 2.82
23 1.32 1.71 2.07 2.50 2.81
24 1.32 1.71 2.06 2.49 2.80
25 1.32 1.71 2.06 2.49 2.79
26 1.31 1.71 2.06 2.48 2.78
27 1.31 1.70 2.05 2.47 2.77
28 1.31 1.70 2.05 2.47 2.76
29 1.31 1.70 2.05 2.46 2.76
30 1.31 1.70 2.04 2.46 2.75

one tail 0.100 0.050 0.025 0.010 0.005
two tails 0.200 0.100 0.050 0.020 0.010

df 31 1.31 1.70 2.04 2.45 2.74
32 1.31 1.69 2.04 2.45 2.74
33 1.31 1.69 2.03 2.44 2.73
34 1.31 1.69 2.03 2.44 2.73
35 1.31 1.69 2.03 2.44 2.72
36 1.31 1.69 2.03 2.43 2.72
37 1.30 1.69 2.03 2.43 2.72
38 1.30 1.69 2.02 2.43 2.71
39 1.30 1.68 2.02 2.43 2.71
40 1.30 1.68 2.02 2.42 2.70
41 1.30 1.68 2.02 2.42 2.70
42 1.30 1.68 2.02 2.42 2.70
43 1.30 1.68 2.02 2.42 2.70
44 1.30 1.68 2.02 2.41 2.69
45 1.30 1.68 2.01 2.41 2.69
46 1.30 1.68 2.01 2.41 2.69
47 1.30 1.68 2.01 2.41 2.68
48 1.30 1.68 2.01 2.41 2.68
49 1.30 1.68 2.01 2.40 2.68
50 1.30 1.68 2.01 2.40 2.68
60 1.30 1.67 2.00 2.39 2.66
70 1.29 1.67 1.99 2.38 2.65
80 1.29 1.66 1.99 2.37 2.64
90 1.29 1.66 1.99 2.37 2.63

100 1.29 1.66 1.98 2.36 2.63
150 1.29 1.66 1.98 2.35 2.61
200 1.29 1.65 1.97 2.35 2.60
300 1.28 1.65 1.97 2.34 2.59
400 1.28 1.65 1.97 2.34 2.59
500 1.28 1.65 1.96 2.33 2.59
∞ 1.28 1.65 1.96 2.33 2.58
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One-sample t Test of a Population Mean

Similar to the normal z test, the t-statistic for examining H0 :
µ = µ0 is

t =
X − µ0

s/
√

n
∼ tn−1

The p-value depends on Ha

Ha µ , µ0 µ < µ0 µ > µ0

p-value

|t|−|t| t t

Then we reject H0 when P-value < α.

The bell curve above is the t-curve with df = n − 1, not the normal
curve.
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How to Use the t-Table to Find p-Values?

one tail 0.1 0.05 0.025 0.01 0.005
two tails 0.2 0.10 0.050 0.02 0.010

df 19 1.33 1.73 2.09 2.54 2.86
20 1.33 1.72 2.09 2.53 2.85
21 1.32 1.72 2.08 2.52 2.83
22 1.32 1.72 2.07 2.51 2.82
23 1.32 1.71 2.07 2.50 2.81
24 1.32 1.71 2.06 2.49 2.80
25 1.32 1.71 2.06 2.49 2.79

Example 1. For testing H0 : µ = 10 vs. Ha : µ > 10 based on a
sample of size n = 21, if the t-statistic is 2.23,

• Comparing the t-statistic = 2.23 with numbers in the row for
df = n − 1 = 21 − 1 = 20, we find that t = 2.23 is between
2.09 and 2.53

• one-sided p-value is between 0.025 and 0.01 .
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How to Use the t-Table to Find p-Values?

one tail 0.1 0.05 0.025 0.01 0.005
two tails 0.2 0.10 0.050 0.02 0.010

df 19 1.33 1.73 2.09 2.54 2.86
20 1.33 1.72 2.09 2.53 2.85
21 1.32 1.72 2.08 2.52 2.83
22 1.32 1.72 2.07 2.51 2.82
23 1.32 1.71 2.07 2.50 2.81
24 1.32 1.71 2.06 2.49 2.80
25 1.32 1.71 2.06 2.49 2.79

Example 2. For testing H0 : µ = 60 vs. Ha : µ , 60 based on a
sample of size n = 24, if the t-statistic is t = 2.6.

• Comparing the t-statistic = 2.6 with numbers in the row for
df = n − 1 = 24 − 1 = 23, we find that t = 2.6 is between
2.50 and 2.81

• two-sided P-value is between 0.02 and 0.01 .
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How to Use the t-Table to Find p-Values?

one tail 0.1 0.05 0.025 0.01 0.005
two tails 0.2 0.10 0.050 0.02 0.010

df 1 3.08 6.31 12.71 31.82 63.66
...

...
...

...
...

...

49 1.30 1.68 2.01 2.40 2.68
50 1.30 1.68 2.01 2.40 2.68
60 1.30 1.67 2.00 2.39 2.66
70 1.29 1.67 1.99 2.38 2.65

Example 3. For testing H0 : µ = 20 vs. Ha : µ < 20 based on a
sample of size n = 57, if the t-statistic is t = −1.55.

• df = 57 − 1 = 56 is not on the table.
• The dfs above and below 56 in the table are 50 and 60.

If df = 50, p-value would be between 0.1 and 0.05.
If df = 60, p-value would also be between 0.1 and 0.05.

• So for df = 56, the p-value is also between 0.1 and 0.05. 10



Example: Thermal Conductivity of Glass

Thermal Conductivity is measured in terms of watts of heat power
transmitted per square meter of surface per degree Celsius of
temperature difference on the two sides of the material.

In these units, glass has conductivity about 1.

The National Institute of Standards and Technology provides exact
data on properties of materials. Here are measurements of the
thermal conductivity of 11 randomly selected pieces of a particular
type of glass:

1.11, 1.07, 1.11, 1.07, 1.12, 1.08,

1.08, 1.18, 1.18, 1.18, 1.12
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Example: Thermal Conductivity of Glass — Hypotheses

We want to investigate if the mean conductivity of this type of glass
is greater than 1.

The hypotheses are

H0 : µ = 1, HA : µ > 1

where µ is the mean conductivity of this type of glass.
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Example: Thermal Conductivity of Glass — t-Statistic

The sample mean and sample SD are

x ≈ 1.1182, s ≈ 0.04378

> conduct = c(1.11,1.07,1.11,1.07,1.12,1.08,1.08,1.18,1.18,1.18,1.12)

> mean(conduct)

[1] 1.118182

> sd(conduct)

[1] 0.04377629

The t-statistics is

t =
x − µ0

s/
√

n
=

1.118 − 1

0.04378/
√

11
≈ 8.95

df = 11 − 1 = 10

Note µ0 = 1 because in the null hypothesis we set µ = 1.
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Example: Thermal Conductivity of Glass — p-value

one tail 0.100 0.050 0.025 0.010 0.005
two tails 0.200 0.100 0.050 0.020 0.010

df 7 1.41 1.89 2.36 3.00 3.50
8 1.40 1.86 2.31 2.90 3.36
9 1.38 1.83 2.26 2.82 3.25

10 1.37 1.81 2.23 2.76 3.17
11 1.36 1.80 2.20 2.72 3.11

t = 8.9 > 3.17 ⇒ one sided p-value < 0.005

Conclusion:

The data provide convincing evidence that the mean conductivity
of this type of glass is > 1
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t-Confidence Interval for the Mean

A (1 − α)100% CI for µ is given by

X ± t? ×
s
√

n

where t∗ is the value of the t
distribution with n − 1 degrees
of freedom such that

density curve of tn−1

−t* t*

α 2α 2
1 − α

one tail 0.100 0.050 0.025 0.010 0.005
two tails 0.200 0.100 0.050 0.020 0.010

df 1 3.08 6.31 12.71 31.82 63.66
2 1.89 2.92 4.30 6.96 9.92
3 1.64 2.35 3.18 4.54 5.84
4 1.53 2.13 2.78 3.75 4.60
5 1.48 2.02 2.57 3.36 4.03
6 1.44 1.94 2.45 3.14 3.71
7 1.41 1.89 2.36 3.00 3.50
8 1.40 1.86 2.31 2.90 3.36
9 1.38 1.83 2.26 2.82 3.25
.
.
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Finding the Critical Value t?

0 t* = ?

df = 10

95% n = 11, df = 11 − 1 = 10, t? is at
the intersection of row df = 10 and
two tail probability 0.05.

one tail 0.100 0.050 0.025 0.010 0.005
two tails 0.200 0.100 0.050 0.020 0.010

df 6 1.44 1.94 2.45 3.14 3.71
7 1.41 1.89 2.36 3.00 3.50
8 1.40 1.86 2.31 2.90 3.36
9 1.38 1.83 2.26 2.82 3.25

10 1.37 1.81 2.23 2.76 3.17

95% CI for the mean conductivity of this type of glass is

x±t∗
s
√

n
= 1.1182±2.23×

0.04378
√

11
= 1.1182±0.0294 = (1.0888, 1.1476)

The CI does not contain 1, which agrees with the conclusion from
the hypothesis test that is µ significantly higher than 1. 16



T-Tests and T-Confidence Intervals in R

> conduct = c(1.11,1.07,1.11,1.07,1.12,1.08,1.08,1.18,1.18,1.18,1.12)

> t.test(conduct, mu = 1, alternative = "greater")

One Sample t-test

data: conduct

t = 8.9538, df = 10, p-value = 2.167e-06

alternative hypothesis: true mean is greater than 1

95 percent confidence interval:

1.094259 Inf

sample estimates:

mean of x

1.118182

Note that the 95% CI given (1.094259, Inf) = (1.094259,∞) is
one-sided since we conducted a one-sided test.
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T-Tests and T-Confidence Intervals in R

To conduct a “two-sided” test in R, change the “alternative” to
“two.sided”

> t.test(conduct, mu = 1, alternative = "two.sided")

One Sample t-test

data: conduct

t = 8.9538, df = 10, p-value = 4.334e-06

alternative hypothesis: true mean is not equal to 1

95 percent confidence interval:

1.088773 1.147591

sample estimates:

mean of x

1.118182
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Conditions to Use t-Tests and t-Confidence Intervals

Though t-tests and t-confidence intervals don’t require a big
sample, they still require the following

• Independence: The observations should be independent

• Normality:
• For the t-statistic to have a t-distribution, the population

distribution has to be normal, which is rarely true.
• In particular, it’s inherently difficult to verify normality in small

data sets.
• Fortunately, the t-test and t-CI have some robustness against

non-normality except in the case of outliers and strong
skewness. However, their impact diminishes as the sample
size gets larger.
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Checking Conditions for the Thermal Conductivity Example

• Independence: Suppose the observations are independent.

• Normality: The sample distribution does not appear to be
extremely skewed, but it’s very difficult to assess with such a
small sample size. We might want to think about whether we
would expect the population distribution to be skewed or not

1.08 1.10 1.12 1.14 1.16 1.18
Conductivity
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Example: Arsenic

Arsenic is toxic to humans and people can be exposed to it through
contaminated drinking water, food, dust, and soil. Scientists have
devised a non-invasive way to measure a person’s level of arsenic
poisoning: by examining toenail clippings. In a recent study1,
scientists measured the level of arsenic (in mg/kg) in toenail
clippings of 8 people who lived near a former arsenic mine in Great
Britain as follows: 0.8, 1.9, 2.7, 3.4, 3.9, 7.1, 11.9, 26.0

Suppose the 8 people examined were randomly sampled from
residents near the former arsenic mine. Is it legitimate to construct
a 95% CI for the mean level of arsenic (in mg/kg) in toenail
clippings for residents near the former arsenic mine using a t-CI?

1M. Button, G. R. T. Jenkin, C. F. Harrington and M. J. Watts, “Human toenails as a
biomarker of exposure to elevated environment arsenic,” Journal of Environmental
Monitoring, 2009; 11(3):610-617. Data are reproduced from summary statistics and are
approximate. 21



Example: Arsenic

Data: 0.8, 1.9, 2.7, 3.4, 3.9, 7.1, 11.9, 26.0

Data Summary:

min Q1 median Q3 max mean sd n

0.8 2.5 3.65 8.3 26 7.2125 8.368041 8

At such a small sample size (n = 8), a t-CI can be used only if the
population is fairly normal.

However, from the data summary we can see the sample is
severely right-skewed (e.g., min/Q1 is much closer to the median
than max/Q3 is), and there is an extreme outlier 26.0 that is over 3
IQRs above Q3.

It’s hence not legitimate to use a t-CI.
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Example: Utility Company Survey I

A utility company serves 50,000 households. As a part of a survey
of customer attitudes, they take a SRS of 400 of these households.
The average number of TVs in the sample households turns out to
be 1.86, and the SD is 0.90.

If possible, find a 95%-confidence interval for the mean number of
TVs in all 50,000 households. If this isn’t possible, explain why.
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Example: Utility Company Survey I (Cont’d)

• Population: the 50,000 households served by the utility company

• Parameter: mean # of TVs in the 50,000 households in the
population.

• The observations are (nearly) independent since the sample is a
SRS of the population and the sample size is < 10% of the
population size

• At such a big sample size (n = 400), the t-CI is fairly robust to
skewness (though it is safer to check for skewness and outliers).

• 95% confidence interval is

sample mean ± t∗ ×
sample SD
√

n

= 1.86 ± 1.97 ×
0.90
√

400
≈ 1.86 ± 0.09 = (1.77, 1.95).

With 95% confidence, we may assert that the 50,000 households had
1.77 to 1.95 TVs on average. 24



Example: Utility Company Survey II

As part of the survey, all persons age 16 and over in the 400
sample households are interviewed. This makes 900 people.

On average, the sampled people watched 5.20 hours of TV the
Sunday before the survey, and the SD was 4.50 hours.

True or False and explain: a 95%-confidence interval for the
average number of hours spent watching TV by all persons age 16
and over in the 50,000 households on that Sunday is

sample mean ± t∗ ×
sample SD
√

n

= 5.20 ± 1.96 ×
4.50
√

900
≈ 5.2 ± 0.294

Why t∗ = 1.96 here?
25



Example: Utility Company Survey II

• Population: all persons age 16 and over in the 50,000
households served by the utility company

• Parameter: the average number of hours spent watching TV
by all persons age 16 and over in the 50,000 households on
that Sunday.

• The sample is NOT a SRS from the target population. There
will be dependencies among the hours of TV watched among
members of the same household.

• Hence we cannot construct the CI use the formula

sample mean ± t∗ ×
sample SD
√

n
which assumes the observations in the sample were
independent.
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Recap: Inference Using the t -Distribution

• Conditions:
• independence of observations (use your judgement)
• not extremely skew, no outlier

• Hypothesis testing:

Tdf =
sample mean − null value

(sample SD)/
√

n
, where df = n − 1

• Confidence interval:

sample mean ± t?df × (sample SD)/
√

n

27


