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Coverage

• Binomial distribution (3.4)

Please skip section 3.3 and 3.5.
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Binomial distribution



Bernoulli Trials

A random trial having only 2 possible outcomes (Success, Failure)
is called a Bernoulli trial, e.g.,

• Tossing a coin, the outcomes are head or tail.

• Whether a drug works on a patient or not.

• Whether a electronic device is defected

• Whether a randomly selected eligible voter will vote in the
2016 general election or not
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Binomial Distribution

Suppose n independent Bernoulli trials are to be performed, each
of which results in

• a success with probability p and

• a failure with probability 1 − p.

If we define

X = the number of successes that occur in the n trials,

then X is said to have a binomial distribution with parameters (n, p),
denoted as

X ∼ Bin(n, p).
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Factorial

The notation n!, read n factorial, is defined as

n! = 1 × 2 × 3 × . . . × (n − 1) × n

e.g.,

1 ! = 1, 3 ! = 1 × 2 × 3 = 6,
2 ! = 1 × 2 = 2, 4 ! = 1 × 2 × 3 × 4 = 24.

By convention,

0 ! = 1.
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Binomial Coefficients

Binomial coefficient:
(
n
k

)
=

n!
k!(n − k)!

• which is the number of ways to choose k items, regardless of
order, from a total of n distinct items

•

(
n
k

)
is read as “n choose k’, also denoted as nCk, or Cn

k .

e.g., (
6
2

)
=

6 !
4 ! × 2 !

=
6 × 5 × 4 × 3 × 2 × 1
(4 × 3 × 2 × 1)(2 × 1)

=
6 × 5
2 × 1

= 15,(
n
n

)
=

n !
n ! × 0 !

=
n !

n ! × 1
= 1

You can also use R for these calculations:

> choose(6,2)

[1] 15
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•

(
n
0

)
= 1

because there is only 1 way of getting 0 success in n trials

•

(
n
n

)
= 1

because there is only 1 way of getting n successes in n trials

•

(
n
1

)
= n

because there are n ways of getting 1 success in n trials

•

(
n

n − 1

)
= n

because there are n ways of getting n − 1 successes (i.e., 1
failures) in n trials
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Binomial Formula

If Y has the binomial distribution Bin(n, p), the probability to have k
successes in n trials, P(Y = k), is given as

P(Y = k) =
(
n
k

)
pk(1 − p)n−k for k = 0, 1, 2, . . . , n.

Why is the binomial probability formula true?

See the next slide for an example.
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Why is the Binomial Probability Formula True?

Let Y = # of success in 4 indep. trials, each with prob. p of
success. So Y ∼ Bin(n = 4, p).

• There are 6 possible ways to get 2 successes (Y = 2):

SSFF SFSF SFFS FSSF FSFS FFSS
• As trials are independent, by the multiplication rule,

P(SSFF) = P(S)P(S)P(F)P(F)
= p · p · (1 − p) · (1 − p) = p2(1 − p)2

P(SFSF) = P(S)P(F)P(S)P(F)
= p · (1 − p) · p · (1 − p) = p2(1 − p)2

...

All 6 ways occur with prob. p2(1 − p2), because all have 2
successes and 2 failures

So P(Y = 2) = (# of ways) × (prob. of each way) = 6 · p2(1 − p)2 8



Why is the Binomial Formula True?

In general, for Y ∼ Bin(n, p)

P(Y = k) = (Number of ways to have exactly k success)

× P(success in all the first k trials
and none of the last n − k trials)

= (Number of ways to choose k out of n) × pk(1 − p)n−k

=

(
n
k

)
pk(1 − p)n−k
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Conditions Required to be Binomial

Condition that needs to be met for the binomial formula to be
applicable:

1. the trials must be independent

2. the number of trials, n, must be fixed

3. each trial outcome must be classified as a success or a failure

4. the probability of success, p, must be the same for each trial
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Binomial or Not?

A SRS of 50 from all UC undergrads are asked whether they are el-
igible to vote in the 2016 presidential election. Let X be the number
who reply yes. Is X binomial?

• a trial: a randomly selected student reply yes or not

• prob. of success p = proportion of UC undergrads saying yes

• number of trials n = 50

• Strictly speaking, NOT binomial, because SRS draw subjects
without replacement — trials are dependent

• Since the sample size 50 is only 1% of the population size
(≈ 5000), trials are nearly independent

• So X is approx. binomial, Bin(n = 50, p). 11



Binomial or Not?

Thirty of the 75 members in a fraternity are selected at random to
interview. One question is “will you vote in the 2016 presidential
election?”

Suppose the truth is that 60% of the 75 members would say “yes.”
Let X be the count in your sample who say “yes.”
Is X (at least approximately) ∼ Bin(n = 30, p = 0.6)?

No. The sample size 30 is large relative to the population size 75.
The SRS draws are not independent.
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Binomial or Not?

To study the prevalence rate of lung cancer among smokers, smok-
ers are sampled until the number of lung cancer cases in the sample
reaches 10. Let

N = total number of smokers sampled, and

p = proportion of lung cancer patients among smokers.

Is it true that

P(N = n) =
(

n
10

)
p10(1 − p)n−10?

No. The number of trials (sample size) is not determined in
advance.
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Example: Voter Turnout

Suppose that the turnout rate for the 2016 presidential election in
the Chicago area is 55%. Among a random sample of 10 eligible
voters, what is the probability that exactly 6 will vote? Exactly 8 will
vote?

Let X = the number of people that will vote in a sample of size 10.
X ∼ Bin(n = 10, p = 0.55)

P(X = 6) =
(
10
6

)
× 0.556 × 0.454 = 210 × 0.556 × 0.454 ≈ 0.238

P(X = 8) =
(
10
8

)
× 0.558 × 0.452 = 45 × 0.558 × 0.452 ≈ 0.0763.

> dbinom(6, size = 10, p = 0.55)

[1] 0.2383666

> dbinom(8, size = 10, p = 0.55)

[1] 0.07630255 14



Example: Voter Turnout (Cont’d)

In a sample of size 10, what is the probability that 4 to 6 of them will
vote?

P(4 ≤ X ≤ 6) = P(X = 4) + P(X = 5) + P(X = 6)

=

(
10
4

)
0.5540.456 +

(
10
5

)
0.5550.455 +

(
10
6

)
0.5560.455

≈ 0.160 + 0.234 + 0.238 = 0.632

X = Number of People That Will Vote

0.00
0.05
0.10
0.15
0.20

P
(X
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0 1 2 3 4 5 6 7 8 9 10

Sample size = 10
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Expected Value of Binomial Distribution

Suppose that the turnout rate for the 2016 presidential election in
the Chicago area is 55%. Among a random sample of 100 eligible
voters in the Chicago area, how many do you expect will vote?

• Easy enough, 100 × 0.55 = 55.

• Or more formally, µ = np = 100 × 0.55 = 55.

• But this doesn’t mean in every random sample of 100 people
exactly 55 will vote. In some samples this value will be less,
and in others more. How much would we expect this value to
vary?
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Mean and SD of Binomial Distribution

If X ∼ Bin(n, p), it can be shown that

µ = E(X) = np σ = SD(X) =
√

np(1 − p)

• Going back to the turnout rate:

σ =
√

np(1 − p) =
√

100 × 0.55 × 0.45 ≈ 4.97

• We expect 55 out of 100 randomly sampled eligible voters in
the Chicago area to vote, with a standard deviation of 4.97.

Note: Mean and SD of a binomial might not always be whole numbers, and that is

alright, these values represent what we would expect to see on average.
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Unusual Observations

Using the notion that observations that are more than 2 SDs away
from the mean are considered unusual and the mean and the
standard deviation we just computed, we can calculate a range for
the possible number of subjects that will vote in a sample of size
100

55 ± (2 × 4.97) ≈ (45, 65)

So, the sample proportion will likely to be between 45% and 65%.

Number of People That Will Vote
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Sample size = 100
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Suppose that the turnout rate for the 2016 presidential election in
the Chicago area is 55%. Is it unusual to obtain a sample of size
1000 that only 500 turn out?

µ = np = 1, 000 × 0.55 = 550

σ =
√

np(1 − p) =
√

1, 000 × 0.55 × 0.45 ≈ 15.73

Z − score of observation Z = x−expected value
SD = 500−550

15.73 = −3.18
500 is more than 3 SDs below the expected value.

If the true turnout rate is 55%, it’ll be unusual to obtain a sample of
size 1000 that only 500 turn out.

Number of People That Will Vote
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Sample size = 1000
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Law of Large Numbers Revisit

Flipping a coin n times, the number of heads obtained has a
Bin(n, p) distribution, where p is the prob. for the coin to land heads
in a single flip. The size of the difference

number of heads obtained − expected number of heads n × p

is about
√

np(1 − p), the SD of Bin(n, p), which

• will increase as n goes up,

• but is small relative to n.
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Normal Approximation to the
Binomial Distribution



Shapes of Binomial Distributions

For this activity you will use a web applet. Go to

https:// gallery.shinyapps.io/ dist calc/

and choose [Binomial] in the drop down menu on the left.

• Set n to 20 and the p to 0.15. Describe the shape of the
distribution of Bin(n = 20, p = 0.15).

• Keeping p constant at 0.15, and increase n, what happens to
the shape of the distribution?

• Keeping n constant at 30, and change p, what happens to the
shape of the distribution?
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Normal Approximation to the Binomial

The shape of the binomial distribution can be approximated by a
normal distribution

Bin(n, p) ≈ N
(
µ = np, σ =

√
np(1 − p)

)
as long as n is large enough.
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Example: Voter Turnout

Suppose that the turnout rate for the 2016 presidential election in
the Chicago area is 55%. A random sample of 100 eligible voters
is taken from the Chicago area. What is the probability that at most
50 of them will vote?

X ∼ Bin(n = 100, p = 0.55)

P(X ≤ 50) = P(X = 0) + P(X = 1) + P(X = 2) + · · · + P(X = 50)

=

(
100
0

)
× 0.550 × 0.45100 +

(
100
1

)
× 0.551 × 0.4599

+

(
100

2

)
× 0.552 × 0.4598 + . . . +

(
100
50

)
× 0.5550 × 0.4550

That’s an awful lot of work...
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Exact probability based on binomial formula (area of blue region in
the histogram)

30 40 50 60 70 80

is approximated by the area of the blue shaded region under the
normal curve.

30 40 50 60 70 80
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Normal Approximation to the Binomial

Suppose that the turnout rate for the 2016 presidential election in
the Chicago area is 55%. A random sample of 100 eligible voters
is taken from the Chicago area. What is the probability that at most
50 of them will vote?

Bin(n = 100, p = 0.55) ≈ N(µ = np = 55, σ =
√

np(1 − p) = 4.97)

The Z-score of 50 is (50 − 55)/4.97 ≈ −1. By normal
approximation, the probability is about

P(X ≤ 50) ≈ P(Z < −1) = 0.1587.

The exact probability is

> pbinom(50, size = 100, p = 0.55)

[1] 0.182728
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How Large is Large Enough?

• The size of n required depends on p. The closer p is to 0 or 1,
the larger n needs to be

• A rule of thumb: n needs to be so large that the expected
number of successes and failures are both at least 10.

np ≥ 10 and n(1 − p) ≥ 10
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Practice

Below are four pairs of Binomial distribution parameters. Which
distribution can be approximated by the normal distribution?

(a) n = 100, p = 0.95
n(1 − p) = 100 × 0.05 = 5 < 10

(b) n = 25, p = 0.45 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Answer
np = 25 × 0.45 = 11.25 > 10;
n(1 − p) = 25 × 0.55 = 13.75 > 10

(c) n = 150, p = 0.05
np = 150 × 0.05 = 7.5 < 10

(d) n = 500, p = 0.015
np = 500 × 0.015 = 7.5 < 10
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Continuity Correction of the
Normal Approximation to Binomial



Continuity Correction of the Normal Approx. to Binomial

Exact probability (area of blue region in the histogram):

30 40 50 60 70 80

Observe the right end point of the blue region is at 50.5, not 50.

Better to approximate with the [blue+red] region below, rather than
just the [blue] region.

30 40 50 60 70 80 28



Example (Voter Turnout)

Suppose that the turnout rate for the 2016 presidential election in
the Chicago area is 55%. A random sample of 100 eligible voters
is taken from the Chicago area. What is the probability that at most
50 of them will vote?

Bin(n = 100, p = 0.55) ≈ N(µ = np = 55, σ =
√

np(1 − p) = 4.97)

The Z-score of 50.5 is (50.5 − 55)/4.97 ≈ −0.90. By normal
approximation, the probability is about

P(X ≤ 50) = P(X ≤ 50.5) ≈ P(Z < −0.90) = 0.1841.

which is closer to exact probability 0.1827

> pbinom(50, size = 100, p = 0.55)

[1] 0.182728
29



How to Adjust the Endpoints?

For finding probabilities about X ∼ Bin(n = 10, p = 0.5), in using
the normal approximation, what values should you convert to
z-scores, and why?

3 to 7 exclusive 3 to 7 inclusive
P(X = 6) P(3 < X < 7) P(3 ≤ X ≤ 7)

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

P(5.5 < X < 6.5) P(3.5 < X < 6.5) P(2.5 < X < 7.5)

P(X = 6) P(3 < X < 7) P(3 ≤ X ≤ 7)
binomial formula 0.2051 0.6563 0.8906
normal w/o correction 0 0.7941 0.7941
normal w/ correction 0.2045 0.6572 0.8862 30



Continuity Correction of the Normal Approx. to Binomial

• Continuity correction can improve the accuracy of normal
approximation for binomial Bin(n, p) when n is relatively small,
but the improvement is negligible when n is large

• Continuity correction may be used for finding probability over
a small interval, even when n is large E.g., for
X ∼ Bin(1000, 0.5), the probability of 520 ≤ X ≤ 525 is
• 0.05535 using binomial formula
• 0.04603 using normal approximation w/o correction
• 0.05533 using normal approximation with correction, i.e.,

P(520 ≤ X ≤ 525) = P(519.5 ≤ X ≤ 525.5).

31


