STAT 22000 Lecture Slides
 Continuous Distributions and Normal Distributions

Yibi Huang
Department of Statistics
University of Chicago

Outline

Coverage: Section 2.5 and 3.1 in the text.

- Continuous distribution (2.5)
- Normal distribution (3.1)

Please skip section 3.2.

Continuous distributions

Frequency Scale of Histograms

For histograms in a frequency scale,
bar height $=$ count of observations in that bin.

Below is a histogram of the distribution of heights of US adults.

Density Scale of Histograms

For a histogram in a density scale,
bar area $=$ proportion of observations in that bin.
So, bar height $=\frac{\# \text { of observations in the bin }}{(\text { total \# of observations)(bin width) }}$

Whichever scale is used, the shape of a histogram is not affected since all bars are of the same width.

Density Scale of Histograms

In a density scale,
proportion of US adults that are 180-185 cm tall ($\approx 5^{\prime} 11^{\prime \prime}$ to $6^{\prime \prime} 1^{\prime \prime}$)
$=$ area under the histogram between 180-185 (shaded region)

In a density scale, the total area under a histogram is 1 (why?).

From Histograms to Density Curves

We might attempt to approximate a histogram by a smooth curve, called a (probability) density function.

- A density curve is nonnegative, i.e., always on or above the zero line.
- The total area under the density curve is always 1 , or 100%.

From Histograms to Density Curves

Therefore, the proportion US adult between 180 cm and 185 cm tall can be estimated as the shaded area under the curve.
(The exact proportion is the area under the histogram).

Continuous Random Variables \& Density Curves

The probability distribution of a continuous random variable is described by a density curve.

If Y is a continuous random variable, $P(a<Y<b)$ is the area under the density curve of Y above the interval between a and b

- Note: all continuous probability distributions assign zero probability to every individual outcome: $P(Y=y)=0$

Example - Spinner

A spinner turns freely on its axis and slowly comes to a stop.

- Define a random variable X as the location of the pointer when the spinner stops. It can be anywhere on a circle that is marked from 0 to 1.
- Sample space $S=\{$ all numbers x such that $0 \leq x<1\}$
- $P(0.3<X<0.7)=$?
- $P(X<0.5$ or $X>0.8)=$?
- $P(X=0.75)=$?

Density Curve for the Spinner Example

For the spinner example, the density curve for X is constant at 1 on the interval $[0,1]$, and 0 elsewhere.

$$
P(0.3<X<0.7)=0.4 \quad P(X<0.5 \text { or } X>0.8)=0.7
$$

Expected Value (=Mean) and Variance for a Continuous Random Variable

If X is a continuous random variable with density curve $f(x)$, the expected value or the mean of X is defined as the integral

$$
\mu_{X}=E(X)=\int_{-\infty}^{\infty} x f(x) d x
$$

The variance of X is defined as the integral

$$
\sigma_{X}^{2}=V(X)=\int_{-\infty}^{\infty}(x-\mu x)^{2} f(x) d x
$$

in which μ_{X} is the mean of X.
The SD of X is the square root of the variance:

$$
\sigma_{X}=S D(X)=\sqrt{V(X)}
$$

Example - Spinner

The density of X is a constant 1 on $[0,1]$ and 0 elsewhere

$$
f(x)= \begin{cases}1 & \text { if } 0 \leq x \leq 1 \\ 0 & \text { if } x<0 \text { or } x>1\end{cases}
$$

The mean of X is

$$
\mu_{X}=\int_{-\infty}^{\infty} x f(x) d x=\int_{0}^{1} x \cdot 1 d x=\left.\frac{1}{2} x^{2}\right|_{0} ^{1}=\frac{1}{2}
$$

the variance is
$V(X)=\int_{-\infty}^{\infty}\left(x-\frac{1}{2}\right)^{2} f(x) d x=\int_{0}^{1}\left(x-\frac{1}{2}\right)^{2} \cdot 1 d x=\left.\frac{1}{3}\left(x-\frac{1}{2}\right)^{3}\right|_{0} ^{1}=\frac{1}{12}$.

The SD is

$$
S D(X)=\sqrt{V(X)}=\sqrt{1 / 12} \approx 0.289
$$

In STAT 220, you will NEVER have to do integration to find probabilities or expected values or variances.

Normal distribution

Normal Distributions

Normal distributions (aka. Gaussian distributions) are a family of symmetric, bell-shaped density curves defined by

$$
\text { a mean } \mu \text {, and an SD } \sigma
$$

denoted as $N(\mu, \sigma)$. The formula for the $N(\mu, \sigma)$ curve is

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

A normal distribution with $\mu=0$, and $\sigma=1$ is called the standard normal distribution, denoted as $N(0,1)$.

Normal Probabilities

If X has a normal distribution, then to find probabilities about X is to find areas under a normal curve $N(\mu, \sigma)$.

$P(X<c)$

$P(X>d)$

$$
P(a<X<b)
$$

But,... there is no simple formula to find areas under a Normal curve. Need to use softwares or the normal probability table.

The normal probability table (on p.428-429 in Text) gives

$$
P(Z<z)=\text { area of shaded region in }
$$

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
\vdots										
-1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
-0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
-0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
-0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
-0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
\vdots										
-0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641

E.g., for $z=-0.83$, look at the row -0.8 and the column 0.03 .

0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
\vdots										
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
\vdots										
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998

$$
\begin{aligned}
P(Z<1.573) & =\frac{M m}{m e^{n} n} \\
& =\text { between } P(Z<1.57) \text { and } P(Z<1.58) \\
& =\text { between } 0.9418 \text { and } 0.9429
\end{aligned}
$$

Any value between 0.9418 and 0.9429 will be accepted in HWs and exams.

Find Normal Probabilities inR

The R command pnorm() can find areas under the standard normal $N(0,1)$ curve
$>$ pnorm (-0.83)
[1] 0.2032694
> pnorm(1.573)
[1] 0.9421406

Finding Upper Tail Probabilities

| z | .00 | .01 | .02 | .03 | .04 | .05 | .06 | .07 | .08 | .09 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -0.9 | .1841 | .1814 | .1788 | .1762 | .1736 | .1711 | .1685 | .1660 | .1635 | .1611 |
| -0.8 | .2119 | .2090 | .2061 | .2033 | .2005 | .1977 | .1949 | .1922 | .1894 | .1867 |
| -0.7 | .2420 | .2389 | .2358 | .2327 | .2296 | .2266 | .2236 | .2206 | .2177 | .2148 |

> 1 - pnorm(-0.83)
[1] 0.7967306
> \# another way to find upper tail area
> pnorm(-0.83, lower.tail=FALSE)
[1] 0.7967306

Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
\vdots										
-0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
-0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
-0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
\vdots										
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857

$>$ pnorm(2) - pnorm(-0.83)
[1] 0.7739805

Finding z for a Given Probability

E.g, we want to find the first quartile of the standard normal, i.e., what's the z such that

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
\vdots										
-0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
-0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
-0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
\vdots										

So the z is between -0.67 and -0.68 (about -0.675).
Finding the z such that $P(Z<z)$ equals a specific probability in R :
$>$ qnorm(0.25)
[1] -0.6744898

Quartiles of the Standard Normal Distribution

The quartiles of the standard normal distributions are:

$$
\begin{aligned}
& Q_{1} \approx-0.675 \ldots \ldots \text { (from the previous slide) } \\
& Q_{2}=0 \quad \ldots \ldots \text { (why?) } \\
& Q_{3} \approx 0.675 \ldots \ldots \text { (why?) }
\end{aligned}
$$

The interquartile range (IQR) for the standard normal curve is

$$
\mathrm{IQR}=Q_{3}-Q_{1} \approx 0.675-(-0.675) \approx 1.35
$$

If $P(Z>z)=\underbrace{}_{\mathrm{z}=\text { ? }}=0.05$, then $z=$?

This implies				$=0.95$, so $z \approx 1.645$ (between 1.64 and 1.65)						
			$\mathrm{z}=$?							
z	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
1.5	. 9332	. 9345	. 9357	. 9370	. 9382	. 9394	. 9406	. 9418	. 9429	. 9441
1.6	. 9452	. 9463	. 9474	. 9484			. 9515	. 9525	. 9535	. 9545
1.7	. 9554	. 9564	. 9573	. 9582	. 9591	. 9599	. 9608	. 9616	. 9625	. 96

> qnorm(1-0.05)
[1] 1.644854
> qnorm(0.05, lower.tail=F) \# alternative way
[1] 1.644854

Now we've learned how to find probabilities about the standard normal $N(0,1)$. To compute probability about general normal distribution $N(\mu, \sigma)$, we need to know about the Z score.

Example: SAT vs. ACT

SAT scores are distributed nearly normally with mean 1500 and standard deviation 300. ACT scores are distributed nearly normally with mean 21 and standard deviation 5. A college admissions officer wants to determine which of the two applicants scored better on their standardized test with respect to the other test takers: Pam, who earned an 1800 on her SAT, or Jim, who scored a 24 on his ACT?

Standardizing with Z scores

Since we cannot just compare these two raw scores, we instead compare how many standard deviations beyond the mean each observation is.

- Pam's score is $\frac{1800-1500}{300}=1$ SD above the mean.
- Jim's score is $\frac{24-21}{5}=0.6$ SD above the mean.

Standardizing with Z scores (cont.)

- These are called standardized scores, or Z scores.
- Z score of an observation is the number of SDs it falls above or below the mean.

$$
Z=\frac{\text { observation - mean }}{S D}
$$

- Z scores are defined for distributions of any shape, but only when the distribution is normal can we use Z scores to calculate normal probabilities.
- Observations that are more than 3 SD away from the mean $(|Z|>3)$ are usually considered unusual.

Recap: Ways to Detect Outliers

- 1.5 IQR rule
- Observations with $\mid Z$-scores $\mid>3$ (or sometimes > 2)
- Histograms
- Scatterplots

Calculating Normal Probabilities

Approximately what percent of students score below 1800 on the SAT? Recall that SAT $\sim N(\mu=1500, \sigma=300)$

The Z-score of 1800 is $Z=(1800-1500) / 300=1$.
From the table (next slide), we can see that $P(Z<1)=0.8413$.
So about 84% of students score below 1800 on the SAT.
In R:
$>\operatorname{pnorm}(1800$, mean $=1500, \mathrm{sd}=300)$
[1] 0.8413447

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.9939	0.9767	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015

Quality control

At Heinz ketchup factory the amounts which go into bottles of ketchup are supposed to be normally distributed with mean 36 oz . and standard deviation 0.11 oz . Once every 30 minutes a bottle is selected from the production line, and its contents are noted precisely. If the amount of ketchup in the bottle is below 35.8 oz . or above 36.2 oz ., then the bottle fails the quality control inspection. What percent of bottles have less than 35.8 ounces of ketchup?

$$
\begin{aligned}
& \text { Let } X=\text { amount of ketchup } \\
& \quad \text { in a bottle: } \\
& \qquad X \sim N(\mu=36, \sigma=0.11) \\
& Z=\frac{35.8-36}{0.11}=-1.82
\end{aligned}
$$

Second decimal place of Z										
0.09	0.08	0.07	0.06	0.05	0.04	0.03	0.02	0.01	0.00	Z
.0183	.0188	.0192	.0197	.0202	.0207	.0212	.0217	.0222	.0228	-2.0
.0233	.0239	.0244	.0250	.0256	.0262	.0268	.0274	.0281	.0287	-1.9
.0294	.0301	.0307	.0314	.0322	.0329	.0336	.0344	.0351	.0359	-1.8
.0367	.0375	.0384	.0392	.0401	.0409	.0418	.0427	.0436	.0446	-1.7
.0455	.0465	.0475	.0485	.0495	.0505	.0516	.0526	.0537	.0548	-1.6
.0559	.0571	.0582	.0594	.0606	.0618	.0630	.0643	.0655	.0668	-1.5

Answer: $0.0344=3.44 \%$

In R:
> pnorm(-1.82 , mean $=0$, sd $=1$)
[1] 0.0343795
\# or
$>$ pnorm(35.8, mean $=36$, sd $=0.11)$
[1] 0.03451817

Practice

What percent of bottles pass the quality control inspection (i.e., between 35.8 oz. and 36.2 oz .)?

Answer: 93.12\%.

Finding Cutoff Points For A Percentile

Body temperatures of healthy humans are distributed nearly normally with mean $98.2^{\circ} \mathrm{F}$ and standard deviation $0.73^{\circ} \mathrm{F}$. What is the cutoff for the lowest 3% of human body temperatures?

0.09	0.08	0.07	0.06	0.05	Z
0.0233	0.0239	0.0244	0.0250	0.0256	-1.9
0.0294	0.0301	0.0307	0.0314	0.0322	-1.8
0.0367	0.0375	0.0384	0.0392	0.0401	-1.7

$$
\begin{aligned}
P(X<x) & =0.03 \Rightarrow P(Z<-1.88)=0.03 \\
Z & =\frac{\text { obs }- \text { mean }}{S D} \Rightarrow \frac{x-98.2}{0.73}=-1.88 \\
x & =(-1.88 \times 0.73)+98.2=96.8^{\circ} \mathrm{F}
\end{aligned}
$$

In R:
$>$ qnorm(0.03, $\mathrm{m}=98.2, \mathrm{~s}=0.73$)
[1] 96.82702

Practice

Body temperatures of healthy humans are distributed nearly normally with mean $98.2^{\circ} \mathrm{F}$ and standard deviation $0.73^{\circ} \mathrm{F}$. What is the cutoff for the highest 10% of human body temperatures?

Z	0.05	0.06	0.07	0.08	0.09
1.0	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9115	0.9131	0.9147	0.9162	0.9177

$$
\begin{aligned}
P(X>x) & =0.10 \Rightarrow P(Z<1.28)=0.90 \\
Z & =\frac{\text { obs }- \text { mean }}{S D} \Rightarrow \frac{x-98.2}{0.73}=1.28 \\
x & =(1.28 \times 0.73)+98.2=99.1
\end{aligned}
$$

Answer: $99.1^{\circ} \mathrm{F}$
> qnorm(0.9, m = 98.2, $\mathrm{s}=0.73$)
[1] 99.13553

68-95-99.7\% Rule for Normal Distributions


```
> pnorm(1) - pnorm(-1)
[1] 0.6826895
> pnorm(2) - pnorm(-2)
[1] 0.9544997
> pnorm(3) - pnorm(-3)
[1] 0.9973002
```

