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1. Overview. We describe the Markov chain Monte Carlo (MCMC) algorithms in terms of
{S, R}, and then replace the unknown {S, R} with their estimates {Ŝ, R̂} in practice. This is similar
to the likelihood derivation and prior specification in Zhu and Stephens (2016).

With minor modifications, we implement three prior distribution of β based on previous work.
• BVSR prior

This prior modifies the prior distribution in Guan and Stephens (2011):

(1.1) β j ∼ πN (0, σ2
B) + (1− π)δ0,

where δ0 denotes the point mass at zero and σ2
B := h(π∑

p
j=1n−1s−2

j )−1. The prior distributions
of π and h are given by (1.4).
• BSLMM prior

This prior modifies the prior distribution in Zhou, Carbonetto and Stephens (2013):

(1.2) β j ∼ πN (0, σ2
B + σ2

P) + (1− π)N (0, σ2
P),

where the variances are given by

(1.3) σ2
B := hρ(π∑

p
j=1n−1s−2

j )−1, σ2
P := h(1− ρ)(∑

p
j=1n−1s−2

j )−1,

and the hyper-parameters {π, h, ρ} are placed on independent priors

(1.4) log π ∼ U (log(1/p), log 1), h ∼ U (0, 1), ρ ∼ U (0, 1).

• ASH prior
This is the same as the prior distribution in Stephens (2016):

(1.5) β j ∼
K

∑
k=1

ωkN (0, σ2
k ), ω ∼ D(λ, . . . , λ), λ ∼ U (0, 10),

where ω := (ω1, . . . , ωK)
ᵀ, K and {σ2

k } are pre-specified, and D denotes Dirichlet distribution.
Note that the BVSR prior is a special case of the BSLMM prior where ρ = 1. The plate notations
of BSLMM and ASH priors are given in Figure 1.

2. Rank-based strategy. When locally updating the SNP-specific parameters (e.g. genetic ef-
fect β j and sparsity indicator γj for each SNP j) in the MCMC algorithms, we allocate more compu-
tational resources to SNPs with larger marginal association signals, using the rank-based strategy
(Guan and Stephens, 2011). In particular, we first rank all the variants based on the single-SNP
p-values and draw one SNP to update according to some probability distributions with decreasing
probability. In our current implementation, we use a mixture distribution qp = 0.3up + 0.7gp, where
up is a discrete uniform distribution and gp is a geometric distribution truncated to 1, . . . , p with
its parameter chosen to give a mean of 2000.

Based on qp, we introduce Q(·|γ), a proposal for the indicator γ. To propose a new value γ∗ given
the current value γ, we start by setting γ∗ = γ and then randomly choose one of the following:
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π

model sparsity

γj

sparsity indicator

β j

genetic effect

σ2
β

sparse component

σ2
p

polygenic component

S

measurement unit

j = 1, . . . , p

(a) BSLMM prior

λω

allocation probability

zj

latent label

β j

genetic effect

j = 1, . . . , p

(b) ASH prior

Fig 1: Plate notations for two types of prior on β. Figure (1a) and (1b) correspond to Bayesian sparse linear
mixed model (BSLMM) prior and Adaptive shrinkage (ASH) prior respectively.

1. With probability Pa, draw SNP r according to qp until γr = 0 and set γ∗r = 1.
2. With probability Pr, draw SNP r uniformly from {j : γj = 1} and set γ∗r = 0.
3. With probability Pe, sample two SNPs by the above two steps and switch their indicators.

The default setting in our software is Pa = Pr = 0.4, Pe = 0.2.

3. BVSR prior. For RSS with BVSR prior, we use Metropolis-Hastings (MH) algorithm to
obtain posterior samples of (γ, π, h) on the product space of {0, 1}p × (0, 1)× (0, 1),

(3.1) p(γ, π, h|β̂, S, R) ∝ p(β̂|S, R,γ, π, h)p(γ|π)p(π)p(h).

Here we are exploiting the fact thatβ can be integrated out analytically to compute p(β̂|S, R,γ, π, h):

(3.2) β̂|S, R,γ, π, h ∼ N (0, SRS + σ2
B MγMᵀ

γ),

where M := SRS−1 and Mγ denotes the sub-matrix of M restricted to those columns j for which
γj = 1. We update γ using the rank-based proposal Q(·|γ). We update log π by adding a random
number from U (−0.05, 0.05) to the current value, and update h by adding a random number from
U (−0.1, 0.1) to the current value. New values of log π and h outside boundaries are reflected back.

For each simulated posterior draw of (γ, π, h), we sample β according to its conditional distribu-
tions given (γ, π, h) and (β̂, S, R):

βγ |β̂, S, R,γ, π, h ∼ N (µ, Ω−1),(3.3)
β−γ |β̂, S, R,γ, π, h ∼ δ0,(3.4)

where βγ and β−γ denote the subsets of β corresponding to the entries that γj = 1 and 0 respec-
tively, δ0 denotes the point mass at zero and,

Ω := Mᵀ
γ(SRS)−1Mγ + σ−2

B (γ, π, h)I|γ|,(3.5)
µ := Ω−1Mᵀ

γ(SRS)−1β̂.(3.6)

The marginal likelihood (3.2), up to some constant, can be written in terms of (Ω,µ),

(3.7) p(β̂|S, R,γ, π, h) ∝ σ
−|γ|
B |Ω|−1/2 exp{µᵀqγ/2},
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where qγ denotes the subset of q := S−1β corresponding to the entries that γj = 1. The matrix
computation in a single step of the MCMC algorithm above involves one Cholesky decomposition of
Ω and three triangular linear systems. Hence, the computational cost for each iteration of MCMC
is O(|γ|3 + 3|γ|2), where |γ| denotes the number of non-zero entries in γ.

To improve precision, we can use Rao-Blackwellized estimates. For SPIP, we have

Pr(γj = 1|β̂, S, R) = E(Pr(γj = 1|β̂, S, R, ξ−j)) ≈ M−1∑M
i=1Pr(γj = 1|β̂, S, R, ξ(i)−j)

where ξ−j stands for
{
β−j,γ−j, π, h

}
, γ−j and β−j denote the vectors γ and β excluding the jth

coordinate and ξ(i)−j denotes the ith MCMC sample from the posterior distribution of ξ−j. For the
posterior mean of the multiple-SNP effect at SNP j, we have

E(β j|β̂, S, R) = E(E(β j|β̂, S, R, ξ−j)) ≈ M−1∑M
i=1E(β j|β̂, S, R, γj = 1, ξ(i)−j)Pr(γj = 1|β̂, S, R, ξ(i)−j).

To obtain the Rao-Blackwellized estimates, we only need p(γj|β̂, S, R, ξ−j) and p(β j|β̂, S, R, γj, ξ−j):

Pr(γj = 1|β̂, S, R, ξ−j)

Pr(γj = 0|β̂, S, R, ξ−j)
=

π

1− π

√√√√ s2
j

s2
j + σ2

B
exp

 1
2(σ−2

B + s−2
j )

(
β̂ j

s2
j
−∑

i 6=j

rijβi

sisj

)2


β j|β̂, S, R, γj = 1, ξ−j ∼ N
(

1
σ−2

B + s−2
j

(
β̂ j

s2
j
−∑

i 6=j

rijβi

sisj

)
,

1
σ−2

B + s−2
j

)
β j|β̂, S, R, γj = 0, ξ−j ∼ δ0

where rij is the (i, j)-th entry of R.

4. BSLMM prior. We propose a component-wise MCMC algorithm for RSS with BSLMM
prior. First, we re-parameterize the multiple-SNP effect sizes β j as follows

β j|γj = 1, π, h, ρ, S =
√

σ2
B + σ2

P · β̃ j(4.1)
β j|γj = 0, π, h, ρ, S = σP · β̃ j(4.2)

where the standardized effect sizes β̃ j
i.i.d.∼ N (0, 1), for j ∈ {1, . . . , p}. Equivalently,

(4.3) β = Bβ̃, β̃ ∼ N (0, Ip)

where the scaling matrix B is diagonal with the jth diagonal bj defined as

(4.4) bj = σP1{γj = 0}+
√

σ2
B + σ2

P1{γj = 1}.

The new parameterization could help speed up the convergence of MCMC, since β̃ are independent
with (γ, π, h, ρ) a priori. We then draw posterior samples of (β̃,γ, π, h, ρ) iteratively.
• Given (β̃, π, h, ρ), we update γ by a standard MH algorithm, where the proposal is Q(·|γ).
• Given (γ, π, h, ρ), we update β̃ by a mixture of global and local moves. With probability Pg, we

draw a new value of β̃ from its full conditional,

(4.5) β̃|β̂, S, R,γ, π, h, ρ ∼ N ((BS−1RS−1B + I)−1BS−2β̂, (BS−1RS−1B + I)−1).

With probability 1− Pg, we randomly pick a SNP j according to the distribution qp and draw
β̃ j from its full conditional

(4.6) β̃ j|β̂, S, R, β̃−j,γ, π, h, ρ ∼ N
(

bjsj`j

s2
j + b2

j
,

s2
j

s2
j + b2

j

)
, `j :=

β̂ j

sj
−∑

i 6=j

rijbi β̃i

si
.
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• Given (β̃,γ, h, ρ), we update π by a Metropolis algorithm, where the proposal is symmetric
Gaussian random walks on log((π − p−1)/(1− π)).
• Given (β̃,γ, π, ρ), we update h by a Metropolis algorithm, where the proposal is symmetric

Gaussian random walks on log(h/(1− h)).
• Given (β̃,γ, π, h), we update ρ by a Metropolis algorithm, where the proposal is symmetric

Gaussian random walks on log(ρ/(1− ρ)).
The most computationally intensive step is drawing β̃ from a p-dimensional multivariate normal
distribution (4.5). For each draw, one Cholesky decomposition of BS−1RS−1B+ I and two triangular
linear systems are required. Since matrix R is banded with some bandwidth w (Wen and Stephens,
2010), the matrix BS−1RS−1B+ I also has the same bandwidth and therefore, the per-iteration cost
of the algorithm above is at most O(pw2 + 2p2). For all the simulations, we set Pg = 0.05. For the
analysis of adult height data, we set Pg = 0.001 (the default value in our software).

5. ASH prior. For each SNP j, we introduce a latent label zj ∈ [K] to denote the mixture
component index for β j in the ASH prior, that is, β j|zj = k ∼ N (0, σ2

k ), k ∈ [K], j ∈ [p]. Let z =
(z1, . . . , zp)ᵀ. To fit the RSS model with ASH prior, we simulate the posterior draws of (β, z,ω, λ)
by the following component-wise MCMC procedure.
• Given (ω, λ), we update (β, z) by a random-scan Gibbs step. For each iteration, we randomly

pick a SNP j according to the distribution qp and then draw (β j, zj) from its full conditional.
Let θ−j := (β−j, z−j,ω, λ). We first sample zj from [K] and then sample β j given zj,

Pr(zj = k|β̂, S, R,θ−j)

Pr(zj = 1|β̂, S, R,θ−j)
=

√√√√ s2
j + σ2

1

s2
j + σ2

k
·

exp{b2
j s4

j (s
2
j + σ2

1 )
−1/2}

exp{b2
j s4

j (s
2
j + σ2

k )
−1/2}

(5.1)

β j|β̂, S, R, zj = k,θ−j ∼ N
(

σ2
k s2

j bj

σ2
k + s2

j
,

σ2
k s2

j

σ2
k + s2

j

)
, bj :=

β̂2
j

s2
j
−∑

i 6=j

Rijβi

sisj
(5.2)

We leave the remaining components (β−j, z−j) unchanged in the current iteration.
• Given (β, z, λ), we draw ω from its full conditional

(5.3) ω|β̂, S, R,β, z, λ ∼ D(n1(z) + λ, . . . , nK(z) + λ),

where nk(z) is the number of entries in {j : zj = k} for each k ∈ [K].
• Given (β, z,ω), we update λ by a Metropolis algorithm, where the proposal distribution is a

symmetric Gaussian random walk on log(λ/(10− λ)).

6. Small world proposal. To improve the convergence rate of the MCMC schemes, we use the
“small-world” proposal (Guan and Krone, 2007) as an add-on for every Metropolis step in our main
algorithms above. Specifically, with probability 0.3 in each iteration, a long-range move is made by
compounding randomly many (from 2 to 20) local proposals.
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