Bayesian variant-based gene set enrichment analysis using GWAS summary statistics

Xiang Zhu University of Chicago

March 3, 2016

What is Gene Set Enrichment Analysis? (GSEA)

Aravind Subramanian et al. PNAS 2005;102:15545-15550

Similar ideas can be adopted in GWAS.

Wang et al. Nature Reviews Genetics 2010; 11; 843-854

Xiang Zhu

GSEA illustrates the importance of combining information.

- GWAS + Pathway (this talk) Two reviews: Wang et al (2010); Mooney et al (2014)
- GWAS + Functional Annotation
 Pickrell (2014); Finucane et al (2015)
- GWAS + eQTL
 Nicolae et al (2010); He et al (2013)
- eQTL + Functional Annotation
 Veyrieras et al (2008); Wen et al (2015)

Most pathway approaches to GWAS do not tell us which genes are relevant.

Real examples

Name	Source	Database	# of Genes
Disease	Reactome	Pathway Commons	1206
Gene Expression	Reactome	NCBI BioSystems	1213
Homo sapiens	miRTarBase	Pathway Commons	11343

Two-stage process in Carbonetto and Stephens (2013):

1. Identify pathway enrichment

2. Prioritize variants within the enriched pathways Software: BMApathway, https://github.com/pcarbo/bmapathway

Most pathway approaches to GWAS do not tell us which genes are relevant.

Real examples Database # of Genes Source Disease Reactome Pathway Commons 1206 Gene Expression **NCBI BioSystems** Reactome 1213 Homo sapiens miRTarBase Pathway Commons 11343

Two-stage process in Carbonetto and Stephens (2013):

1. Identify pathway enrichment

2. Prioritize variants within the enriched pathways Software: BMApathway, https://github.com/pcarbo/bmapathway

Carbonetto and Stephens (2013) propose an integrated approach.

Likelihood

Continuous (e.g. height):

$$y_i | \boldsymbol{x}_i, \boldsymbol{\beta}, \boldsymbol{\tau} \sim N(\boldsymbol{\beta}_0 + \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{\beta}, \boldsymbol{\tau}^{-1})$$

Binary (e.g. diabetes):

 $y_i | \mathbf{x}_i, \boldsymbol{\beta} \sim \text{Bernoulli}(\eta(\mathbf{x}_i, \boldsymbol{\beta})), \ \text{logit}(\eta(\mathbf{x}_i, \boldsymbol{\beta})) = \boldsymbol{\beta}_0 + \mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta}$

Prior

effect size distribution:

$$\beta_j \sim (1-\pi_j)\delta_0 + \pi_j N(0, \sigma_B^2)$$

probability of being "causal":

 $\mathsf{logit}_{10}(\pi_j) = \theta_0 + a_j \theta$

where $a_j := 1$ {SNP *j* is in the pathway}

BMApathway is complicated by the access to full GWAS data.

GWAS individual-level data can be hard to obtain.
 GWAS summary statistics are widely available.

genetics

Asking for more

Because of the usefulness of genome-wide association study (GWAS) data for mapping regulatory variation in the human genome, the journal now asks authors to report the co-location of trait-associated variants with gene regulatory elements identified by epigenetic, functional and conservation criteria. We also ask that authors publish or database the genotype frequencies or association *P* values for all SNPs investigated, whether or not they reached genome-wide significance.

Can the integrated method be applied to GWAS summary data?

- The method in Carbonetto & Stephens (2013): $p(Param|Individual Data) \propto p(Individual Data|Param) \cdot p(Param)$
- A possible modification? $p(Param|Summary Data) \propto p(Summary Data|Param) \cdot p(Param)$

Regression with Summary Statistics (RSS) provides a solution.

- $\widehat{\beta}|S,R,\beta \sim N(SRS^{-1}\beta,SRS)$
- single-SNP data: $\widehat{\boldsymbol{\beta}} := (\widehat{\beta}_1, \dots, \widehat{\beta}_p)^{\mathsf{T}}$
- multiple-SNP parameter: $\beta := (\beta_1, \ldots, \beta_p)^{\mathsf{T}}$
- **•** plug in { \widehat{S} , \widehat{R} } for {S, R}: **•** $\widehat{S} := \operatorname{diag}(\widehat{s}), \ \widehat{s} := (\widehat{s}_1, \dots, \widehat{s}_p)^{\mathsf{T}}, \ \widehat{s}_j \approx \operatorname{se}(\widehat{\beta}_j);$

• \widehat{R} : the estimated LD matrix [Wen & Stephens (2010)]

Regression with Summary Statistics (RSS) provides a solution.

Likelihood:

$$\widehat{\beta}|S,R,\beta \sim N(SRS^{-1}\beta,SRS)$$

Prior

effect size distribution:

$$\beta_j | S, \theta_0, \theta, h \sim (1 - \pi_j) \delta_0 + \pi_j N(0, \sigma_B^2)$$

probability of being "causal":

 $\mathsf{logit}_{10}(\pi_j) := \theta_0 + a_j \theta$

variance of causal effect:

$$\sigma_B^2 := h \cdot \left(\sum_{j=1}^p \pi_j n^{-1} s_j^{-2} \right)^{-1}$$

RSS retains the integrated characteristics of BMApathway.

Test the pathway enrichment:

 $\mathsf{BF}(\boldsymbol{a}) := p(\widehat{\beta}|S, R, \boldsymbol{a}, \theta > 0) / p(\widehat{\beta}|S, R, \boldsymbol{a}, \theta = 0)$

RSS

Estimate the enrichment level:

 $p(\theta | \hat{\beta}, S, R, \boldsymbol{a})$

Estimate the effect of SNP *j* given the enrichment:

 $p(\beta_j | \hat{\beta}, S, R, \boldsymbol{a})$

where $\boldsymbol{a} := (a_1, \ldots, a_p)^{\mathsf{T}}$, $a_j := 1 \{ \mathsf{SNP} \ j \text{ is in the pathway} \}$.

We apply RSS to a GWAS of adult human height.

- GWAS summary statistics (Wood et al, 2014) 1,064,575 SNPs, 253,288 EUR individuals
- Reference genotypes (1000 Genomes Project, 2010) phased haplotypes from 379 EUR individuals
- **18,732** protein-coding genes on autosomes
- 3,823 curated biological pathways

Genes Per Pathway

What is Endochondral Ossification?

Source: http://www.wellcome-matrix.org/research_groups/ray-boot-handford.html

Xiang Zhu	RSS & GSEA	March 3, 2016	13 / 15
-----------	------------	---------------	---------

Example 2: Hedgehog Signaling

ID	Pathway Name	Pathway Database	lg(BF)	theta	theta0
3208	Endochondral ossification	Wiki, BioSystems	64.5	0.75 (0.00)	-2.00 (0.00)
3398	Hedgehog 'on' state	Reactome, BioSystems	34.5	0.75 (0.01)	-2.00 (0.00)
3677	Signaling by Hedgehog	Reactome, BioSystems	32.3	0.50 (0.00)	-2.00 (0.00)
2978	Hedgehog signaling	KEGG, BioSystems	30.6	0.75 (0.00)	-2.00 (0.00)
2067	Signaling events mediated by the Hedgehog family	PID, PC	23.8	0.75 (0.03)	-2.00 (0.00)
2045	Signaling events mediated by the Hedgehog family	PID, BioSystems	23.7	0.75 (0.03)	-2.00 (0.00)
3598	Signaling by Hedgehog	Reactome, PC	22.3	0.50 (0.00)	-2.00 (0.00)

Example 3: GTEx eQTL Genes

Liver: Whole Blood: Muscle Skeletal: Thyroid: log10(BF)=10.9, log10(BF)=10.9, log10(BF)=10.3, log10(BF)=8.8, theta=0.50(0.00), theta0=-2.00(0.00)theta=0.25(0.00), theta0=-2.00(0.00)theta=0.50(0.02), theta0=-2.00(0.00)theta=0.25(0.00), theta0=-2.00(0.00)

Enrichment = Tissue + eQTL ?

GTEx tissue-specific eQTL gene lists courtesy of S. Urbut.

Additional associations can be informed by enriched pathways.

Xiang Zhu

RSS & GSEA

Acknowledgements

- those who help me conceive the study Matthew Stephens, Peter Carbonetto
- those who teach me genetics/biology
 Xin He, Nicholas Knoblauch, Siming Zhao, Sarah Urbut
- those who make their data public
 GIANT, 1000 Genomes, Pathway Commons, BioSystems, GTEx
- University of Chicago Research Computing Center

- Appendix A: Variational Bayes algorithms
- Appendix B: Other applications of RSS
- Appendix C: Simulations

Appendix A: Variational Bayes algorithms

References:

- Bishop, C. Pattern Recognition and Machine Learning, Ch. 10
- Ormerod, J.T. & Wand, M.P. Am. Stat. 2010

Our posterior calculation exploits variational approximation.

- $\gamma := (\gamma_1, \ldots, \gamma_p)^{\mathsf{T}}$, where $\gamma_j = 1$ if SNP *j* is causal
- $\bullet D := \{\widehat{\beta}, S, R, a\}$

Posterior distribution:

$$p(eta, \gamma | D) = \int p(eta, \gamma | D, heta_0, heta, h) p(heta_0, heta, h | D) \mathrm{d} heta_0 \mathrm{d} heta \mathrm{d}h$$

- **1**. Estimate $p(\beta, \gamma | D, \theta_0, \theta, h)$
- **2**. Estimate $p(\theta_0, \theta, h|D)$

Step 1: Estimate $p(\beta, \gamma | D, \theta_0, \theta, h)$

Aim: approximate $p(\beta, \gamma | D, \theta_0, \theta, h)$ by $q^*(\beta, \gamma)$

Decomposition of marginal likelihood:

$$\log p(D|\theta_0, \theta, h) = \underbrace{\mathsf{E}_q \log \left[\frac{q(\beta, \gamma)}{p(\beta, \gamma|D, \theta_0, \theta, h)} \right]}_{\mathsf{Kullback-Leibler}(\mathsf{KL}) \text{ divergence}} + \underbrace{\mathsf{E}_q \log \left[\frac{p(D, \beta, \gamma|\theta_0, \theta, h)}{q(\beta, \gamma)} \right]}_{\mathsf{Evidence lower bound (LB)}}$$

Optimization over distributions:

 $q^{\star} = \arg \min_{q} \mathsf{KL}(q; \theta_0, \theta, h) = \arg \max_{q} \mathsf{LB}(q; \theta_0, \theta, h)$

• Mean field approximation:

$$q(\boldsymbol{\beta},\boldsymbol{\gamma}) = \prod_{j=1}^{p} q_j(\boldsymbol{\beta}_j,\boldsymbol{\gamma}_j)$$

Step 2: Estimate $p(\theta_0, \theta, h|D)$

• Put uniform (**grid**) prior on $\{\theta_0, \theta, h\}$:

 $p(\theta_0) \propto 1, \ p(\theta) \propto 1, \ p(h) \propto 1$

• Approximate $p(\theta_0, \theta, h|D)$:

 $p(\theta_0, \theta, h|D) \propto \exp\{LB(\theta_0, \theta, h)\}\$

What about the exact calculation?

 $p(\theta_0, \theta, h|D) \propto p(D|\theta_0, \theta, h)$

Appendix B: Other applications of RSS

Other features:

- Estimate SNP heritability (PVE) [ready to use]
- Detect genetic association [ready to use]
- Predict phenotype [in progress] https://github.com/xiangzhu/dscr_blm

For more details:

- Manuscript: will be posted on bioRxiv soon
- Software: https://github.com/stephenslab/rss

RSS Applications

RSS can estimate SNP heritability.

(a) Individual-level data + GCTA (Yang et al, 2011)

(b) Summary statistics + RSS

Chromosome length (Mb)

-5.74

-8.39

Method

200

RSS-BVSR

250

RSS on summary data: 52.1%, [50.3%, 53.9%]

GCTA on subsets of full data: 49.8% (4.4%)

Xiang Zhu

RSS & GSEA

March 3, 2016 7/12

RSS can detect genetic association.

BIMBAM: multiple-SNP fine mapping of genes

http://www.haplotype.org/bimbam.html

GEMMA-BVSR: genome-wide multiple-SNP analysis https://github.com/xiangzhou/GEMMA

Xiang Zhu

RSS & GSEA

Appendix C: Simulations

We compare RSS with BMAPathway through simulations based on real genotype data (WTCCC, 2007).

 Null dataset: each SNP is equally likely to be causal

Enriched dataset: SNPs in the Signal Transduction pathway are more likely to be associated with the phenotypes

RSS Applications

Simulations

Type I Error

RSS Applications

Power

Enrichment Estimation

