Integrated enrichment analysis of genetic variants and biological pathways using **GWAS** summary statistics Xiang Zhu¹ and Matthew Stephens^{1,2}

¹Department of Statistics, ²Department of Human Genetics

Integrated analysis of **GWAS** is often limited by the access to full data.

Bayesian hierachical modelling has been used for joint analysis of genetic variants and biological pathways in GWAS recently [1, 2].

These methods, however, are often complicated by the limited access to individual-level data.

Bayesian hierarchical framework in [1]

Likelihood requires the individual-level data.

 $y_i | \mathbf{x}_i, \beta, \tau \sim N(\beta_0 + \mathbf{x}_i^{\mathsf{T}} \beta, \tau^{-1})$

Binary traits (e.g. schizophrenia):

RSS provides a way to gain biological insights into complex traits and diseases.

Top-ranked candidate pathways for enrichment of genetic associations

RSS not only **tests** the significance of enrichment (BF), but also **estimates** the level of enrichment (θ) simultaneously.

Phenotype	Pathway	Source	Size	BF	Estimated θ_0	Estimated θ
Height [6]	Endochondral ossification	WikiPathways (BS)	65	7.7×10^{68}	-2.05, [-2.08, -2.05]	0.80, [0.74, 0.86]
Schizophrenia [7]	Chromatin modifying enzymes	Reactome (BS)	241	1.0×10^{3}	-2.13, [-2.15, -2.08]	1.33, [0.79, 1.76]
Myocardial infarction [8]	Thyroid hormone metabolism II	BioCyc (BS)	4	1.3×10^{209}	-4.05, [-4.05, -4.03]	4.50, [4.46, 4.50]
Low-density lipoprotein [9]	Chylomicron-mediated lipid transport	Reactome (PC)	17	$3.4 imes 10^{65}$	-3.60, [-3.60, -3.58]	2.38, [2.36, 2.43]
Inflammatory bowel disease [10]	IL23-mediated signaling events	PID (PC)	37	3.1×10^{23}	-2.98, [-3.00, -2.90]	1.38, [1.20, 1.50]
Neuroticism [11]	Digestion of dietary carbohydrate	Reactome (PC)	9	7.3×10^{168}	-4.48, [-4.50, -4.45]	2.77, [2.66, 2.89]

Abbreviations used in table: BS=NCBI BioSystems [12], PC=Pathway Commons 2 [13].

The complete analysis results are publicly available online:

http://xiangzhu.github.io/rss-gsea/_book/

RSS reveals putatively novel loci not previously implicated by GWAS.

The genetic association between loci and phenotype is measured by P_1 , the posterior probability that at least one SNP in the loci is associated with the phenotype.

Additional associations are detected when: ► $P_1(\cdot | \theta > 0)$ is much larger than $P_1(\cdot | \theta = 0)$; ▶ and, $P_1(\cdot | \theta > 0)$ is close to 1.

 $P_1(\cdot | \theta > 0)$ and $P_1(\cdot | \theta = 0)$ are **automatically** obtained from the output of RSS.

Quantitative trait: adult human height [6]

 $y_i | \mathbf{x}_i, \beta \sim B(1, \eta(\mathbf{x}_i, \beta)), \text{ logit}(\eta(\mathbf{x}_i, \beta)) = \beta_0 + \mathbf{x}_i^T \beta$

Prior specification does not depend on data. Effect size distribution:

 $\beta_i \sim (1 - \pi_i)\delta_0 + \pi_i N(0, \sigma_B^2)$

Probability of being "causal":

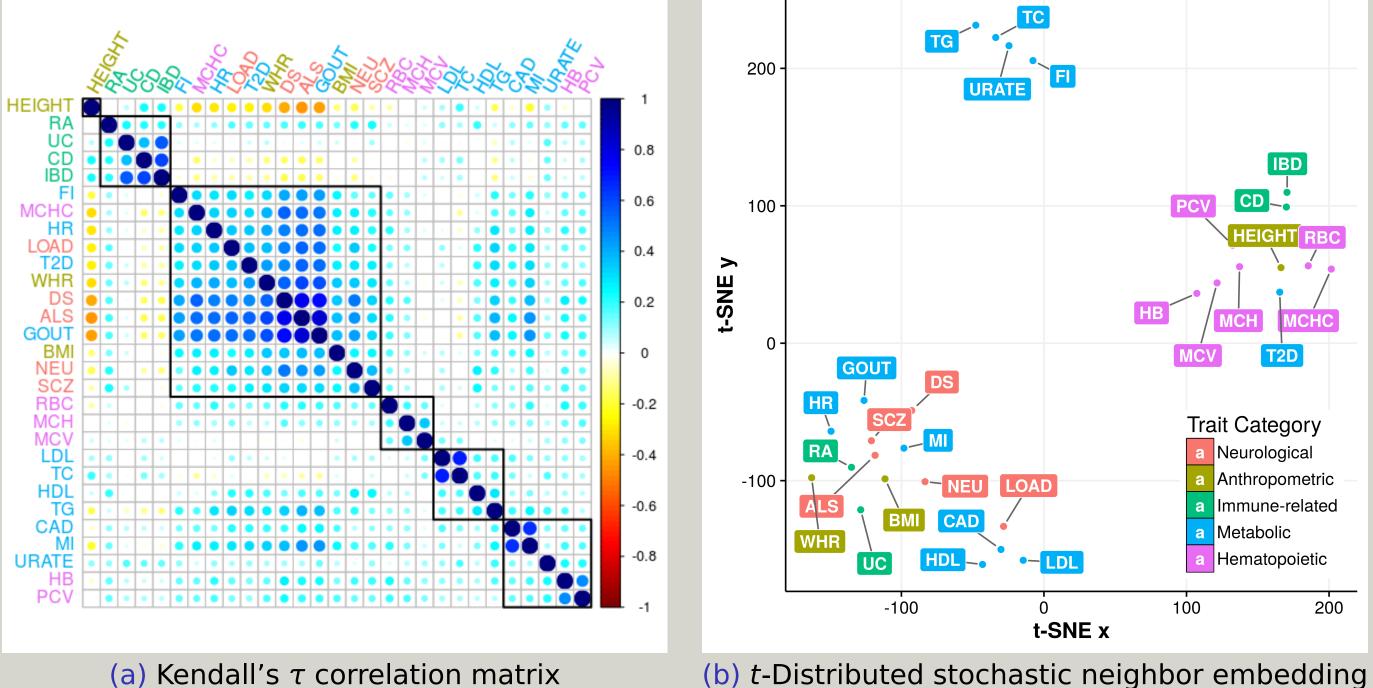
 $logit_{10}(\pi_i) = \theta_0 + a_i \theta$ where $a_j := 1\{SNP \ j \text{ is in the pathway}\}$

RSS (Regression with Summary Statistics) offers a solution [3].

Unlike the individual-level data, GWAS summary statistics are often publicly available.

A possible solution is to develop similar methods for summary-level data.

Revisit the **Bayes' Theorem**:

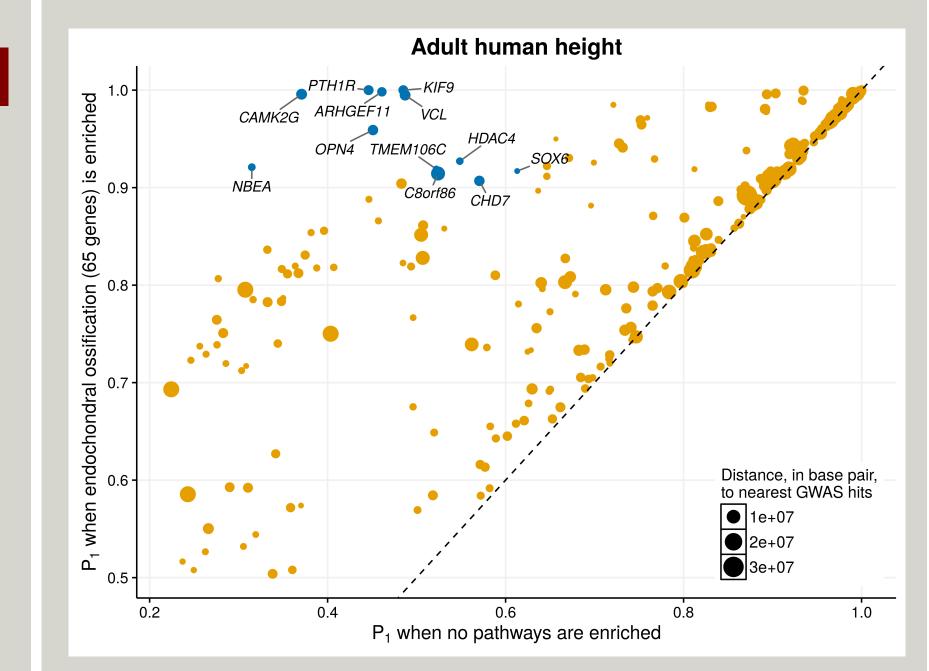

 $p(\beta|\text{Individual Data}) \propto p(\text{Individual Data}|\beta) \cdot p(\beta)$

 $p(\beta|\text{Summary Data}) \propto p(\text{Summary Data}|\beta) \cdot p(\beta)$ Likelihood Posterior Prior

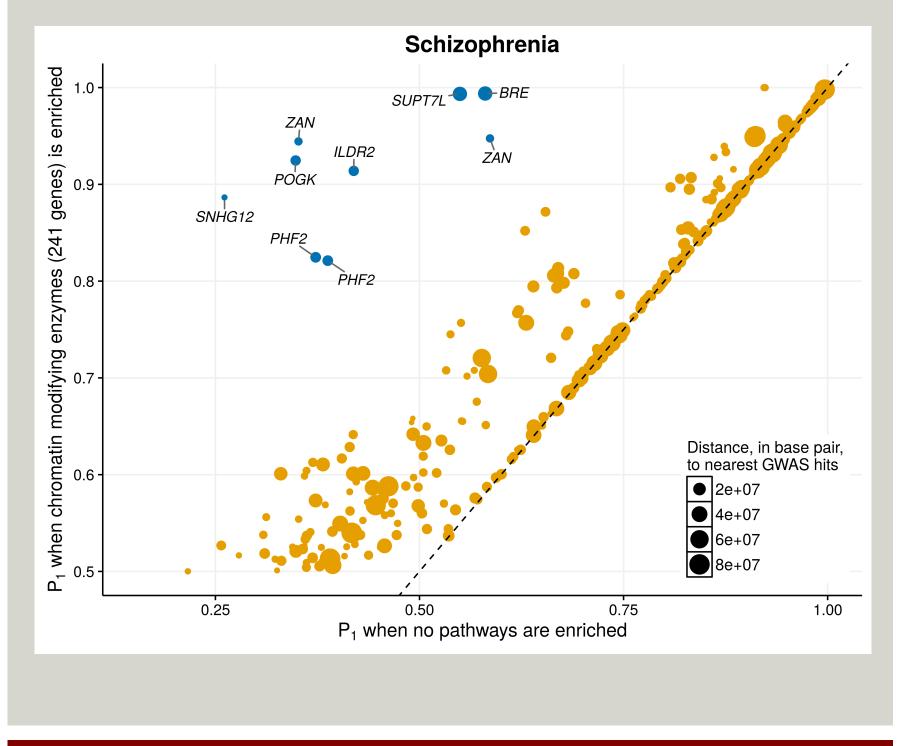
The only missing piece is $p(\text{Summary Data}|\beta)$.

Sharing and specificity of enrichment profiles across phenotypes

For each trait, the enrichment profile consists of 3913 gene-set (log 10) BFs.



(a) Kendall's τ correlation matrix


Integration of GWAS summary data and high-throughput molecular data

Two-step analysis:

	Recipe	Example				
ł	High-dimensional molecular data	GTEx V6 RNA-seq gene expression [14]				
	Data-driven methods	CountClust [15]				

Binary trait: schizophrenia [7]

RSS: a likelihood based on summary data

 $L_{\mathsf{rss}}(\beta;\widehat{\beta},\widehat{S},\widehat{R}) := \mathsf{N}(\widehat{\beta};\widehat{S}\widehat{R}\widehat{S}^{-1}\beta,\widehat{S}\widehat{R}\widehat{S})$

• multiple-SNP parameter: $\beta := (\beta_1, \ldots, \beta_p)'$ single-SNP summary data: $\hat{\beta} := (\hat{\beta}_1, \ldots, \hat{\beta}_p)'$ $\widehat{S} := \operatorname{diag}(\widehat{s}), \ \widehat{s} := (\widehat{s}_1, \ldots, \widehat{s}_p)', \ \widehat{s}_i \approx \operatorname{se}(\widehat{\beta}_i);$ $\rightarrow \hat{R}$: the shrinkage estimate of LD matrix [4]

Joint analysis of variants and pathways Test the significance of enrichment: $\mathsf{BF} := p(\widehat{\beta}|\widehat{S}, \widehat{R}, a, \theta > 0) / p(\widehat{\beta}|\widehat{S}, \widehat{R}, a, \theta = 0)$ Estimate the level of enrichment: $p(\theta|\widehat{\beta},\widehat{S},\widehat{R},a)$ Estimate the effect of SNP j under enrichment: $p(\beta_i | \hat{\beta}, \hat{S}, \hat{R}, a)$ The posterior distributions are approximated by Variational Bayes methods.

RSS is applied to 31 human phenotypes.

Dala-unven melhous Clusters of distinctively expressed genes Molecularly-derived gene sets RSS

Enrichment analysis of GWAS

Enrichment analysis of GWAS

t-SNE x

Trait Category

Metabolic

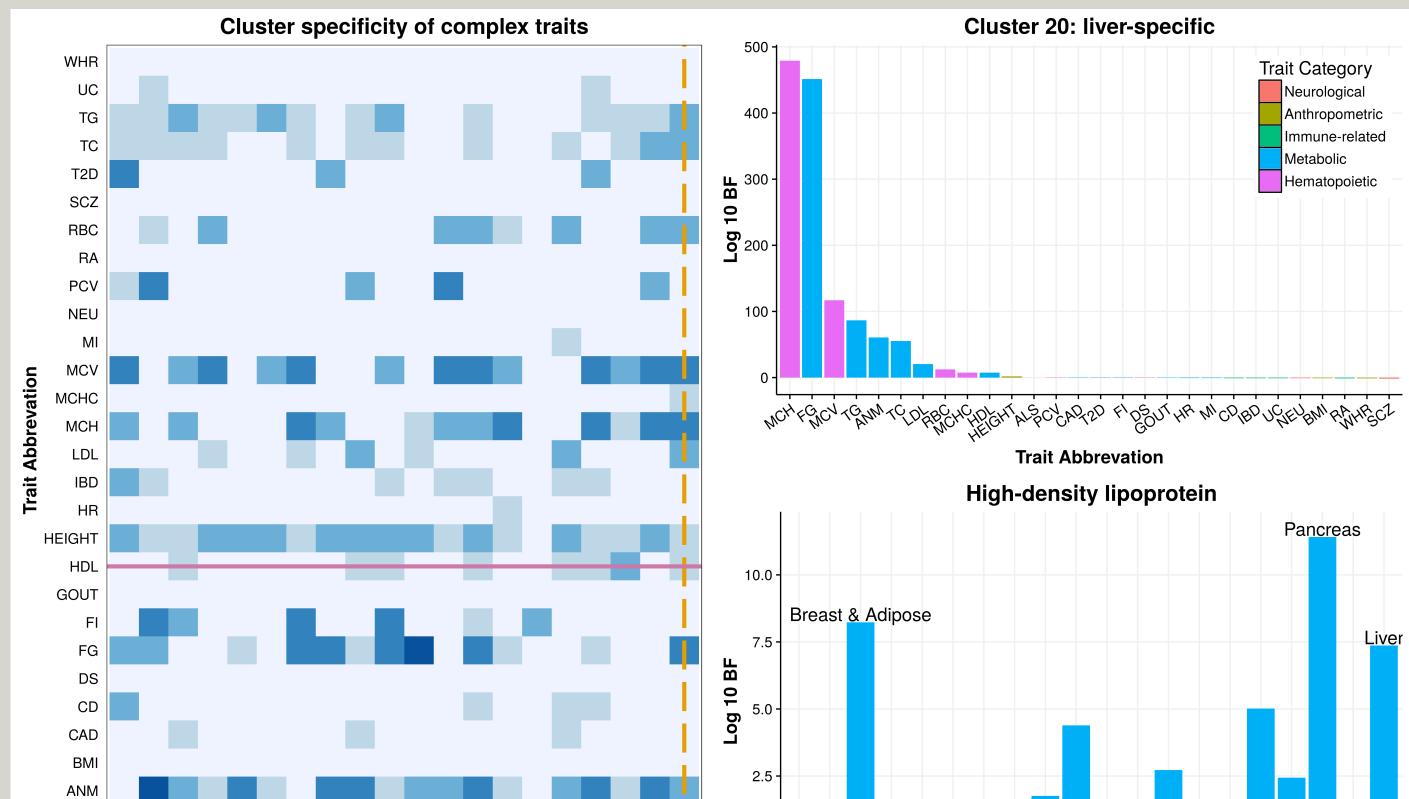
RSS

Neurological

Anthropometric

Hematopoieti

200


Immune-related

• Top right:

Given a cluster, examine the enrichment patterns across different phenotypes.

Bottom right:

Given a phenotype, examine the enrichment patterns across different clusters.

References

- [1] P. Carbonetto, M. Stephens, *PLoS Genetics* **9**, e1003770 (2013).
- M. Evangelou, F. Dudbridge, L. Wernisch, *Bioinformatics* **30**, 690 (2014).
- [3] X. Zhu, M. Stephens, *bioRxiv* (2016).
- [4] X. Wen, M. Stephens, *The Annals of Applied* Statistics 4, 1158 (2010).
- 1000 Genomes Project Consortium, Nature [5] **526**, 68 (2015).
- [6] A. R. Wood, et al., Nature Genetics **46**, 1173 (2014).
- Schizophrenia Working Group of the Psychiatric [7] Genomics Consortium, Nature 511, 421 (2014).
- [8] M. Nikpay, et al., Nature Genetics 47, 1121 (2015).
- T. M. Teslovich, et al., Nature 466, 707 (2010). [9]

The input of RSS is usually publicly available.DataSummaryPhenotype31 complex traits/diseasesReference panel1000 Genomes Phase 3 [5]	ANM ALS $1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 17 \ 18 \ 19 \ 20$ GTEx V6 GoM Cluster Log 10 BF $< 1 \ 1-10 \ 10-100 \ 100-1000 \ >100$	 [10] J. Z. Liu, et al., Nature Genetics 47, 979 (2015). [11] A. Okbay, et al., Nature Genetics 48, 624 (2016). [12] L. Y. Geer, et al., Nucleic Acids Research 38, (2010) 	
Genetic variant~1.1M HapMap3 SNPsGene~19K protein-coding genesPathway3913 curated pathways	Acknowledgments	D492 (2010). [13] E. G. Cerami, <i>et al.</i> , <i>Nucleic Acids Research</i> 39 , D685 (2011).	
Software <pre>https://github.com/stephenslab/rss.</pre>	We thank Peter Carbonetto and Xin He for helpful discussions. We thank the GWAS consortia that made summary statistics publicly available. This work was completed in part with resources provided by the University of Chicago Research Computing Center.	 [14] The GTEx Consortium, <i>Science</i> 348, 648 (2015). [15] K. K. Dey, C. J. Hsiao, M. Stephens, <i>bioRxiv</i> (2016). 	

More information at xiangzhu@uchicago.edu