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How can summary statistics be
used in multiple-SNP analysis?

I Recent work has revealed potential merits of multiple-SNP analysis.

I Existing methods are often complicated by access to full data.

I Summary statistics from single-SNP analysis are widely available.

A novel statistical problem

Consider the multiple linear regression,

y = Xβ + ε

where y is an n × 1 vector, X is an n × p matrix, β is the p × 1
regression coefficient, and ε is the error term. In regression analysis,
we observe the individual-level data {X , y} and use them to infer the
parameter of interest β. Here we assume that the full data {X , y}
are not available, and only summary statistics of simple linear
regression are provided:
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where Xj is the jth column of X , j = 1, . . . , p.

How do we infer β using {β̂j , sj}?

Examples of tools for multiple-SNP analysis

A growing number of GWAS summary statistics-based methods have
recently been published.

I GCTA-COJO [1]: approximate the standard multiple linear regression

I CAVIAR [2]: model z-scores at a locus as multivariate normal

I LDSC [3]: regress genome-wide χ2 statistics on “LD scores”

Shortcomings of existing methods

I Their connections with methods using full data are not clear.

I They cannot be easily applied to various multiple-SNP problems.

These concerns can be addressed if

β has an explicit likelihood based on summary-level data.
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Regression with Summary Statistics
(RSS) provides a solution.

Likelihood

We derive the following regression model for GWAS summary statistics:

β̂|S ,R ,β ∼ N(SRS−1β, SRS),

I β̂ := (β̂1, . . . , β̂p)ᵀ, where β̂j is the single-SNP effect size estimate of SNP j ;

I S := diag(s), s := (s1, . . . , sp)ᵀ, where sj is the standard error of β̂j ;

I R is the population linkage disequilibrium (LD) matrix.

We term the model Regression with Summary Statistics.

Features of RSS model

I It produces an explicit likelihood of multiple-SNP effect β.

I It is mathematically justified by asymptotic theory [4].

I It is computationally tractable for genome-wide analysis.

I It answers multiple questions within a single framework.

Dual role of population LD

I β̂j includes the effects of all SNPs that SNP j tags.

E(β̂j |S ,R ,β) = sj ·
p∑

i=1
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I β̂j and β̂k are correlated if SNP j and k are in LD.

Cov(β̂j , β̂k |S ,R ,β) = sjskRjk .

We estimate R using a shrinkage method based on population genetic principles [5].

Prior

Four types of prior on β are considered.

I Linear mixed model (LMM) prior:

βj ∼ N(0, σ2
P)

I Bayesian variable selection regression (BVSR) prior:

βj ∼ πN(0, σ2
B) + (1− π)δ0

I Bayesian sparse linear mixed model (BSLMM) prior:

βj ∼ πN(0, σ2
B + σ2

P) + (1− π)N(0, σ2
P)

I Adaptive shrinkage (ASH) prior:

βj ∼ π1N(0, σ2
1) + · · · + πK N(0, σ2

K )

They depict three genetic architectures.

infinitesimal (LMM), sparse (BVSR), hybrid (BSLMM & ASH)

Posterior

We provide efficient MCMC schemes to simulate posterior distributions of β.
Multiple tasks can be performed simultaneously using the same posterior samples.

Extension

One important extension is to integrate additional genomic information with the
RSS model [6, 7, 8, 9]. For example, together with the prior from [6],

βj ∼ (1− πj)δ0 + πjN(0, σ2
B), logit(πj) = θ0 + θ · 1{SNP j is in the gene set}

RSS is able to infer gene set enrichment. Details will be presented at [10].

RSS on height GWAS supports a
polygenic architecture of human stature.

We applied the RSS model on GWAS summary statistics of 1.06 million SNPs for
adult human height from 253,288 individuals of European (EUR) ancestry [11]. The
population LD matrix R was estimated from the 1000 Genomes [12] EUR samples.

Our heritability estimation (left) and loci detection (right) were comparable to results
in [11], and supported a polygenic architecture hypothesis for human height.

Software

Software of fitting the RSS model is freely available from
https://github.com/stephenslab/rss.

RSS yields results comparable to
methods that require full data.

We compare RSS with individual-level data-based methods through
simulations based on real genotype data [13].

Estimating SNP heritability

Phenotypic variation explained (PVE) by available genotypes:

SPVE(β) :=
∑
i ,j
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Full-data counterpart: GEMMA-BVSR and GEMMA-BSLMM [14, 15, 16]

Conclusion:

I PVE estimates using summary and individual-level data generally agree.

I Choice of prior is equally important for tools using summary and full data.

Testing SNP set association

Multiple-SNP Bayes factor (BF) of SNP set C under LMM prior:

SBF(C ) = p(β̂|S ,R , σP 6= 0) / p(β̂|S ,R , σP = 0)

Full-data counterpart: BIMBAM [17, 18]

Conclusion:

I SBF from summary data is an accurate approximation of BF from full data.

I Poorly specified LD can distort the summary-based method.

Detecting genome-wide association

Posterior inclusion probability (PIP) of SNP j under BVSR prior:

SPIP(j) = Pr(βj 6= 0|β̂, S ,R)

Full-data counterpart: GEMMA-BVSR [14, 15]

Conclusion:

I Association methods based on summary and full data have similar power.
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