cdanote087.txt

-------------
Section 4.2.3
-------------

. infile LI n r using cda088.dat
(14 observations read)

. blogit r n LI

Logit Estimates                                         Number of obs =     27
                                                        chi2(1)       =   8.30
                                                        Prob > chi2   = 0.0040
Log Likelihood = -13.036482                             Pseudo R2     = 0.2414

------------------------------------------------------------------------------
_outcome |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval]
---------+--------------------------------------------------------------------
      LI |   .1448632   .0593412      2.441   0.015       .0285567    .2611697
   _cons |   -3.77714   1.378628     -2.740   0.006      -6.479202   -1.075078
------------------------------------------------------------------------------

. blogit, or

Logit Estimates                                         Number of obs =     27
                                                        chi2(1)       =   8.30
                                                        Prob > chi2   = 0.0040
Log Likelihood = -13.036482                             Pseudo R2     = 0.2414

------------------------------------------------------------------------------
_outcome | Odds Ratio   Std. Err.       z     P>|z|       [95% Conf. Interval]
---------+--------------------------------------------------------------------
      LI |   1.155881   .0685913      2.441   0.015       1.028968    1.298448
------------------------------------------------------------------------------

	Estimating the dose that produces 50% remission
	  = finding value for dose that makes logit=0 (that is, prob=0.5)
	  = - alpha/beta
	  = -3.777/0.145
  
  
. display -3.777/0.145
-26.048276


Constructing Table 4.2 requires us to calculate fitted probabilities for 
the logit, probit, and linear probability models.  We have just 
calculated the logistic regression model, so the predict command will do 
exactly the calculation we need for the logit model.  Following that, we 
fit the probit model and have Stata create the fitted probabilities from 
that model.

Finally, we calculate the linear probability model and the fitted values 
corresponding to that model.  To accomplish that, we must first estimate 
the probabilities from each row, and then fit these probabilities using 
linear regression.  Note that the number of cases at each value of the 
Labelling Index is not the same; the [fweight=n] portion of the regress 
command lets Stata know that the variable n contains the frequency 
corresponding to that particular observation.

. predict logithat
. bprobit r n LI
. predict prbithat
. generate phat = r/n
. regress phat LI [fweight=n]

  Source |       SS       df       MS                  Number of obs =      27
---------+------------------------------               F(  1,    25) =   18.33
   Model |  1.76246588     1  1.76246588               Prob > F      =  0.0002
Residual |  2.40420086    25  .096168034               R-squared     =  0.4230
---------+------------------------------               Adj R-squared =  0.3999
   Total |  4.16666675    26  .160256413               Root MSE      =  .31011

------------------------------------------------------------------------------
    phat |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval]
---------+--------------------------------------------------------------------
      LI |   .0278284   .0065004      4.281   0.000       .0144405    .0412163
   _cons |  -.2252962   .1434906     -1.570   0.129      -.5208206    .0702282
------------------------------------------------------------------------------

. predict wlinhat
. list LI n r logithat prbithat wlinhat

            LI          n          r   logithat   prbithat    wlinhat  
  1.         8          2          0   .0679741   .0531573  -.0026689  
  2.        10          2          0   .0887893   .0750353   .0529879  
  3.        12          3          0   .1151908   .1031899   .1086447  
  4.        14          3          0   .1481664   .1383233   .1643015  
  5.        16          3          0     .18857   .1808359   .2199583  
  6.        18          1          1   .2369268   .2307179   .2756152  
  7.        20          3          2   .2932034    .287472    .331272  
  8.        22          2          1   .3566005   .3500869   .3869288  
  9.        24          1          0    .425454   .4170732   .4425856  
 10.        26          1          1   .4973257   .4865633   .4982424  
 11.        28          1          1   .5693082   .5564648   .5538992  
 12.        32          1          0   .7023434   .6891388   .6652129  
 13.        34          1          1   .7591835   .7482874   .7208697  
 14.        38          3          2    .849113   .8462564   .8321833  



For Table 4.3, the following illustration shows how to calculate the 
empirical logits and the predicted number of remissions.

. input LI

            LI  
  1. 10
  2. 16
  3. 22
  4. 28
  5. 36

. regress emplogit LI [fw=cases]

  Source |       SS       df       MS                  Number of obs =      27
---------+------------------------------               F(  1,    25) =  235.22
   Model |  43.5440066     1  43.5440066               Prob > F      =  0.0000
Residual |  4.62796322    25  .185118529               R-squared     =  0.9039
---------+------------------------------               Adj R-squared =  0.9001
   Total |  48.1719698    26  1.85276807               Root MSE      =  .43025

------------------------------------------------------------------------------
emplogit |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval]
---------+--------------------------------------------------------------------
      LI |   .1456771   .0094984     15.337   0.000       .1261147    .1652395
   _cons |  -3.824297   .2078753    -18.397   0.000      -4.252424    -3.39617
------------------------------------------------------------------------------

. predict fitlogit
. gen predrem = cases * exp(fitlogit) / (1+ exp(fitlogit))
. format emplogit fitlogit predrem %6.2f
. list LI cases remits emplogit fitlogit predrem

            LI      cases     remits  emplogit  fitlogit  predrem  
  1.        10          7          0   -2.71   -2.37    0.60  
  2.        16          7          1   -1.47   -1.49    1.28  
  3.        22          6          3    0.00   -0.62    2.10  
  4.        28          3          2    0.51    0.25    1.69  
  5.        36          4          3    0.85    1.42    3.22  


Note that the predicted number of remissions disagrees slightly with those 
of Table 4.3.  The predicted numbers in the last column correspond to an 
estimated beta of 0.1473 instead of the 0.1457 value obtained above.  For 
practical purposes, the differences are of no importance, but it would be 
nice to know just how the last column of the table was calculated.



-------------
Section 4.2.4  The Wald statistic
-------------

Returning to the top of the page, here is an excerpt from the logistic 
regression calculation based on the full table


Logit Estimates                                         Number of obs =     27
                                                        chi2(1)       =   8.30

_outcome |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval]
---------+--------------------------------------------------------------------
      LI |   .1448632   .0593412      2.441   0.015       .0285567    .2611697
   _cons |   -3.77714   1.378628     -2.740   0.006      -6.479202   -1.075078
------------------------------------------------------------------------------

The z-statistic is exactly what Agresti refers to in the last paragraph of 
the section.  Note that the chi-squared statistic at the upper right of 
the display is the likelihood-ratio statistic.