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Regression Models for Ordinal Data

By PETER MCCULLAGH
University of Chicago, Chicago, Illinois 60637, U.S.A.¥

[Read before the ROYAL STATISTICAL SOCIETY at a meeting organized by the RESEARCH SECTION on Wednesday,
February 13th, 1980, Professor D. R. Cox in the Chair]

SUMMARY

A general class of regression models for ordinal data is developed and discussed. These
models utilize the ordinal nature of the data by describing various modes of stochastic
ordering and this eliminates the need for assigning scores or otherwise assuming
cardinality instead of ordinality. Two models in particular, the proportional odds and the
proportional hazards models are likely to be most useful in practice because of the
simplicity of their interpretation. These linear models are shown to be multivariate
extensions of generalized linear models. Extensions to non-linear models are discussed and
it is shown that even here the method of iteratively reweighted least squares converges to
the maximum likelihood estimate, a property which greatly simplifies the necessary
computation. Applications are discussed with the aid of examples.

Keywords . COMPLEMENTARY LOG—LOG TRANSFORM; GENERALIZED EMPIRICAL LOGIT TRANSFORM;
LINK FUNCTION; LOCATION PARAMETER; LOG—LINEAR MODEL; LOGIT LINEAR MODEL,
MULTIVARIATE GENERALIZED LINEAR MODEL; ORDERED CATEGORIES, PROPORTIONAL
HAZARDS; PROPORTIONAL ODDS; SCALE PARAMETER; SCORES; SURVIVOR FUNCTION

1. INTRODUCTION

IT is widely recognized that the types of data as well as the class of problems that a statistician
is likely to encounter vary greatly with the field of research. Consequently, methods that are
useful in one area or discipline may be of little use or interest to researchers in another area. In
the physical sciences, for example, the overwhelming proportion of data is essentially
quantitative although possibly measured on an arbitrary scale. In the social sciences and to a
lesser extent in the biological sciences, qualitative data are more common. These qualitative
measurements, whether subjective or objective, usually take values in a limited set of categories
which may be on an ordinal or on a purely nominal scale. Intermediate types of scales are also
possible but the purpose of this paper is to investigate structural models appropriate to
measurements on a purely ordinal scale.

For a discussion of the classification of scale types and their relevance to the statistical
procedures employed, see Stevens (1951, 1958, 1968) who distinguishes nominal, ordinal,
interval and ratio scales. Even this list however is incomplete since only a partial order may exist
among the categories. More complex order structures arise when a bivariate response is
observed, the categories for each margin being ordinal. One possibility investigated by
Anscombe (1970) for modelling bivariate ordinal responses is to develop models based on the
so-called cross-ratio distributions (Pearson, 1913; Plackett, 1965). This paper, however, is
devoted solely to the case where there is a single response measured on an ordinal scale, there
being possibly multiple explanatory factors or covariates.

Motivation for the proposed models is provided by appeal to the existence of an underlying
continuous and perhaps unobservable random variable. In bioassay this latent variable usually
corresponds to a “tolerance” which is assumed to have a continuous distribution in the
population. Tolerances themselves are not directly observable but increasing tolerance is
manifest through an increase in the probability of survival. The categories are envisaged as
contiguous intervals on the continuous scale, the points of division being denoted in this paper

+ Present address : Department of Mathematics, Imperial College, London.
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by 6,,..., 6, _ ;. In many cases where, for convenience of tabulation, data are grouped in this way,
the points of division are known, but in the case of qualitative data such information is usually
absent. Throughout this paper the cut points {0} are assumed unknown. Ordinality is therefore
an integral feature of such models and the imposition of an arbitrary scoring system for the
categories is thereby avoided.

All the models advocated in this paper share the property that the categories can be thought
of as contiguous intervals on some continuous scale. They differ in their assumptions
concerning the distributions of the latent variable (e.g. normality (after suitable transformation),
homoscedasticity etc.). It may be objected, in a particular example, that there is no sensible
latent variable and that these models are therefore irrelevant or unrealistic. However, the
models as introduced in Sections 2.1 and 3.1 make no reference to the existence of such a latent
variable and its existence is not required for model interpretation. If such a continuous
underlying variable exists, interpretation of the model with reference to this scale is direct and
incisive. If no such continuum exists the parameters of the models are still interpretable in terms
of the particular categories recorded and not those which might have obtained had the defining
criteria {60,} been different. Quantitative statements of conclusions are therefore possible in both
cases although more succinct and incisive statements are usually possible when direct appeal to
a latent variable is acceptable.

2. THE PROPORTIONAL ODDS MODEL
2.1. General

In all of the problems considered here, it is important to distinguish clearly between response
variables, on the one hand, and explanatory factors or covariates, on the other. For further
discussion of this point see Section 7.2. Suppose that the k ordered categories of the response
have probabilities 7,(x), 7,(x), ..., ;(X) when the covariates have the value x. In the case of two
groups X is an indicator variable or two-level factor indicating the appropriate group. Let Y be
the response which takes values in the range 1,..., k with the probabilities given above, and let
K{(x) be the odds that Y<j given the covariate values x. Then the proportional odds model
specifies that

k(x) = kyexp(—BTX) (1<j<h), @1
where B is a vector of unknown parameters. The ratio of corresponding odds
Ki(X)/K(xz) = exp {BT(xz -x;)} (1<j<k) (2.2)

is independent of j and depends only on the difference between the covariate values, x, —x;.
Since the odds for the event Y<j is the ratio y;(x)/{1—7y;(x)}, where y(x) = 7,(x) +... + 7(x),
the proportional odds model is identical to the linear logistic model

log [y (x)/{1—yx)}1=0,—B"x (1<j<k) (2.3)

with 0; = logx;, so that the difference between corresponding cumulative logits is independent
of the category involved. Note in particular that when there are only two response categories,
(2.3) is equivalent to the usual linear logistic model for binary data (Cox, 1970) and in this
particular case it is also equivalent to a log-linear model. In general, however, when the number
of categories exceeds 2, the linear logistic model (2.3) does not correspond to a log-linear
structure.

2.2. An Example

As an initial example we take a two-sample problem where the response variable has three
ordered categories. Model (2.3) reduces to

'111' = log {'}’1;/(1_?11')} = ej_%A
(1sj<k) (24)
Ayj =log {y,;/(1—=7,)} = 6;+3A
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where y;; is the jth cumulative probability for the ith group and 4;; is its logistic transform. The
difference between corresponding logits, A,;—4,;, is the same constant, A, for all j.

To illustrate an application of (2.4) we use the data in Table 1 from Holmes and Williams
(1954) who classify 1398 children aged 0-15 years according to their relative tonsil size and

TABLE 1
Tonsil size of carriers and non-carriers of Streptococcus pyogenes

Present but Greatly
not enlarged Enlarged enlarged Total
Carriers 19 29 24 72
Non-carriers 497 560 269 1326
Total 516 589 293 1398

whether or not they were carriers of Streptococcus pyogenes. Our perspective in examining these
data is to investigate the nature and direction of possible effects of Streptococcus pyogenes on
tonsil size. Consequently, tonsil size is regarded as the dependent variable, presence or absence
of Streptococcus pyogenes being regarded as a possible explanatory factor. Certainly this
distinction is in keeping with possible biological mechanisms : if there is a causal relationship
between the two variables it is almost certainly in the direction indicated rather than the reverse.

At least as a preliminary investigation of the adequacy of the linear logistic or proportional
odds model it is recommended that the empirical logistic transforms and their differences be
computed as shown in Table 2. The first sample logit for carriers is the log contrast of 19 versus

TABLE 2
An analysis of the tonsil size data

Logits for carriers —1-009 0-683
Logits for non-carriers —0-511 1-367
Carriers minus non-carriers —0-498 —0-684

29 +24. To avoid zeros and to reduce bias it is advisable to add 4 to both numerator and
denominator so that —1:009 = log(19-5/53-5). Similarly, 0-683 = log(48:5/24-5) is the log
contrast for not enlarged and enlarged versus greatly enlarged. For non-carriers, the
corresponding transforms are —0-511 and 1-367 yielding differences on the logit scale of 0-498
and 0-684 respectively. From the practical viewpoint it is probably sufficient to note that these
two values have the same sign and are of approximately the same magnitude. In essence then our
conclusion is that the odds of having greatly enlarged tonsils are 1-8 times as large for carriers as
for non-carriers and that the odds for having normal-sized tonsils are 1-8 times as large for non-
carriers as for carriers. Here I have used 1-8 = exp 3(0-498 +0-684) taking an equally weighted
average although this combination can be improved as indicated below. For a similar problem,
Tukey (1977) gives essentially the same analysis under the name of flogs.

We now investigate some of the finer details of parameter estimation and model verification.
In particular, it would be advantageous to obtain an efficient estimate of A together with error
estimates or confidence intervals for the common odds-ratio, exp (A).

2.3. A Generalized Empirical Logit Transform
Let the cell counts be {n;;} with row totals n;,n, and column or category totals {n ;}. The
cumulative row sums are R;; so that n; = R is the ith row total. Under the assumption of
multinomial sampling in each row, the marginal distribution of R;; conditional only on the row
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total n; is binomial with index n; and parameter y;; satisfying (2.4). Hence the jth sample logit
Iij = log {(R;; +3)/(n;— R;;+ %)}

has expectation 4;;+ O(n;?)(Cox, 1970, p. 33; Plackett, 1974, p. 3). Hence, for any fixed weights

{w;} with Zw; = 1, the linear combination Z, = =, w; 1;; has expectation given by

E(Z,) = —3A+Zw; 0j+0(n1‘2),
E(Z,) = 3A +Zw; 0j+0(n2_2),

so that E(Z,—Z,) = A+0(n;2,n;?). For a similar estimator of A, Clayton (1974) derived a
formula for the weights {w;} which minimize the asymptotic variance of Z, —Z, when A = 0.
The weights are given by

w; o p(1—y)) (nj+7Fj+ 1 (2.5)

where 7; is the common value of y,; and y,; under the hypothesis that A = 0. Using these
weights, the asymptotic variance of A = Z, —Z, was shown to be

nlnzk*l -1 2
var (A) = Tj;yj(l =) (m+m ) +O0(A%). (2.6)

When k = 2, the expression Zy{1 —v;)(n; + ;. ;) reduces to the familiar formula p(1 — p) for the
binomial variance. When k = 3, the weights are proportional to n, and n, respectively, n, being
a measure of the correlation or information common to both ZJ“ and 4,,.
There are many equivalent forms of the summation in (2.6). The following are a few.
k-1 k k—1
(i) _217’](1 _yj)(nj+nj+ s (i) jZlnj(l —Yi— V- 1)2; (iii) jZlv,- VYi+1Tj+ 15
s - <

k—1 1 1k
) ZA=p)1=y-0m ) 3-3 T

These expressions are related to the intrinsic accuracy of the logistic function and also to the loss
of information about A incurred by grouping the data. Expression (v) shows that for fixed k the
variance is smallest when all categories have equal probability. For continuous distributions,
the analogue is obtained by replacing y by F(x), = by dF(x) and the summation becomes an
integral. In this limit, all are equal to 1.

A further slight problem is that the weights (2.5) are not obtainable directly and must
therefore be estimated from the data. Clayton used weights obtained by substituting parameter
estimates derived from category totals into (2.5). Simulation results by McCullagh (1977)
indicate that, for a wide range of conditions, these weights do not produce noticeable bias in A.
The variance estimator (2.6) with y; estimated by R ;/n can however seriously underestimate the
true variance when |A|>1.

The quantity Z; with weights given by

w; oC R.j(". _R.j)(n.j+n.j+ 1)

is called the generalized empirical logit transform for the ith group. For the data of Table 1, the
weights w;, being proportional to category 1 and category 3 totals, are w, = 0-638, w, = 0-362,
yielding K = 0-565 with standard error 0-225. The parameter A provides strong evidence that
tonsil size tends to be larger in the carrier group than in the non-carrier group. Normal
approximations for significance tests are best done on the logistic rather than the odds-ratio
scale since the distribution of A is likely to be more nearly symmetric than that of exp(A).

To check the adequacy of the linear logistic model, all parameters in (2.4) were estimated by
maximum likelihood giving the following estimates and standard errors.

A =0603+0225 0, =-0810+0116; 8, = 1-061+0-118.
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The residual deviance or likelihood ratio y* statistic is G* = 0-302 on one degree of freedom
indicating a good fit. Details of maximum likelihood estimation are given in the Appendix.

The qualitative conclusion that tonsil size tends to be larger in the carrier than in the non-
carrier group could have been obtained by a variety of other methods including the Wilcoxon
test and tests based on partitioning Pearson’s or the likelihood ratio y? statistic; see, for example,
Armitage (1955) and the discussion in Section 7.1. The quantitative conclusion that the odds for
greatly enlarged tonsils are 1-8 times greater in the carrier than in the non-carrier group and that
the odds for normal tonsils are 1-8 times greater in the non-carrier group can only be obtained
through a parametric model. The great advantage of the quantitative approach is best seen in
more complex examples with more structure in the explanatory variables.

3. THE PROPORTIONAL HAZARDS MODEL
3.1. General

The hazard function or instantaneous risk function A(t; x), of major importance in the analysis
of survival data, is defined to be the instantaneous failure probability at time ¢ conditional on
survival up to time t. For an individual with covariate x the proportional hazards model is

Mt X) = Ao(t)exp(— BT x), (3.1)

where Ay(t) is the hazard function when x = 0 and f is a vector of unknown parameters. Details
of the use of this model in the analysis of survival data are given by Cox (1972). In the present
context we note simply that the survivor function S(¢; x), being the probability of surviving
beyond time ¢ given covariate X, satisfies

—log {S(; x)} = Aq(t)exp(—B"x), (3.2)

where Ay(t) = [54(s)ds. Hence, for two individuals with covariates x, and x, respectively the
survivor functions satisfy

log {S(t; x,)}/log {S(5; x,)} = exp {B(x, —x,)}. (3.3)

In other words, the ratio of log survivor functions, like the ratio of the hazard functions, depends
only on the difference between the covariate values x, —x,; and is constant for all ¢.
For discrete data, the proportional hazards model (3.2) becomes

—log {1 —y,(x)} = exp(6;,— B x), (34)

where 1—7y/(x) is the complementary probability or the probability of “survival” beyond
category j given covariate values x. To obtain the appropriate linear structure analogous to the
linear logistic model we write (3.4) in the more convenient form

log[—log {1 —y(x)}]1=6,—B"x, (3.5)

the transformation to linearity being called the complementary log—log transform. Note in
particular that when there are only two groups, so that the covariate x takes on only two values,
x; and x,, the difference between corresponding complementary log-logs is the constant
B'(x, —x,) and is independent of the category involved. In this respect the properties of the
complementary log-log model parallel those of the proportional odds or logit model.

3.2. An Example
For an application of the proportional hazards model we turn to Table 638 of the
Statistical Abstract of the U.S. (1975) which gives the income distribution in constant (1973)
dollars for families in four geographic regions and in various years from 1960 to 1974. For
illustrative purposes we use only the years 1960 and 1970. These data for the Northeast region of
the U.S. are given in Table 3 where the data are expressed in percentages. Rounding errors
occasionally force the totals to differ slightly from 100 per cent. It is far from clear a priori that
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TABLE 3
Family income distribution in constant (1973) dollars for Northeast U.S.

Income group (000’s)

Year 0-3 3-5 5-7 7-10 10-12 12-15 15+
1960 65 82 11-3 235 156 12-7 222
1970 43 60 77 132 10-5 16:3 421

the proportional hazards model should provide a better description of these data than the
proportional odds model in Section 2. We therefore examine both the empirical logit
transformation and the empirical complementary log-log transformation of the data.

In this particular example we are not concerned with fitting a model in the conventional
statistical sense. It is sufficient to point out that the sampling variation in the data is likely to be
quite complex but the relative variation in the data is probably small. In particular, assumptions
such as multinomial variation or even “proportional to multinomial” are probably quite
untenable. Furthermore, the data for one year are not independent of the data for another year
because the same individuals may be involved in both samples.

Table 4 gives an analysis of the income data based on the logit model of Section 2. The logit
differences, being all of the same sign, indicate a strict stochastic ordering between the two

TABLE 4
An analysis of family income data based on logits

Category
1 2 3 4 5 6 7
Logits for 1960 —2:67 -176 —1-05 —0-02 062 1-25
Logits for 1970 —-310 —216 —1-52 -079 —-0-34 0-32
Differences 043 040 047 077 096 093

distributions. In fact the odds for earning more than $x were greater in 1970 than in 1960 for all x
in the range $3000 to $15000. However, the ratio of corresponding odds is not constant but
tends to increase with x. This tentative conclusion is reinforced when similar data for other areas
of the U.S. are seen to display the same pattern (McCullagh, 1979).

Table 5 gives the corresponding analysis of the income data based on the proportional
“hazards” or complementary log-log model. Thus the entries for 1960 are log{ —log (1 —0-065)},
log{ —log(1—0-147)}, etc. while those for 1970 are log{—log(l—0043)},

TABLE 5
An analysis of family income data based on complementary log—logs

Category
1 2 3 4 5 6 7
Complementary log-log —-270 —1-84 —1-20 —-0-38 005 0-41
(1960)
Complementary log-log -312 —222 —1-62 —098 —062 —-014
(1970)

Differences 042 0-38 042 0-60 067 0-55
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log { —log(1—0-103)}, etc. The differences between complementary log—logs for 1960 and 1970
are relatively constant with median value 0-49. Certainly these differences are more stable than
the corresponding differences on the logit scale. The conclusion, therefore, is that if p,(x) is the
proportion of the population in the Northeast earning more than $x in 1960 and p,(x) is the
corresponding proportion in 1970 then

log py(x) = exp(0-49) log p,(x), (3.6)

at least for x in the range $3000 to $15000. Of course (3.6) is at best an approximation to reality
but it is a simple and convenient description of the change in income distribution and may be
sufficiently accurate for many purposes. McCullagh (1979) has examined the corresponding
data for three other areas of the U.S. and in all cases has found that differences on the
complementary log—log scale for the period 1960 to 1970 are more stable than differences on the
logit scale. However, the size of the observed difference is substantially smaller in the West than
in any other area of the U.S.

With hindsight, it is hardly surprising that the proportional hazards model should do
better than the proportional odds model when applied to income distribution data.
Econometricians frequently use the Pareto distribution to describe the tails of income
distributions and the Weibull distribution is sometimes used in the centre. These two
distributions, although quite different in shape, share the proportional hazard property (3.1) and
(3.2). A great many other pairs of distributions satisfy the proportional hazards model (3.1). In
fact, for any 1960 income distribution {r,;} and for any value of BT(x, —x,) there exists a
corresponding distribution (7,;} for the 1970 incomes satisfying (3.4). Thus (3.4) makes no
assumptions about the shape of income distributions but merely specifies a relationship
between two distributions.

This example illustrates the power of the quantitative or parametric approach as opposed to
the qualitative or non-parametric approach based on statistical tests. The major systematic
component in the data is explained by (3.6). Any attempt to assess the adequacy of (3.6) will
almost certainly yield a very large test statistic leading us to reject the model. However, this does
not mean that (3.6) is not a useful description of the data. The single parameter accounts for
roughly 90 per cent of the variation in the data. Other systematic components are undoubtedly
present but their effect is small. In particular, there may also be a tendency towards uniformity of
income. Such an effect can be detected by the non-linear models described in Section 6.1 but in
this particular example the dominant effect is given by the relationship (3.6).

4. PROPERTIES OF RELATED LINEAR MODELS
4.1. Stochastic Ordering

The proportional odds and the proportional hazards models have the same general form
namely

link {y;(x)} = 0, —B"x, 4.1)

where “link” is the logit or complementary log-log function. Any other monotone increasing
function mapping the unit interval (0, 1) onto (— 0o, 00) can be used as a link function. In
particular, the inverse normal function @ ~ !(y), the inverse Cauchy function, arctan {n(y — 0-05)},
and the log-log function, log(—log(y)) are possible candidates, although parameter
interpretation is not generally so straightforward as with the proportional odds or proportional
“hazards” models. Models of this form with a probit link function have been used by Aitchison
and Silvey (1957), Ashford (1959), Gurland, Lee and Dolan (1960) and Finney (1971). The logit
link function is preferred by Snell (1964), Simon (1974) and Bock (1975).

The parameters {0,} are generally of little interest but are usually referred to as “cut points”
on the logistic, probit, complementary log-log or other scale. The regression parameter f
describes how the log odds or other quantity of interest is related to the covariates x. All models
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of the form (4.1) describe strict stochastic ordering. Thus if we take two groups of sub-
populations with covariates x; and x,, it follows from (4.1) that

link {y,(x,)} —link {y,(x;)} = B"(x; —x,) = A.
Hence, since “link” is a monotone function it follows that either
Y(X1)>7/x;) for allj,
or 4.2
7i(X1)<7;(xz) for allj,

according as A>0 or A<O0.

Thus all linear models of the form (4.1) are qualitatively similar and for any given data set the
fits are often indistinguishable. Selection of an appropriate link function should therefore be
based primarily on ease of interpretation. For this reason the linear logistic, log-log and
complementary log-log models are preferred to the probit and inverse Cauchy models. For
further discussion of the question of interpretability and model selection see Section 7.1.

4.2. Reversibility and Invariance

A general property of all log-linear models that do not use “scores” is that they are
permutation invariant. That is to say that the categories of the response can be permuted in an
arbitrary way without affecting the fit or the values of the parameters. While this is an appealing
property for responses on a nominal scale it is entirely inappropriate for ordinal data. A more
appealing requirement for ordinal data is that the model should in some sense be invariant
under a reversal of category order but not under arbitrary permutations. These ideas underlie
the concept of palindromic invariance (McCullagh, 1978) but the force of this requirement
depends heavily on the particular application.

Of the models discussed here, the logistic, probit and inverse Cauchy are invariant under a
reversal of category order since the parameter p merely changes sign and the {6} reverse sign
and order. The complementary log-log model and its counterpart, the log-log model, are
not so invariant. Depending on the application, this lack of invariance may or may not be seen
as a flaw in the model.

Anappealing requirement for any model is that it should be parameterized in such a way that
the form of the systematic relation should apply under varying conditions and should, as far as
possible, be consistent with known physical or biological laws. This means, for example, that to
measure the difference between two proportions, the logistic scale is preferable to the
probability scale since a constant difference is a logical possibility on the logistic scale but is
logically impossible on the probability scale. The logistic scale is not unique in this respect but it
does have other advantages. In the present context, varying conditions could mean a
redefinition of the response categories, grouping or merging of the categories or the splitting of
categories. Hence the parameter or parameters of interest should not depend for their
interpretation on the actual response categories involved although the estimate will in general be
affected. This property permits testing the consistency of various sources of information and, if
warranted, combining information from the separate sources. All the models advocated in this
paper share the above property : log-linear models such as those described in Section 7.1 do not.

4.3. Similar Rank Tests

Under the hypothesis p = 0 in (4.1) the marginal totals for the response are sufficient for the
nuisance parameters {6;} regardless of the link function. Similar tests of this null hypothesis are
therefore based on the conditional distribution of the data given the marginal totals for the
response. Uniformly most powerful similar tests do not exist because there is no reduction by
sufficiency away from the null hypothesis. The efficient score, however, gives a test with
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maximum power locally and its value is unaffected by conditioning. For the linear logistic model
the components of the efficient score are weighted cross-products of the covariates with the
average rank for the response category, the weights being the cell counts. For the two sample
problem this is exactly the Wilcoxon average rank statistic. In general, when Bis scalar, the test is
locally most powerful similar for one-sided alternatives. When B and hence the efficient score are
vector valued, reduction by invariance leads to a generalization of the Wilcoxon test which is
locally most powerful invariant similar for the hypothesis § = 0. When k = 2 this test is
equivalent to the conditional test given by Cox (1970, p. 45) and in this special case it is uniformly
most powerful similar. Other link functions lead to different locally most powerful similar rank
tests. Algebraic details in the general case are given by McCullagh (1977).

Exact probability calculations for significance tests are based on conditional distribution of
the test statistic given the marginal totals. Except in the simplest of cases, this calculation will be
extremely difficult and the asymptotically equivalent likelihood ratio statistic is suggested as a
simple approximation although the associated test is not similar. However, the likelihood ratio
has the great advantage that it provides an approximate test when components of f are regarded
as nuisance parameters or when tests of the non-null hypothesis p = B, #0 are required. For
these problems, no similar test seems possible except for the linear logistic model with k = 2.

Despite the fact that exact similar tests of certain interesting null hypotheses are possible via
rank tests and tests based on parameter estimates are only approximate, rank tests are not put
forward as an alternative to model building and parameter estimation. The main thrust of this
paper is towards quantitative interpretation and description. Rank tests do not provide the
parameter estimates required for this purpose. Furthermore, in many problems such as the
example in Table 3, significance tests are irrelevant.

5. MORE COMPLEX COVARIATE STRUCTURE
5.1. A Linear Regression Example
We use the data in Table 6 taken from Maxwell (1961, p. 70) who tabulates the frequency of
disturbed dreams among 223 boys aged 5-15. For an alternative analysis of the same data see
Nelder and Wedderburn (1972) who use a log-linear model with linear scores. Again, in this

TABLE 6
Frequency of disturbed dreams among boys aged 5-15

Degree of suffering from disturbed dreams

Age (yr) Very severe 3 2 Not severe Total
5-7 7 3 4 / 21
8-9 13 11 15 10 49

10-11 7 11 9 23 50
12-13 10 12 9 28 59
14-15 3 4 5 32 44
Total 40 41 42 100 223

example, it is important to distinguish between the response or dependent variable which is the
frequency or severity of disturbed dreams, age being a possible explanatory factor or covariate.
This asymmetry is also in keeping with the likely causal relationship between the two variables.

The simplest method of analysis is to use the generalized empirical logistic transform as
described in Section 2.3. The category totals are 40,41,42, 100 giving weights 0-180, 0-290, 0-530
and the quantity Zy(1—7y;)(n;+m;,,) is estimated as 0-297. For the purpose of examining
contrasts among the transformed values, {Z;} as defined in Section 2.3, the variance of Z; can be
taken to be (0-297n,)"! as in (2.6) although it is possible to improve a little on this
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approximation. Table 7 gives the transformed values {Z,} together with the simple variance
estimate (0-297n;)~'. Although the transformed values are not strictly monotone decreasing
with age, the relationship is nevertheless very marked.

A weighted linear regression of Z on negative age, using age-category mid-points yields a
regression coefficient of 0-217 with standard error 0-047. The weighted residual sum of squares is

TABLE 7
Generalized empirical logistic transform and variances for disturbed dreams data

Age
5-7 8-9 10-11 12-13 14-15
Transform (Z) 02045 05119 —03964 —0-3741 —1-4181
Variance 0-1603  0-0687 00673 0-0571 00765

643 on 3 degrees of freedom corresponding to a significance level of about 10 per cent giving
reason to doubt the adequacy of a linear relationship while emphasizing that the major source of
variation is due to the linear term.

A similar analysis by maximum likelihood involves fitting the two models

log {?ij/(l —?ij)} =0;—px; (5.1)
and

log {Yij/(l —VU)} = ej"% (5.2)

where x; is the age-category mid-point and y;; = y(x;). The quantity {«;} is a factor associated
with rows and the usual problems associated with intrinsic aliasing apply here.

The coefficient B in (5.1) is estimated to be 0-219 with standard error 00495 in close
agreement with the earlier analysis, and the likelihood ratio x? statistic is G> = 12-42 on 11
degrees of freedom. For model (5.2) the parameters {«;} are estimated to be (—0-615, —0-720,
0-077, 0058, 1-201) with the convention that Xa; = 0, indicating possible departures from
linearity similar to the {Z;} in Table 7. The likelihood ratio goodness of fit statistic for (5.2) is
G2 = 7-15 on 8 degrees of freedom. The difference G2 —G% = 527 on 3 degrees of freedom is a
test for deviations from the regression line corresponding to a significance level of about 15 per
cent.

The conclusion therefore is that, to a close approximation, the odds for disturbed or severely
disturbed dreams among boys decreases by a factor of 0-80 per year from 5 to 15 years. Here I
have used 0-80 = exp(—0-219). There is inconclusive evidence to suggest that this decrease may
not be uniform over the 10-year period. Qualitatively similar conclusions would be obtained by
an analysis on the probit or other suitable scale.

5.2. Factorial Arrangements

Model (4.1) permits the most general factorial or nested structure for the explanatory
variables or classifications. The detailed analysis of such an example is beyond the scope of this
paper. See, however, McCullagh (1979) who analyses the mouse depletion data of Kastenbaum
and Lamphiear (1959). An alternative analysis of the same data is given by Whittaker and Aitkin
(1978).

One disadvantage of the present framework is that while use is made of order in the
dependent variable, there is no corresponding way of using order in the levels of explanatory
factors when such order exists. However, there are several alternative methods. One is to use
scores such as the age category mid-points in the previous example and partition the relevant y?
statistic into linear, quadratic and higher order components. However, such scores may not be
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given; in which case the method of isotonic regression (Barlow et al, 1973) can be used to
estimate the factor values (say {«;} in (5.2)) subject to the monotonicity property &, <&, <...<ds.
Details are beyond the scope of this paper.

6. PARAMETER ESTIMATION IN THE GENERAL MODEL
6.1. Non-linear Models

The general linear model (4.1) describes a mode of strict stochastic ordering among
responses. While this corresponds to by far the most common pattern observed in data, other
patterns also occur. A good example is the quality of vision data for men and women in Table 8
taken from Stuart (1953). On transforming to percentages it is clear that women are relatively
more concentrated in the middle categories while the men have higher proportions in two
extreme categories. Since (4.1) has an obvious interpretation in terms of shifted distributions on
an underlying continuum, the most natural generalization is to relax the assumption of constant
“variance” or scale parameter on that continuum. We therefore introduce the multiplicative
model

link (y;)) = (0,—B" x))/1;, (6.1)

where the quantity B” x; is called the “location” for the ith row and 1, is called the “scale” for the
ith row. In general, such a model is appropriate only when the number of response categories is
three or more. Since, in (6.1), we have one scale parameter associated with each row of the table,
we say that the modelis saturated in scale parameters. It is also saturated in location parameters
if dim(f) >t — 1 where t is the number of rows. To make the scale parameters identifiable it is
convenient to impose a constraint such as 1, = 1 or Zlogt; = 0. The latter convention is
adopted here and is particularly appropriate when we consider unsaturated scale models
satisfying

logt; =77(x;—X), (6.2)

where 7 is a vector of unknown parameters to be estimated. Furthermore, the estimates of log z;
are likely to be more nearly symmetrically distributed than those of 7;, a property which greatly
improves approximations based on normality.

_ For the data in Table 8 we find location and scale differences on the logit scale to be
A = 0061 with standard error 0-041 and log(z,/7,) = 0-272 with standard error 0-025. Fitted
values from this model correspond very closely to the observed values. It is clear that the major

TABLE 8
Quality of right eye vision in men and women

Vision quality

Highest 2 3 Lowest Total
Men 1053 782 893 514 3242
Women 1976 2256 2456 789 7477

difference between the two groups is described by the scale parameters. In fact the ratio of
corresponding logits rather than their difference is almost constant for this particular data set.
Similar conclusions apply when we compare the corresponding data for left eyes. Essentially the
same conclusions could be reached by an analysis on the probit rather than the logit scale.

6.2. Maximum Likelihood Estimation

The problem of obtaining maximum likelihood estimates is considerably simplified by
noting that the linear systematic structure (4.1) together with multinomial variation comprise a
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multivariate generalized linear model. Univariate generalized linear models have been
discussed by Nelder and Wedderburn (1972) who have shown that parameter estimates can be
obtained by iteratively reweighted least squares. We show here that a similar algorithm can be
used even for the non-linear model (6.1) with scale parameters satisfying (6.2).

The contribution from a single multinomial observation (n;, ..., ) to the likelihood function
is 7' ... my with the probabilities ; satisfying (4.1) or, more generally, (6.1). Since we are dealing
with cumulative probabilities, we define

R, =n,, Z, =R/n,
R, = n, +n,, Z, = R,/n,

R,=Znj=n;, Z,=R/n=1

In terms of the parameters of the cumulative transformation, the likelihood can be written as the
product of k—1 quantities

(G G GG (5=

These factors are respectively the probability given R, that the first two cells divide in the ratio
R, : R,—Rj; the probability given R, that the proportion in cell 3 relative to cells 1 and 2
combined is Ry — R, : R, and so on for the other components.

It is convenient to define

¢; = log {7j/(?j+ 1 _Yj)} = logit(y;/7+1)

and
g(¢) = log {1 +exp(d))} = log {Vj+ /1 _Vj)},
whence the log likelihood is

I= n[{zl b1—2Z, g(¢1)} +{Zz $,—2Z; g(d’z)} +. "+{Zk—l o1 —9(x - 1)}] (6.3)

A univariate generalized linear model contains only one of the above components. The
following relationships follow from (6.3).

E(Z)|Zjs1) = Zjs1d (@) = Zjs 1 Vi/Vj 15
E(Zj) =Yp
Var(Zj | Zj+ D=2, 19"(¢j)/n,
var(Z;) = y{1 —7)/n.

Details of the general fitting method are not of great interest and are relegated to the
Appendix. Experience with an interactive computer package at the University of Chicago shows
that the Newton—Raphson method with Fisher scoring, as described in the Appendix, converges
rapidly even when the initial estimates are poor. Of course, the initial values assigned to {0;}
must be monotone increasing. While uniqueness of the maximum is not guaranteed in general, I
have not yet seen an example with multiple maxima. Generally, about 4 or 5 cycles are required
to produce accuracy to four significant digits in all parameters.

6.3. Existence and Uniqueness of Maximum Likelihood Estimates
Uniqueness of maximum likelihood estimates depends on (1) the concavity of the likelihood
function and (2) identifiability of the model. Identifiability is a problem which applies to linear
models generally and is intimately related to the rank of the design matrix. Assuming that the
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problem of identifiability has been eliminated either by the imposition of appropriate
constraints or by the use of generalized inverse matrices, there remains the problem of
establishing concavity of the likelihood function in the reduced parameter space.

Strict concavity and hence uniqueness of the maximum is assured if the negative matrix of
second derivatives, H, is positive definite with eigenvalues bounded away from zero. The weaker
result, that the probability of a unique maximum tends to one, follows on demonstrating that, as
the sample size increases, the probability tends to one that H is positive definite. This latter
result follows from the fact that H has positive definite expectation A since, from the Appendix,
A = 2Q,;Q/. Here, Q, is a full rank matrix of order p x (k— 1) where p is the total number of non-
aliased parameters in the model. Since the random component of H is of smaller order than A, it
follows that H is almost surely positive definite either as n; — oo in fixed proportion or as the
number of multinomial samples tends to infinity with {n;} bounded and p fixed.

This result, while reassuring, is of limited practical value. In practice, problems occasionally
arise with infinite parameter values associated with patterns of zeros in sparse data arrays.
Furthermore, convergence problems not associated with patterns of zeros can arise in small
samples when the non-linear models are used. Non-convergence in this case is usually a reliable
indication that the model being fitted is inappropriate.

7. ALTERNATIVE MODELS AND THE SCOPE OF POSSIBLE INFERENCES
7.1. The Log—linear Model

The general linear model (4.1) is not the only structural equation which describes strict
stochastic order. One currently popular alternative is to use scores in a log linear model in order
to partition the interaction statistic into two components, one describing strict stochastic order
and the other, higher order components of the interaction. The idea goes back to Yates (1948)
who used essentially the same method to partition Pearson’s y? statistic and thus obtain a more
powerful test when the categories of the response are ordered. In the context of log-linear
models, see, for example, Nelder and Wedderburn (1972), Haberman (1974), Bock (1975) and
Goodman (1979).

To clarify the discussion we restrict attention to the two sample problem where the response
has k ordered categories, scores 1, ..., k being attached to the response categories. The log-linear
model with main effects only implies that the log-cross-ratio for all groups of 4 adjacent cells is
zero while inclusion of a linear x linear term implies that this log-cross-ratio is constant over the
entire table. It is not difficult to see that this model defines a form of stochastic ordering, in the
sense of (4.2), for the rows of the table. For this reason the fit produced by such a model is often
not very different from that produced by (4.1) especially when the number of categories is small
(say 4 or fewer). Because it describes a form of stochastic ordering, the test statistic associated
with the linear x linear interaction term is more powerful against the anticipated departures
than, say, Pearson’s or the likelihood ratio y? test.

However, as a descriptive statistic, the cross-ratio for adjacent cells has little to recommend it
even in cases where the model fits well which it often does. The major disadvantage is that the
scope of possible inferences based on such a statistic is limited to the actual categories used in the
sample. If we were to fit such a model to the income distribution data of Table 3, the cross-ratio
parameter could be interpreted only with reference to the income grouping 0-3, 3-5, 5-7 and so
on. Different, but no less arbitrary, groupings would produce entirely different cross-ratios
which, in general, would not remain constant over the table. This leads directly to the second
objection, namely lack of invariance under grouping of adjacent response categories.

On the other hand, conclusions based on the proportional odds or
proportional hazards models can often be stated without reference to the categories used in the
sample. For example, the conclusion from the income distribution data is that, to a close
approximation, the proportions of households in the Northeast, p,(x), p,(x) earning more than
$x in 1960, 1970 are related by log {p,(x)}/log {p,(x)} = 1-63. Essentially the same conclusions
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would have been reached had the categories been defined differently. Of course it would be
dangerous to extend these conclusions much beyond the range of values of x in the sample.

This contrast in approaches highlights an important difference between testing and
modelling. Inclusion of the linear x linear or other low-dimensional interaction term in a
log-linear model often produces a good fit and a test statistic with reasonably good power
against anticipated departures from the null model. However, it is equally clear from the limited
scope of possible conclusions or inferences, and from invariance properties that are often
inappropriate to the specific problem, that real data must rarely behave in this way. More
incisive and quantitative inferences can be made through the proportional odds or proportional
hazards models, whichever is more appropriate. The choice between these and log-linear
models should be based primarily on the interpretability of parameters and the scope of possible
inferences rather than on goodness-of-fit statistics which rarely differentiate between the various
models.

In one of the few attempts to relate the parameters of a log-linear model to an underlying
continuous process, Andrich (1979) derives the same model for ordinal responses as Nelder and
Wedderburn (1972), Haberman (1974) and Goodman (1979). He considers an underlying
continuum with k-1 thresholds {6,}. For each threshold an independent decision is made as to
whether or not the given object exceeds that threshold. Independence means that the order in
which the decisions are made is unimportant. This procedure obviously leads to possible
nonsensical allocations such as assigning the object simultaneously to two different categories.
Eliminating such nonsense by redistribution over the logically possible outcomes leads to a
log-linear model with “linear response x explanatory variables” interaction term.

Certain aspects of this derivation deserve comment. In particular the assumption of
independence is highly counter-intuitive. It is unreasonable to require that decisions made at the
later thresholds be made independently of earlier decisions, particularly when the later decisions
may lead to nonsensical allocations in view of decisions made earlier.

Finally we note that, for the log-linear model with linear response x explanatory variable
interaction term, the uniformly most powerful similar test for the presence of this type of
interaction is based on the statistic T= Zn;;X;s;, where X is the covariate vector and s; = j is
the integer score attached to the jth response category. Conditional on both margins, the
distribution of T depends only on the interaction parameter. Note in particular that if RIDIT
scores (Bross, 1958) are used instead of integer scores for the response categories, one obtains the
Wilcoxon test or its generalization as the uniformly most powerful similar test. Taken with the
comments of Section 4.3, this result strongly suggests that, unless there are gross differences in
the marginal probabilities for the various response categories, there is likely to be little difference
in terms of the fitted values between the log-linear model with “linear response x explanatory
variable” interaction, and the corresponding linear logistic model.

7.2. Symmetric versus Asymmetric Models

Log-linear models for multi-factor contingency tables are symmetric in that no one factor
takes precedence over any other. No factor is considered dependent and the others explanatory :
all are treated on an equal footing. Logit linear models for binary data, on the other hand, are
asymmetric : one binary factor (the response) is selected for special treatment and the other
factors are explanatory. The analogous procedures for continuous data are correlation analysis
which is symmetric and regression analysis which is not. Oddly enough, the logit linear model
for binary data is a special case of a log-linear model. It is tempting, therefore, to discard the
logit linear model for binary data as merely a special case of the more general log-linear model.
It seems to me that this would be a serious mistake because the philosophies behind the two
approaches are quite different. Furthermore, the natural extension of logit linear models
described in this paper is also asymmetric but does not, except in the special case k = 2,
correspond to a log-linear model.
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The choice of dependent variable is usually easy as in the case of the income distribution
data, the quality of vision data and the disturbed dreams data. In the case of the tonsil size data
we attempt to model the biological process involved, in which case the most natural causal
relationship is for Streptococcus pyogenes to affect tonsil size. Consequently tonsil size is
dependent, carrier versus non-carrier being regarded as explanatory. On the other hand,
regarded as a classification problem and not as a model of the underlying biological process, we
might try to classify individuals as carriers or non-carriers on the basis of tonsil size. That is to
say that, on the basis of this sample, we construct a model for prob (carrier | tonsil size) as a
function of tonsil size and use the parameters of such a model to classify future individuals as
carriers or non-carriers. From an epidemiological viewpoint this would mean that the size of the
epidemic in the sampled population must be the same as the size in the population for which
inference is required—often a most unreasonable assumption. The corresponding allocation
problem in the case of the quality of vision data would be to classify individuals as male or
female on the basis of vision quality, which is not the most reliable indicator but an indicator
nonetheless.

Not every data set falls into the category of “single response, multiple explanatory factor”.
Occasionally we have a bivariate or higher dimensional response of either ordinal or nominal
type in each margin. This is a multivariate problem and, at least when the categories are on a
nominal scale, a log-linear model might be appropriate. On the other hand, when we wish to
study the dependence of one variable on the levels of the others we have a univariate problem.
Even if the details of the algebra or computation are identical, explanation of the model and
conclusions is very much easier in the univariate case.

8. AN ANALYSIS OF RESIDUALS
8.1. General

The analysis of residuals from multinomial response models is complicated by several
factors. Firstly, the residuals, however standardized, must take one of a limited number of
possible values which causes problems in rankit or related plots when the cell counts are small.
Secondly, it is far from clear in general that cell residuals are the relevant quantities to examine.
What is important in the data is not a cell count per se but, rather, how the count for a cell or
group of cells varies relative to another cell or group of cells. For binary data we would normally
use one residual associated with two cells (“successes” and “failures”), whereas two residuals
would usually be produced if the corresponding log-linear model were used. Clearly, since these
residuals are negatively correlated in pairs, only one residual is necessary. Central to this
discussion is the concept of an-observation. For binary data an observation is the proportion of
“successes” or equivalently the number of “successes” relative to the number of “failures”. The
usual standardized residual, in an obvious notation, is (p — p)/(p4/n)* which is the signed square
root of the contribution to Pearson’s chi-squared statistic. An analogous residual could be
defined by using the contribution to the likelihood ratio statistic instead.

For multinomial responses we propose to use as a residual the contribution to the likelihood
ratio statistic from each multinomial sample. This so-called residual is always positive and thus
does not indicate the “direction” of departure of the observed values from the fitted values. Of
course, in a bivariate or multivariate problem direction of departure cannot be specified merely
by a sign. As the second stage in an analysis of residuals, cell residuals can be computed to
examine the precise nature of the observed discrepancy. Different cell residual patterns in a
single multinomial sample indicate different inadequacies in the model. We illustrate some of
these by example.

8.2. Example

We use the data in Table 9 from Bradley, Katti and Coons (1962) which gives the response
frequency of judges in a taste-testing experiment. The five possible responses are on an ordered
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TABLE 9
Response frequency in a taste-testing experiment

Response category

Treatment Terrible 2 3 4 Excellent Total
1 9 5 9 13 4 40
2 7 3 10 20 4 44
3 14 13 6 7 0 40
4 11 15 3 5 8 42
5 0 2 10 30 2 44
Total 41 38 38 75 18 210

scale from terrible (1) to excellent (5), while the rows represent five unordered treatments. As a
first attempt to describe these data we use the proportional odds model with a five-level
treatment factor. Using this model the “residuals” associated with the five treatments are
respectively 2-6, 3-7, 27,23-3 and 16-8 giving a total deviance or likelihood ratio statistic of 49-1
on 12 degrees of freedom. Examination of cell residuals for treatments 4 and 5 reveals the
following pattern: + + — — + fortreatment4and — — + + — for treatment 5. Clearly, a
model allowing unequal scale parameters is more appropriate. Hence the model

logit(y;;) = (9} —a)/T;

was fitted giving row “residuals” of 1-3, 1-1,0-9, 11-6,0-6 and a total deviance of 21-3 on 8 degrees
of freedom. This is clearly an improvement over the linear model although treatment 4 appears
to be an outlier. A summary table such as Table 10 is often a useful aid to interpretation.

TaABLE 10
Logistic summary statistics for the taste-testing data
Treatment Location (&) Scale (7) “Residual”
1 0-07 1-25 1-86
2 0-56 1-05 5-30
3 —1-11 090 1-.97
4 —0-50 1-66 11-62
5 098 0-51 0-59
21-34

Examination of cell residuals reveals that, for treatment 4, many judges reacted extremely,
giving either very low or very high scores. This diversity of opinion is also partly reflected in the
large scale value for this observation. The anomalous reaction of the judges to treatment 4 was
also noted by Snell (1964) who used a similar model but did not allow for unequal scale
parameters. In conclusion, treatment 5 has the most favourable overall response and the
consensus among judges is also highest (t5 = 0-51) for this treatment. Treatment 3 rates worst
overall and the consensus for this is also high (5 = 0-90). As we might have expected, agreement
among judges is greatest when the treatment is either very good or very bad. This conclusion is
not an artefact of the observations piling up in the end categories.
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APPENDIX
Fitting the General Non-linear Model
The general non-linear model can be written

Y; = link (y;) = B*" X} exp (7' U),
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where B* =(0,,0,,...,6,_,,B,,...B,) is the vector of parameters in the location model
X* =(0,..,1,..,0,X), where the 1 occurs in position j and U,, the vector of parameters in the
scale model is normalized so that Z; U; = 0. Let Y" = (B*”, +) be the complete parameter vector
and w = exp (7' U).
The derivative of the log-likelihood with respect to p* is
ol k21 ol Joo,; dy; o0p; dy;
= Al b & Rt s B '€ SN & el § .8 N e |

apy wj;15¢j{a)’j deX”-l-aV,iH dY; .y Xfstaf

Substituting V; = 0y;/0¢; and 0¢;/0y;,; = (—y;/y;+1) V] * we obtain
ol ktol

opF = " Eiag, 1 U

i=1

where

dy; v; dy; }
L=l Xk L XK 10
’ {dY] Toyie1dYey A
Similarly the expected second derivative is
5 QAL JRE S S
Ay =— opFopE) =" ? i s
For the scale parameter 7 the derivatives are

al ol [0, dy, op; dy;, }
= Diliyuy,+- 20 Zirty y
{ 0y414Y;4 Ak

o, = Zag, o, dY, U

which reduce to
L
o, = Ur2ag, Vi 9

where

Similarly the expected second derivatives are

_Eﬂ =nUUZV-_1q?
ot, Ot resg g Ap

and the mixed second derivatives are

—E M =ansZVj qjqu‘

The negative matrix of expected second derivatives is therefore positive semi-definite for all
admissible parameter values.
The Taylor series expansion for 0l/0\ gives

ol ol
m— W ¢=$+A((s\l»’)+...,

where =Y —Wand A is the negative expected matrix of second derivatives. Hence, updated
values of W are obtained by iterating on the equation

al
A‘l’n+1 = A\lln+b—_\p= b.
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Writing W= logw = —T U we have
(A\p)r = nw2 Z Vj_ ! qu Z qjs ﬁs —nw Z Us Ts Z Vj_ ! qu qj
J s s J

=nw(1+ W)XV ' q;9;
for r <dim (B*). Similarly, for s> dim (p*),
AY), = nWU, TV ' ¢ +nU, TV ¢}
=n(l+W)U, X V¢l

The corresponding elements of b are given by
— ’y
(b), = nwg‘._ V; 1 qu{qj(l +W)+Zj—)T:TZjH}
and
— '))
(b) = nUs; Vit qj{qj(l + W)+Zj—y—}f—.12j+1}.

Finally, all the above equations represent the contribution to the log-likelihood and its
derivatives from a single multinomial observation and the total contribution is the sum of the
individual contributions.

DiscussioN oF DR McCULLAGH’S PAPER

Professor D. J. BARTHOLOMEW (London School of Economics). Dr McCullagh’s paper contains an
interesting new development which will be of particular interest to social scientists who often have to deal
with ordered data. The author is right to insist that the form of the analysis should match the data. For too
long social scientists have had to manage with methods designed for use in the natural sciences in which the
variables are well defined and readily capable of measurement. In the last decade or two the balance has
been somewhat restored by the development by such things as the log-linear model. Tonight’s paper
represents a further step along that road. The full potentialities of the author’s method have yet to be
realized. In his examples only one covariate is considered and in all cases but one this is categorical. It will
be interesting to see analyses involving more covariates. My remarks, however, are directed to
generalizations in a different direction, the aim being to set the methods given here in a broader context.

In essence the problem is to compare grouped frequency distributions which, in the examples of the
paper, appear as the rows of the tables. Their special feature lies in the fact that the values of the group
boundaries are the same for each row even though they are not (or need not) be known. The aim is to
explain the differences between the row distributions in terms of one or more covariates. The following
treatment includes some of the author’s results as special cases.

Suppose there is a random variable ® underlying the response categories with distribution function
Fo(6). Then for each row we can estimate F at those values of § which correspond to the group boundaries,
0,,0,,...,0,_, say. The ranking of the €s is known but not their actual values. We suppose that the
distribution of ® has the same form for all rows but that the parameters vary from row to row. Let F have
the form

m(6)—a
b

where m(0) is any monotonic function of 6, Y(.) is a distribution function with range (— o, + o) and
— o0 <a, <00, b>0. This family includes many commonly occurring distributions and embraces a wide

variety of shapes.
m(0,.)—a>
Di = l/’( b

Let
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then
m(0;) = a+by~ 1(Pi)~

Now suppose we wish to compare any pair of distributions indexed by j (= 1,2). Then for given i, m(6;) will
have the same (but unknown) value for both distributions. Hence, by subtraction,

0=a,—a, +b Y1 '(pi)—b V35 (pia).
Next suppose that b; = b, = b. Without loss of generality we may take b = 1 and then

ay—=a, =3 'Pi)—¥1 ') (=1,2,..). 1)

If this is constant for all i we can reasonably introduce covariates into the model by supposing that
a; = BT x; so that the left-hand side of (1) becomes pT(x, —x,). Since pi; (j = 1,2) can be estimated for all i
the estimated values of the right-hand side of (1) can be used to fit the model.

Alternatively, if a, = a, then

_ Vi)
Y1 ' (piy)
If the right-hand side of (2) is constant for all i we can postulate log b; = BT x; and fit the model using the
estimated values of the difference of logarithms. Note that the method does not depend on knowing m(6);
this is as it should be since only the ranks of the x;’s are known.
The question now arises: can we find a distribution function y such that the differences in (1) or (2) are

constant for all i ?
Suppose we take

1 m@)—a\"'1) " [(u>0, —co<a<w
1-Fg(0) =<1+-exp .
u b b>0, —oo<m(f)< oo
This includes the logistic (u =1, m(f) = 6), the exponential (u = oo, m(0) = log6) the log-logistic
(u =1, m(6) = log 6), Pareto Type II (u> 1, m(f) = log 0) and many other distributions. For (1) we have

bi/b,

or logh,—logh, =logy; (py)—logyi '(piy) (i=1,2,..). )

a, —a, = logit(1 —p,;)'" —logit (1 —p;)'* 3)
and for (2)
by/by = {logu—logit (1 - p,)'"} /{log u—logit (1 — p ). (@)
When u = 1, (3) gives the author’s log-odds model; in the limit as u — co we have the proportional hazards
model. In addition we have a range of intermediate cases and by estimating u we are allowing the best
model to be selected by the data. Equation (4) leads to a parallel class of models. Models with values of u
between the two extremes are not so easy to interpret and one may well wish to follow the author in using
whichever of u = 1 and u = oo gives the better fit.

In one case, at least, the family of functions ¥ can be restricted a priori by invoking the reversibility
considerations touched on in Section 4.2. The question here is: is the nature of the underlying variable such
that one would want the conclusions to be the same if the columns of the table were reversed? The answer
to this, I'suggest, does not depend on the purpose of the analysis but on the arbitrariness or otherwise of the
direction of measurement of the latent variable. Thus, for example, with a variable such as political hue it is
completely arbitrary whether we measure from left to right or vice versa. If we require reversibility then, in
the location case, ¥ must be such that

‘/’_1(172)_'/’_1(1’1) =y~ (1-py)—-y~i(1 —p2)
for all p. In other words, y must be the distribution function of a symmetrical random variable and this, in
turn, implies that u = 1 in the above family. In other words, the log-odds model is appropriate.

This conclusion renders it somewhat surprising that the log-odds model should have been fitted to
Table 1 where the variable is a measure of size for which the direction of the scale of measurement does not
seem to be arbitrary. I have therefore investigated this example using the more general model with the
following results for the relevant logit differences of (3):

u =1 (McCullagh) u=3 u = oo (Proportional hazards)

—0-498 —0455 —0472
—0-684 —0462 —0-373
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It could be maintained that the proportional hazards model (with u = co0) was at least as good as the log-
odds model but that the intermediate case u = 3 is better than either.

In spite of their incompleteness I hope that these remarks will help to reveal some of the richness
implicit in the author’s approach. In proposing the vote of thanks I warmly welcome this paper and look
forward in hopeful anticipation to the next.

Dr P. M. E. ALTHAM (Statistical Laboratory, Cambridge University): I congratulate Dr McCullagh on
an important, stimulating and very practical paper. I like especially his emphasis on quantitative
interpretation and description, rather than on significance tests alone. Another feature of his approach to
ordered categories that I find appealing is the fact that his models behave nicely when adjacent categories
are pooled. Invariance considerations are important here; in a psychological experiment, for example, a
subject may be asked to give a response taking one of five ordered values, and the experimenter may later
decide to group these into three classes. As Dr McCullagh points out, it would be difficult to handle (and
probably difficult also to interpret) log-linear models for such data.

I have three main comments to make.

(1) The idea of the generalized “residuals” given in Section 8.2 is an interesting one, and it would be
good to know more about the distribution of these. I think they are really only useful if the sample sizes for
the various rows of the table are roughly similar, as is indeed the case in the numerical examples given. If
one had rather heterogeneous sample sizes, then interpreting large “residuals” for given rows might be
tricky, since if the model does not fit, the expected value of any row “residual” will increase as the
corresponding row total increases.

(2) Ordered categorical data have been extensively considered in psychological experiments, in
particular in signal detection theory, as some members of the audience may well know. Suppose a subject is
asked to discriminate, in an experiment on auditory perception, between two tones, called 4 and Bsay, and
he can give one of k responses, ranging from “certainly 4” (response 1) through “possibly A” to “certainly
B” (response k).

Response
k
signal A presented nyy 137 ny
signal B presented ny, Mok na

Assume that the signals A, B are presented, independently, to the subject »; and n, times, and the data
of responses are recorded in the 2 x k contingency table above.

One of the statistical problems is to estimate the “separation” between signals 4 and B, and for this
problem Dr McCullagh’s methods might be very suitable. A graphical technique the psychologists find
useful is to plot the cumulative probabilities against each other, yielding a graph of (k + 1) points; this graph
being the ROC (receiver operating characteristic) curve. I mention this since to plot such a graph might be
found more generally useful, if the number of categories k is not too small.

(%]
0
= Underlying probability densities
Q
© A
-g £,(x) \ B
‘; ROC curve
e
E Response — certainly A 0, 6, 0,_, Response— certainly B
©
gs oy Cumulative row Fic. D2.
3L probabilities for B
Fic. D1.

If our underlying model is that the cumulative row probabilities are
Fy(0,)...F5(6,-1),1for A and F,@0,)...F(6,_,),1 for B,

where 6,,...,0,_, are the subject’s unknown “threshold” values, and F,, F, are distributions, then,
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neglecting sampling variation, our ROC curve is a graph of
y = F,(0,) against x = F(6,) as 0, varies, together with the points (0,0) and (1, 1).

In practice this graph often looks roughly concave—and this feature is telling us something about
suitable choices for F,(.),F,(.) in our model. It can in fact be proved (Altham, 1973) that the graph
y = F5(F{ '(x)),0< x< 1, is concave if and only if the likelihood ratio f,(x)/f;(x) is a decreasing function of
x. If the two underlying distributions differ only by a shift parameter A say, so that
Fo2(0)/fi(x) = f(x)/f(x—A), then it is known that the monotone likelihood ratio property is closely
connected with the property

f'(x)/f(x) is a decreasing function of x. (1)

In signal detection theory, models for which (i) holds have some rather nice properties, regardless of the
actual form of f(.); see Thomas and Myers (1972) and Altham (1973). Many of the “link” functions
suggested by Dr McCullagh correspond to probability densities f(.) for which the property (i) holds; I
wonder if he could exploit this feature to get any optimality results? Incidentally, maximum likelihood
estimation of A, and a scale parameter g also, has been considered in the psychological context by Grey and
Morgan (1972).

(3) The results of Section 2.3 may readily be generalized to the case of an arbitrary underlying
distribution function F(.). If the cumulative row frequencies are {n, c,; n, ¢,;},j = 1,...,k,and if our model
is that E(c,;) = F(6;—4A), E(c,;) = F(6;+4A), then if we put A,; = F~'(cy)), Ay, = F~ Y(c,;), and take A =
2421 wiAdy;— 4,)) as our weighted estimator, and choose (w;) to minimize var (X) when A = 0, we find that

f0)—f0;-1) S 1)-f(9,-)]
F(0)—F(6;-,) F(6;..1)—F(6)

forj=1,..,k—1, where §,= — o0, 0, = c0.
In this case
k 0.)—1(0._ 2y)-1
var A = function of (nl,nz){ > M—l—)—}
j=1 [F(0)—F(6;-,)]

(S ’(9))2
— 0)do,
j-m(f ©) 10

which is not at all surprising, when we consider the Cramér-Rao lower bound for estimating a location
parameter A given two independent random samples from densities f(x —4A), f(x +1A) respectively.

Itis clear that I have found the paper very interesting, and I have much pleasure in seconding the vote of
thanks to Dr McCullagh.

and for large k, the summation becomes

The vote of thanks was passed by acclamation.

Dr J. A. ANDERSON (University of Newcastle): I would also like to congratulate Dr McCullagh on his
presentation of a stimulating and useful paper, containing a very acceptable combination of theory and
application.

The range of examples given was impressive and illustrated some of the practical problems very nicely.
All the examples followed the traditional pattern of examining the dependence of an ordered variable on
one other variable, whereas it is clear from (2.1) and (4.1) that the dependence may be on arbitrary linear
functions of variables. This includes multiple regression and the analysis of designed experiments with
ordered response variables. A word of warning is necessary, before these applications are tried. As the
number of parameters increases, the chance of the sparse data problem occurring (see the end of Section 6)
also increases. This is particularly marked with designed experiments. For example, I tried to analyse a
randomized blocks experiment with 20 blocks, 5 treatments and 4 ordered categories of response. The
estimates of six of the f-parameters were unbounded. This will certainly occur when all the responses in a
block or treatment are the same and in either extreme category (1 or k). This does not correspond to an
inappropriate model; it is a sparse data problem similar to those noted for binary responses by Anderson
(1974).
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A problem in discriminant analysis is how to distinguish between ordered groups. For example, we
may wish to predict the degree of response (Y) to a treatment (good, poor or indifferent) given certain initial
information (x) on a patient. This paper provides suitable models for Pr(Y = y|x). Anderson and Philips
(in a paper not yet published, 1980) have shown that this approach is feasible in a back pain prognosis
study with six ordered, response categories and up to nine predictor variables. More work is needed on the
estimation of Y. The classical approach of choosing ¥ = s to maximize over ¢ the estimated probabilities
{Pr(Y=t|x)}., is unsatisfactory because it gives equal losses to errors from Y=s to Y=t (t#5),
irrespective of how far ¢ is from s. Unfortunately, there is no general loss structure that can be agreed for
this estimation problem. An ad hoc estimate for Y based directly on 2 = T x is perhaps preferable. An
obvious choice is § = s if §,_; <Z<,

There are many unsolved problems in this area; Dr McCullagh’s paper provides a good step forward
and a stimulus to further work.

Professor M. AITKIN (University of Lancaster): I would like to make three points on this interesting and
useful paper. The first is a general one concerning the relation between the proportional.odds or hazard
models and the underlying distribution of a latent variable. This point was discussed in the Introduction
but disappears from view in the body of the paper. We may use the distribution of the latent variable, if it is
convenient, to simplify the computation of the maximum likelihood estimates. In the simple probit model,
the EM algorithm may be used for parameter estimation instead of the general Newton method with Fisher
scoring. In the multinomial models considered in this paper, the cut points 6; must be estimated together
with the regression coefficient estimates, and this makes the M algorithm much less convenient, though
still possible.

The second point concerns the proportional odds and proportional hazards models fitted to the
income distribution. Since income is measured on a continuous scale, there is a real income distribution,
which has been grouped in Table 3. Why not examine the c.d.f. in the usual way by probability plotting?
The failure of the proportional odds model to fit simply reflects the fact that the income distributions are
not logistic with the same scale parameter but different location parameters, as is clear from a normal
probability plot. A lognormal model is clearly wrong, but a Weibull plot shows a very close fit with nearly
equal shape parameters, so that a proportional hazard model will fit well. It is quite possible, however, that
the proportional hazard model would not fit, because of a close fit to two Weibulls with different shape
parameters. In this case it is not useful to know that a proportional hazard model does not fit, but it is useful
to know that the distributions are Weibull.

The final point concerns Table 9. If we assume an interval scale for the response category (i.e. the cut
points are fixed at 1-5,25,...,4-5), then it is a simple matter to fit grouped normal distributions using the EM
algorithm, with different location and scale parameters for each treatment. The parameter estimates and
goodness of fit of the models are shown in Table D1. The fit is worse for the grouped normal than for the
logistic model in Table 10 because of the strong metric assumption, but the parameter estimates and
conclusions are very similar from both models. Neither model can fit the U-shaped response distribution
for Treatment 4.

TasLE D1
Means, standard deviations and deviances for data of Table 9

Treatment Mean S.D. Deviance
1 2-89 1-54 58

2 301 1-26 82

3 2:00 1-27 54

4 2:52 1-96 9-8

5 372 0-55 53
Total 34-5

Mr J. BURRIDGE (Imperial College and Post Office Telecommunications). Several speakers have
mentioned that they have experienced little difficulty in fitting the linear models described by Dr
McCullagh in tonight’s paper. This is probably because the log-likelihood is concave with respect to the
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parameters for most of the models considered in his paper. Thus the problem of multimodality of the
likelihood does not arise (Section 6.2) and maximum likelihood estimates are generally unique except when
the data matrix contains certain patterns of zeros as noted in the paper (Section 6.3). The result can be seen
as follows:

For the linear model the log-likelihood is

L= ¥ nyInF(6;_, —B" x;, 0,— " x)),
ij
where

F(u,v) = fv f(e)de

and f(e) is the “error” density which is assumed given. A recent result (Burridge, 1980) shows that In F is
concave with respect to (4, v) if In f is concave with respect to &. Thus L is concave with respect to
(6. B). For example, this applies to the models

logit: f(e) = exp(e) {1+exp(e)} 2,

probit: f(e) = exp(—¢?/2)/\/(2n),

and complementary log-log: f(e) = exp {&¢ —exp(¢)},
but not to Cauchy: f(e) = 1/{n(1 +¢?)}.

Unfortunately, the result does not apply to the non-linear models considered in tonight’s paper so we
have to rely on the results for expected second derivatives given in Section 6.3 of the paper.

Dr J. T. SmiTH (Queen’s University, Kingston, Ontario): I would like to add my congratulations and
thanks to Dr McCullagh for his lucid treatment of the ordinal data problem. My comments concern the
choice of link function for the analysis of grouped income data.

Dr McCullagh recommends the logit and complementary log-log functions for ease of interpretation.
In Section 3.2 he notes that the latter function is supported by the apparent fit of the proportional hazards
model to the given illustrative data and by the precedent of using the Weibull and Pareto distributions to
fit the body and upper tail, respectively, of grouped income data. If historical precedent is to be invoked,
there are grounds for favouring proportional odds, at least for the body of the data (Fisk, 1961). Where
experience suggests that other parametric distributions are preferred, for example, lognormal, gamma
(Salem and Mount, 1974) or Burr (Singh and Maddala, 1976), what are the counterparts of the
proportional odds and proportional hazards properties by which one may select an appropriate link
function? It may be helpful to make the connection between the generalization of the proportional odds
and proportional hazards properties, rewritten from equation (4.1) as

link {F(t; x)} = link {F(¢)} — BT x,
and the property sometimes exploited by econometricians in fitting parameteric distributions, namely
link {F(¢; 0,,0,)} = 6, +0, h(t),

where h is a monotone function (for example, scale and shape parameters of the log-logistic distribution are
estimated by weighted regression of the logit on logt).

In studies of income data, the issue is often not whether the distribution as a whole has changed, for
inflation and other factors usually guarantee that it has, but by how much some aspect of the distribution,
such as relative inequality, has changed. What are the consequences of choosing a particular link function
for inferring changes in measures of concentration such as the Gini index?

Dr W.J. R. EpLETT (University of Birmingham): The main comment I should like to make concerns.the
robustness of the estimators for B in the proportional odds model (Section 2.1). These estimators are
defined using the linear combinations

Z;=3% w; Zijs

J
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where 7;; is defined in Section 2.3. For given &> 0, define
1) = log [{(1 —&)Fy +(2n) ™ {1 —(1—&)F;;+(2n)™'}]  (1<j<r)
=log[{(1—&);;+e+(2n) {1 =(1—e)Fy—e+2n)~"}1 (r<j<k),
where
?ij = Rij/".',
the cumulative proportions for the ith explanatory variable. When ¢ =0, Zﬁ;’(s) = I,-j and for ¢>0 it

represents the effect upon 7, ;of a proportion ¢ of contamination in the rth category of the response variable.
The effect of this contamination upon the value of Z; is assessed through

Z0e) = Zw; 10).

In order to assess the influence of the contamination we examine the derivative

d
IF(Z,r) = EZ?)(B)L:() =-2 Wj/(l _’;’ij)+ > Wjﬁij
which is the dominant term of the Taylor series expansion for Z{"(¢) in powers of ¢ provided of course that
is small. Here n; is assumed to be sufficiently large so that the term (2n,) ™! can be ignored, this term is the
result of a modification to the natural estimator anyway (Cox, 1970, p. 33).

It should be stressed that it is a worthwhile exercise discussing the sensitivity towards contamination of
estimators for B since when the response variable is of the kind found in Tables 1 and 9, for instance, a
certain amount of misclassification appears inevitable. Deciding upon tonsil size or the taste of a particular
brand of tea must be quite difficult, and indeed fairly arbitrary, in some instances. The influence function
studies the effect of this variation upon the estimator for f.

In order to simplify the discussion, consider the case where there are two explanatory categories. Then
the estimator for A given by Section 2.3 is A = Z, —Z . Define

Be) = Z560)~ 24,

j<r jz2r

which describes the effect upon the estimator of contamination in the rth category of the response variable
for explanatory variable 1 and contamination in category r' of the response variable for explanatory
variable 2. The influence function for the estimator is then given by

d .
d_A(r,r)(s) li=0 =IF(Z,,r')—IF (Z,,7)
£

=X Wj{(l_i’u)_l_(l_';’zj)_l}*' > Wj{?z_jl_?lvjl}

j<r jzr

- T owiiy +1-7)7 "

r<j<r’

provided r<r, with a similar expression in the case where r>r'.

Let me try and interpret this expression for the influence function. Provided A itself is reasonably small,
the first two terms of the right-hand side are not going to contribute significantly to the expression. The
third term can be expected to be large in certain cases. The worst cases for the effect of contamination of the
data upon the estimator occur when the contamination occurs in a low category of the response variable
for one of the explanatory variables and in a high category of the response variable for the other
explanatory variable (using the ordering of the categories of the response variable). The effect of
contamination is particularly pronounced if any of the categories in the third term involve small y; (near 0)
or large y; (near 1). This seems to shed some light upon the choice of the weights. They should damp down
these extreme cases and this appears to be achieved to some extent by the optimal weights defined by (2.5)
through the term y (1 —y;) appearing there. It may be that different weights which damp down the extremes
even more might be appropriate in some cases.

The influence function when more than two explanatory variables are involved is rather more
complicated, but the basic feature of sensitivity to contamination at the extremes remains.

Finally I should very much like to thank Dr McCullagh for a most interesting paper.
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Dr A. C. ATKINSON (Imperial College, London): Like other speakers I congratulate Dr McCullaghona
paper which contains an exemplary blend of statistical theory and analysis of data. Also like several other
speakers, I have three points to make.

(1) There has been some discussion this evening of derivations of the competing models. In an
incorrectly titled paper Aitchison and Bennett (1970) derived a model for ordinal data using the normal
distribution. I wonder whether a parallel derivation using the logistic distribution would be illuminating.

(2) The eye data in Table 8 is famous and seemingly inexplicable. However, Heim (1970) has a chapter
with the resonant title “The Mediocrity of Women” in which she discusses the finding that, for many
characteristics, men tend to be more extreme than women, even if the means of the two sexes are the same.
Her main concern is with intelligence, but it would be fascinating if the same property of higher male
variance is really to be found in such a basic physiological characteristic as eye-sight.

(3) Several speakers have suggested that Dr McCullagh was prudent not to have entitled his paper
“Ordinal Data from Designed Experiments” and have stressed the problems which arise when including,
for example, block effects in the logistic model. However, in McCullagh (1977) an analysis is given of
matched pairs in which empirical Bayes methods are used with a parameter for each pair. This model leads
to appreciable, if entertaining, numerical problems. Empirical Bayes methods were not mentioned tonight.
I wonder what Dr McCullagh’s current thinking is about them.

Mr IaN PLEWIS (University of London Institute of Education): Dr McCullagh’s proportional odds
model considers log (X}, n;/1—X7-, =), m = 1,...,k— 1. Fienberg and Mason (1979), in an analysis of
ordered educational levels, suggest continuation odds i.. log {(Z;., 7;)/T,},m = 1,...,k—1, which is the
odds of getting beyond a certain level of education, m, given that one got as far as m. The two models have

similar aims and I wonder how one should choose between them.

The following contributions were received in writing, after the meeting.

Professor A. AGRESTI (University of Florida, Gainesville): Dr McCullagh is to be congratulated for an
interesting and important article. Too much of the literature on categorical data analysis makes no
distinction between nominal and ordinal scales. Also, I believe there has been too much emphasis on
testing goodness-of-fit compared to model building and parameter estimation.

Dr McCullagh makes an important point in Section 7 in arguing that the results of fitting a particular
model should be robust to the definition of categories of the response variable. However, I believe he
maligns too harshly the log-linear model in this respect. If categories are redefined or if certain categories
are grouped together, results are not invariant because the equal-interval scores 1,2,..., R are no longer
appropriate. The cross-ratio per unit distance on the response (not necessarily for adjacent categories)
would still be a meaningful measure, however, when the cores have been reassigned to reflect the new
grouping. In other words, one could assume in the two-sample cases that there is a parameter 6 such that
the odds ratio for adjacent categories having s, and s, is 6°27°!. The estimated value of 6 should be
approximately the same no matter how the response categories are defined, if scores are assigned in a
sensible manner. Of course, one important advantage of the models McCullagh discusses is that it is
unnecessary to assign scores to the response categories.

For the proportional odds model with values x; <x, on a single covariate x, note that «(x,)/x(x,) is
the ratio of the probabilities of concordance and discordance for the 2 x 2 table obtained by dichotomizing
the response at the jth category. This ratio is assumed to be constant for all cutpoints, j = 1,2,....k—1.
Now,

P = X mx ) mx,)/[L 2 mfx1) mfxa) + X milxy) mi(x2)]

i<j i<j i>j

is the overall probability of concordance obtained using the full set of k response categories, for a randomly
selected pair of observations (one observation at each x;) which is untied on the response. A simple one-
parameter model which I have not seen proposed, but which relates to the traditional analysis of ordinal
data through the notions of concordance and discordance of pairs, is a logistic one in P, that is,
log[P./(1—P,)] = B(x,—x,). I conjecture that this model fits reasonably well in a variety of settings in
which models of the “link” form provide decent fits. This model does not assume a constant difference
between link values at each cutpoint of the response, though, so it may be more widely applicable than any
single model of the “link” form.
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Dr D. ANDRICH (University of W. Australia): The imposed ordering of the categories in the pro-
portional odds and other related models may be a virtue in circumstances where the variable and threshold
points, such as in survival or income data, are clear. However, I wonder whether this same feature may
not be a weakness in cases where neither the variable nor the classification system is so explicit and where,
as a result, the categories may not necessarily operate as “. . . contiguous intervals on a continuous scale”.

The data on disturbed dreams (Table 6), where the conclusion is that severity of disturbance tends to
decrease with age, are of this type. Now assuming that severity of disturbance shows a decrease with age
across the categories in general, then one would expect it also to show a decrease with age across any pair of
adjacent categories in particular. Instead, conditional on classification in one of the two middle categories,
and quite independently of age, the allocation to one of these two categories appears to be random. Thus
these two categories appear not to operate consistently with the extreme categories and therefore
presumably not consistently with the intended ordering. At best, the supposed distinction between these
two categories seems to be of no value. Perhaps at worst, if a different treatment were prescribed
corresponding to the different categories, assignment of a subject to one of the two treatments
corresponding to the middle categories would also be at random. Rather than being of no interest, the
middle cut point in these data indicates a need for further examination. Of course, this further examination
would be of a substantive rather than of a statistical kind.

I concur strongly with Dr McCullagh’s emphasis on the importance of distinguishing between
explanatory and dependent variables and on the importance of using models connecting variables to laws
generating data. In some cases, these requirements may include scrutinizing the presumed ordering
properties of the variable concerned. Unfortunately, because of the strict ordering of the categories
essentially ensuring that 9j> 9,._ 1> the models of (4.1) with which he has dealt so comprehensively do not
expose any anomalies in category ordering. The ordering of categories is a property of these models
whether or not it is an actual property of the data. Therefore, may I suggest that models which permit the
categories to reveal themselves to be ordered or otherwise, rather than those which constrain the categories
to be ordered, may be more instructive for fully understanding certain types of ordinal variables.

Mr F. J. ARANDA-ORDAZ (Imperial College, London): I want to congratulate the author for the
ingenious way in which he has connected different models for the analysis of response data. I wish to make
two comments only. The first one is in relation to expression (4.1) in the paper. For binary data it is possible
to use a relationship very similar to (4.1) and, for a convenient definition of the link function, provide a
quantitative assessment of a scale where a simple decomposition in terms of the systematic component of
the modelis more plausible. I have obtained good results with two parameterized (one indexing parameter)
link functions which allow discrimination between the logistic scale, and symmetric or asymmetric
alternatives for the decomposition of the probabilities. To determine the form of the corresponding
parameterized link function, a linear scale in the probabilities has been used in the first case and the
complementary log-log in the second. It seems that the use of expressions similar to (4.1) may lead to
comprehensive comparisons of a broad range of alternative models in a simple way.

My second comment refers to Section 7.2. I warmly endorse Dr McCullagh’s opinion about the current
tendency to disregard logit models for binary data, just because they may be obtained as a special case of
the log-linear model. I personally believe that the different objectives which lead to the construction of logit
models justify their use and make them irreplaceable.

Dr V. FAREWELL (Fred Hutchinson Cancer Research Center): This is an excellent paper in both content
and presentation and I have only a minor technical comment. In the analysis of epidemiological case-
control studies it is advantageous to be able to make inferences on a model for disease incidence
conditional on an explanatory variable although the sampling distribution is of explanatory variable
conditional on disease status. Although both the continuous proportional hazards model and the discrete
logistic model allow such inferences (Prentice and Breslow, 1978; Farewell, 1979) the necessary inversion
does not appear to be possible with the complementary log-log model.

A discussion and example of the use of the complementary log-log model with survival data is given in
Prentice and Gloeckler (1978).

Professor S. E. FIENBERG (University of Minnesota): This is a thoroughly enjoyable paper. Dr
McCullagh presents a clear and well-reasoned argument for the use of his regression-like models for the
analysis of ordinal data, and thus adds a valuable tool to the statistician’s workbench. My only complaint
is that, in attempting to describe the virtues of his approach, he implies that other approaches such as those
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associated with loglinear and logit models are less virtuous and have little to recommend them. I would
dispute such a suggestion for at least three reasons:

(1) The ordinal nature of some categorical variables is often crucial to the structural organization of
categorical data subjected to loglinear analysis, as in triangular arrays (Bishop and Fienberg, 1969), and
social mobility tables (Goodman, 1972, 1979a), and age-period-cohort structures (Fienberg and Mason,
1978). The fit of loglmear models to such structures is not permutation invariant, despite McCullagh’s
insistence that it is.

(2) Analyses of multidimensional structures using loglinear and logit techniques can easily take
ordinal structure into account, although the results will not necessarily be invariant under a reversal of
categories.

(3) The use of ordinal information in McCullagh’s models eﬁ'ectlvely assumes that the underlying
latent variable does not possess natural discontinuities or shifts in terms of its relationship with other
variables—a matter for empirical investigation.

Let me elaborate briefly on points 2 and 3 using the tonsils data. Instead of McCullagh’s model, (2.4), I
propose to look at logits for the continuation rates (see Fienberg, 1980, Chapter 6), which correspond here
to components of the factorization of the likelihood in Section 6.2:

Ty 21 Ty2 [T22
log and log|{— .
Tz + g3/ Map + T3 T13/ Ta3

The first of these appears in McCullagh’s analysis and is the log-odds ratio for “not enlarged” vs
“enlarged”; the second is for “greatly enlarged” vs “moderately enlarged”. We ask if these two log-odds
ratios have a common value A. The corresponding empirical estimates (without the added 4’s) are —0-514
and —0-543, and this model of equality of log-odds ratios fits the data even better than does McCullagh’s.
Actually, the two models are compatible, and when taken together 1mply that log(m,, m,,/m,, 75,) = 0. A
direct test of this yields a 3 value of about 1, suggesting that there is a basic shift in the effect of being a
carrier on the underlying latent variable; there appears to be no effect until the tonsil enlargement reaches a
threshold.

Finally, I note that McCullagh skips rather blithely over the critical issues of computation, and of
existence and uniqueness of estimates. Since many important practical problems involving ordinal data
are large and sparse, these topics bear further attention and more detailed exposition.

Professor S. J. HABERMAN (University of Chicago). Dr McCullagh’s already strong case for his method
of analysis of ordered multinomial responses can be strengthened through some results concerning
existence and uniqueness of maximum likelihood estimates. Let Y, 1<i<n, be independent random
variables with the integers 1 to k>2 as their common range. Let F(lu) be the probability that Y;<j,
1<j<k—1, 1<i<n, where F is a known distribution function and the A;; are unknown parameters.
Assume that F has a derivative fsuch that log fis strictly concave, and assume that the A;; satisfy an additive
linear model

14
=0,— X Bxp 1<isn, 1<j<k-—1,
r=1

for known independent variables Xir 1<i<n, i<r<p, unknown parameters ;, 1<j<k—1, and B,
1<r<p, where 0;<0; whenever j<j'. Let T;; be 1 if Y; = jand 0 otherwise. It is well known that logF and
log(1—F)are strlctly concave if log fis stnctly concave, and one can show that log [F(x)— F(y)] is strictly
concave for y<x. Thus 9 1<j<k—1, and B, 1<r<p, are maximum likelihood estimates of 0,
1<j<k—1,and B, 1<r< p, respectlvely, ifand only if 9 < 9 whenever j <j" and the following equatlons
hold:

™M =
™M=

Tijaij/nij= TE(i+l)aij/niU’+1)? I<j<k—-1,
i=1 i=1

Z Z Xip l_](al]_al(j 1))/7[1] = 0 1<r<p

i=1j=1
Here for 1<j<k—1, d;; is the density f(1, ;) at the estlmate A= 9 =Xl Bxi of A f j=0o0rj=k,
d;; = 0. The estimated probablhty that Y, =jis#t;; = F % j)—F (j:,u 1,), where,f = oo and 4;; = — 0. The
maximum likelihood estimates exist if and only i D2 T >0, 1<j<k, and if the conditions ¢;; >0, ¥, = j,
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;<0 Y, =j+ 1L, I<i<nt;; = 6;—Zl_ | 9, %, 1<i<n, 1<j<k—1,06,<...<J_,, can only hold for some
d;and y, if all the ¢;; are zero. In particular, existence is assured if the model is applied to a contingency table
in which all cells have positive counts. If the estimages exist, they are unique if and only if the 4;;, | <i<n,
uniquely determine the f3,, 1<r<p. The arguments required for these results are similar to those of
Haberman (1974, pages 309 and 320-321).

In the cumulative logit model, F(x) = 1/(1+e~ %), so that log f(x) = —x—2log(1+e™) is strictly
concave. In the proportional hazard case, F(x) = 1 —exp { —exp x} and log f(x) = x—exp x is strictly
concave. One may also use cumulative normal models with F(x) the distribution function ®(x) of the
standard normal. Unfortunately, the argument just made does not apply to the nonlinear case of Section
6.1.

Dr R. R. HARrRrIs (University of Exeter): Like most of the speakers at the meeting I was stimulated by
this interesting paper, in particular because equation (3.5) has been fundamental to work undertaken at the
University of Exeter to the development of a method of analysis for survival data with time-dependent
covariates. In this work, undertaken with Dr K. L. Q. Read and a research student, A. A. Noura, we divided
the time domain into suitably defined intervals and upon consideration of the proportional hazards model
were clearly led, like Dr McCullagh, to equation (3.5). By noting that in the general case (with k> 2) the
number of parameters required for equation (3.5) is less than the number required for a saturated model for
an N (say) x k contingency table we have, in a paper about to be submitted for publication, used these extra
parameters to model violations of the proportional hazards model. More than one covariate may readily
be incorporated into the analysis by use of a suitably defined new cross-classification of risk groups and the
flexibility available in such a manoeuvre (there is no unique saturated model) allows for various
parameterizations with corresponding interpretations, for example hierarchical or ANOVAR-type.

On another aspect of Dr McCullagh’s paper, I wonder if he could expand (by example perhaps) on his
comment, in Section 4.2, that lack of invariance may or may not be seen as a flaw in the model. In
particular, with survival data such as those mentioned above, would Dr McCullagh worry about lack of
invariance in the proportional hazard model if it appeared to fit the data?

Dr Gary G. KocH (University of North Carolina, Chapel Hill): The methodology in this paper
represents a very useful strategy for the analysis of a broad class of ordinal data. As the author has
indicated, it provides a general framework for expressing a set of response distributions in terms of two
types of parameters. One of these (the {6;}) pertains to common aspects of their form while the other (the f)
involves measures of variation among them. These models account for ordinality by being directed at the
cumulative probabilities y(x) for which constraints are specified; e.g. the proportional odds model requires

log {rc;(x,) kju(X,)/ic;(X, ) Kk j(X,)} =0 forallj, j/ and x;,X,.

Under these conditions, sub-population differences can be described by the common value of B%(x, —x,)
for the odds ratio at all outcomes j.

If the cell frequencies n;; are large, then the parameters for the proportional odds, proportional hazards
and other related models can be estimated by either maximum likelihood (ML) or weighted least squares
%WLS). For Table 1, the WLS estimates (without iteration) are A = 0-602 +0-224, 9, = —0-809+0-116 and

, = 1061 +£0-118, which are similar to those obtained by the author via ML (with iteration).

More generally, WLS methods have the advantage of more direct applicability to large samples where
the likelihood function is not convenient. These include ratio estimates from sample surveys and correlated
marginal distributions from repeated measurements studies (see Koch et al., 1977).

Alternatively, for single responses with product multinomial likelihoods, ML would be preferable to
WLS when many of the n;; are small because the asymptotic basis of WLS is directed at the {n,;}. However,
the usage of ML here may require caution because the computations need to yield 9j < 9j. for allj <j'so that
$i4x)—7(x)>0. Although negative values for {§;(x)—9,(x)} can be avoided with the long-linear model,
non-monotonicity of the {9j} may require attention for interpretation (see Andrich, 1979).

Thus, when the n;; are small, mean scores based on successive integers or ranks may still be a reasonable
framework for the analysis of ordinal data. This approach has the additional advantage of not involving
model constraint assumptions. It also accounts for ordinality through weighted sums of the y;(x) with
integer scores corresponding to equal weights. As a result, the valid use of such mean scores does not
strictly require any underlying scaling assumptions.
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In summary, the methods discussed in this paper are definitely of interest for ordinal data; but they have
some limitations which imply that other approaches or methods may be more appropriate for some
situations.

Dr B. J. T. MORGAN (University of Kent): In “signal-detection” theory mentioned by Dr Altham the cut
points, {0,} are sometimes of particular interest to the psychologist. An example is provided by Craig
(1979), who describes how performance measures on a binary discrimination task were taken on subjects,
in the morning and in the evening. It was found that whereas efficiency did not alter significantly between
times, report confidence, as measured, effectively, by the {9,.}, did. This change in report confidence was
then shown to be significantly related to the subjects’ increase in body temperature between morning and
evening.

Professor R. L. PLACKETT (University of Newcastle upon Tyne): This is an interesting and useful paper
which should become essential reading for all concerned with the analysis of ordinal data. Dr McCullagh
has devoted his sole attention to the combination of one ordinal response with several factors. Here are a
few comments on the case of two ordinal responses.

Following Yates (1948), the use of scores for the analysis of association in contingency tables was
studied by Williams (1952) in terms of the model

Dij = Pio Po{(1 +0c;d)),
where p;o,po; are marginal probabilities and ¢, d; are given. The proposal of Mantel (1963) to use

conditional distributions in this context was brought within the log linear framework by Birch (1965).
Suppose that p;;>0 for all i, j and define

A’ab = IOg (pabprs/pas prb) (a = 17 27 Y 19 b= 1’ 2, ey § 1)
Birch introduced the model
j'ab = ﬂ(ca - cr) (da - ds)’

which implies that the log cross-product ratio corresponding to a pair of successive rows and a pair of
successive columns has the form f(c,—c,, 1)(d,—dy, 1)

An isotonic formulation of the problem of testing independence is as follows. Most of the information
about {1,} is provided by the distribution of cell frequencies conditional on their marginal totals. We
require to test the hypothesis

Ay =0 forallab

against the alternative that 4., is non-decreasing in a and non-decreasing in b.

Dr DARYL PREGIBON (Princeton University): My congratulations to Dr McCullagh for a very useful,
timely and well-written paper. I especially applaud the more exploratory data analysis techniques
employed in several of the examples. My detailed comments are as follows.

(1) I'mildly object to the reference to these models as multivariate generalized linear models (g.l.m.’s).
The justification is given by (6.3) but g.L. m.’s specify linear relations via link (¢;) rather than by link (ypasin
(4.1).

(2) An alternative class of models for the regression analysis of ordinal data is available. These models
have link (p}) = 0; + p" x where p¥ = pr {Y=j | Y>j—1}. Bartlett (1978) describes such an analysis using
the complementary log-log (abbreviated in what follows as ¢ log?) link, which is essentially equivalent to
Dr McCullagh’s ¢ log? (y;) model. Thompson (1977) utilizes the logit (p}) link. The most useful point about
these models is that one can exploit the conditional independence and use a standard computing package
(say GLIM) to perform the analysis.

(3) I question whether the deviance of 0-302 on one degree of freedom indicates a good fit. Clearly it is
not significantly large in comparison with x?(1), but what can one expect when fitting three constants to
four observations? A fit of the c log? (p}) model to the tonsil data leads to a deviance 0f 0:0624. The logit (p})
model leads to a deviance of 0-0056. Clearly, we cannot depend much on absolute deviances to guide us in
judging the quality of fit, or where to stop.

(4) Some concern is raised about link function selection. Simple methods are available for testing link
function adequacy within a specified family. Essentially, one (or more) degree(s) of freedom can be
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extracted from the fit of the assumed link which is (are) locally sensitive to departures from that link, within
the family. For details, see Pregibon (1980).

(5) Tam disappointed that no real regression example was considered. I have data on the postoperative
status of 165 patients who underwent open heart surgery, the response being one of : no complications,
ischaemia, death due to an infarct. The response is ordinal and associated with each patient is a host of
covariates; what I call a real ordinal regression problem. In such cases, (i) I doubt whether the generalized
empirical transform would prove useful, and (ii) I strongly believe that the deviance contributions are
better candidates for residuals than the individual cell differences. I have fitted the logit (p}) model to these
data and am now trying to understand exactly what I have—besides a deviance of 251-2 on 300 d.f. A
normal probability plot based on the conditionally independent deviance contributions appears as Fig.
D3. No observations seem extreme, and I am not sure that I should be upset by the hole in the centre. I
would appreciate any comments the author could offer in such cases.
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Dr J. WAHRENDORF (Krebsforschungszentrum, Heidelberg): I would like to congratulate the author on
his very interesting and stimulating paper. His proportional hazards model nicely illustrates that statistical
modelling can be very similar in different frameworks. This should remind us of the pragmatism which is
always inherent in statistical modelling.

In Section 7.2. the author clearly points out the difference between symmetric and asymmetric models
which, I think, is essential and should be more seriously taken into consideration in applications. However,
one has to admit that it is not always easy to see whether the variables can be distinguished in this respect
and, if so, which can be assumed to be the dependent one; especially since analyses in both directions often
give similar results, as can be seen when comparing the analysis of the data from Table 1 of the present
paper with the analysis given by Armitage (1955).

In the case of symmetric models, ordinality in both factors can be treated through an approach
(Wahrendorf, 1980) which utilizes a one-parameter class of bivariate distributions given by Plackett (1965).

An essential feature of the parametric nature of the methods presented by the author can be seen by
comparing the estimated parameters in different independent samples. Let us consider a case-control study
where the differences in age distributions between exposed and non-exposed individuals is to be examined
for cases and controls. The terms cases, controls, exposure and age may be regarded as substitutes for any
other reasonable variables. Separate estimates of, for example, A can be calculated for cases and controls.
Each of them describes the difference in age distribution between exposed and non-exposed individuals.
Comparison of these two parameters on the basis of a normal approximation then allows the analysis of
the similarity of these differences for cases and controls. It seems to me that this can open a wide range of
applications in case-control studies.

The AUTHOR replied later, in writing, as follows.

I would like to thank the discussants for their useful and encouraging comments. Many points were
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raised, only a few of which are dealt with in this reply. Where the same or similar issues were discussed by
several contributors these are treated together.

Professor Bartholomew suggests using other and more general link functions possibly incorporating
one or more unknown parameters. The same point is covered by Dr Smith, Mr Oranda-Ordaz, Dr Harris
and Dr Pregibon. Professor Bartholomew’s general class of link functions could be used in a semi-
automatic way to let the data choose the appropriate form of link function. Other considerations, however,
such as the ease with which quantitative conclusions can be stated and understood, will, in general,
strongly favour the extreme cases, i.e. the logistic or complementary log-log link function.

Professor Fienberg’s query regarding the existence and uniqueness of maximum likelihood estimates
for these models is partially answered in Section 6.3 which deals with large samples only. In the case of
linear models, a more complete answer is given by Mr Burridge and Professor Haberman. As Professor
Haberman points out, these results do not apply to the non-linear models: in particular, the condition that
all cells have positive entries does not guarantee finite estimates in the non-linear model. For these models
it is generally the case that infinite parameter estimates indicate either that the data are too sparse or that
the model is inappropriate. .

Mr Plewis, Professor Fienberg and Dr Pregibon suggest a model for ordinal data based on
“continuation ratios”. Those familiar with the analysis of survival data will recognize this as the discrete-
time proportional hazards model (Cox, 1972, Section 6). This is not a discretized version of the continuous
time proportional hazards model so that the complementary lpg-log model and the analogous
continuation ratio model are not the same. Furthermore, the continuation ratio model is not log-linear nor
is it of the type (4.1) but, at least in many simple cases, it does satisfy the important property of stochastic
ordering (4.2). It is therefore a useful alternative to the models discussed in this paper and is particularly
suited to the case where the response categories really are discrete, cannot sensibly be grouped and cannot
be thought of as coarse groupings of some finer scale.

Professor Agresti rightly points out that when scores are used in a log-linear model to reflect ordinality,
the scores should be altered to take account of subsequent grouping. The trouble is that when the definition
of the categories is rather arbitrary, as in most of the examples in this paper, it is impossible to determine
the extent of any grouping. One does not know what the appropriate scores are initially. Some justification
for preferring ridit scores to integers is given in Section 7.1. Ridit scores also have better invariance
properties under grouping of adjacent categories but, regardless of the scores used, concise statement of
conclusions is easier with the models (2.3) or (3.5).

Professor Fienberg’s assertion that, in certain cases, log-linear models are not permutation invariant
does not, I think, contradict an apparent claim to the contrary in Section 4.2. We have, in this paper,
restricted attention to a single ordinal response with possibly several explanatory covariates. This
precludes triangular structures and bivariate responses. Goodman’s (1979a) models, for example, are for
bivariate responses with no covariates. When scores are used the log-linear model ceases to be permutation
invariant unless, of course, the scores are permuted in the same way as the response categories.

Dr Farewell raises the important question of retrospective sampling. This problem is dealt with in an
unpublished paper by Anderson and Philips (1980). The results are algebraically and numerically more
complicated than in the case of the logistic model for binary data.

Dr Anderson’s discrimination problem raises several important issues. Clearly, the rule which
maximizes the posterior probability of correct assignment is inappropriate in most cases. The alternative
allocation rule seems preferable but perhaps it would be better for the statistician not to allocate at all but
simply to specify the k posterior probabilities or odds for the k categories. If a decision or allocation is
absolutely necessary the user, not the statistician, can choose the category with maximum posterior
probability or, alternatively, the median category which corresponds to Anderson’s alternative allocation
rule. This procedure seems satisfactory on general grounds and is in keeping with Bayesian principles.

Dr Anderson, Dr Atkinson and Professor Fienberg discuss the problem of sparse data which usually
leads to estimates on the boundary of the parameter space. This is a difficult problem that occurs with
sparse data regardless of the model fitted and underlines the need for small sample theory. If the structure
of the model is sufficiently simple exact significance tests are available for certain null hypotheses as
described in Section 4.3. Further work is clearly required in this area.

Graphical methods, often very helpful for presenting conclusions, are discussed by Dr Altham and
Professor Aitkin. In the two sample problem, strict adherence to the straight line principle suggests that the
empirical transforms—logistic or complementary log-log—of the cumulative proportions be plotted
against each other. If a straight line is obtained, both the slope and the intercept are functions of the
parameters f, 7 in (6.1). In the case of the income data, there is a real underlying continuous variable,
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namely dollars or any monotone transformation thereof. The failure of the logistic model does not imply,
pace Professor Aitkin, that “the income distributions are not logistic with the same scale parameter but
different location parameters”. Instead it implies that there is no monotone transformation of the dollar
scale that makes the two groups simultaneously logistic in shape and differing only in location. Neither the
proportional odds model nor the proportional hazards model makes any reference to the dollar scale. It
follows therefore that a failure of the Weibull model does not imply a failure of the complementary log-log
model. On the other hand, the failure of the complementary log-log model with location and scale
parameters as appropriate implies the failure of the Weibull model. Finally, it should be emphasized that,
by refusing to recognize the importance of the dollar scale over arbitrary transformations, we greatly
restrict the class of possible conclusions or inferences that might be drawn from these data. For many
purposes, depending on the nature of the conclusions to be drawn, it is imperative to make explicit use of
the dollar scale, other non-linear scales being irrelevant.

Dr Andrich points out an apparent anomaly in the data of Table 6. If the response is conditional on
being in one of the middle categories there is no relation between the conditional response and the
covariate. However this is not an anomaly but is predicted by the model. Suppose, for example we have
four response categories, two groups and an odds ratio of 6. The probabilities for the two groups might be
as follows:

Response category

I 1 I v
Group 1 0-20 0-10 0-10 0-60
Group 2 0-60 0-12 0-08 0-20

Ifthe two groups represent the extreme values of some covariate then the probabilities for intermediate
values of the covariate will lie between those of groups 1 and 2. The proportions in the extreme categories
change by a factor of 3 in each case while those in the middle categories change by only 20 per cent. This
kind of variation is seen in Table 6: it is predicted by the model and is not anomalous.

Many other issues were raised that cannot be discussed at length in this reply. A few brief comments are
in order. Professor Plackett’s suggestion for bivariate responses seems similar to Goodman’s (1979) work.
Wahrendorf (1980) uses a different approach: neither method can readily take account of covariates. I
agree with Dr Altham that further work is required to determine the approximate distribution of the
generalized residuals. Dr Eplett’s work on robustness seems to rely on there being equal proportionate
contamination in each group. It is not immediately clear how these calculations could or should be altered
to permit unequal proportionate contamination. Finally, we hope that at least the linear versions of these
models will soon become a standard feature of general purpose statistical computing packages.
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