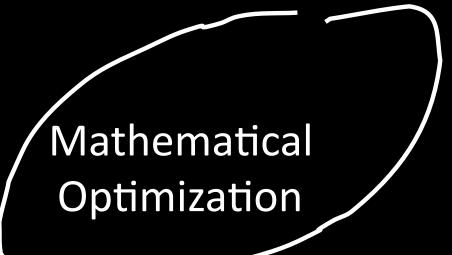
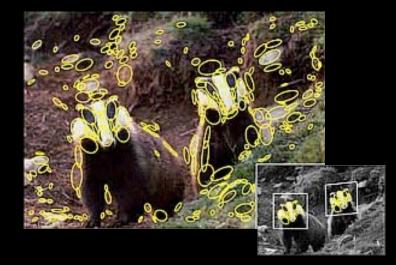
Ranking Methods in Machine Learning

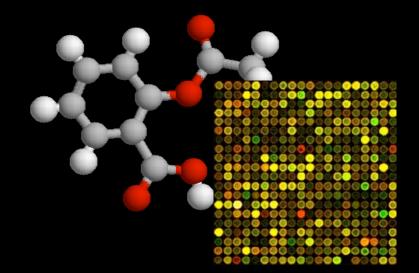
A Tutorial Introduction

Shivani Agarwal

Computer Science & Artificial Intelligence Laboratory Massachusetts Institute of Technology In God we trust. All others bring data.

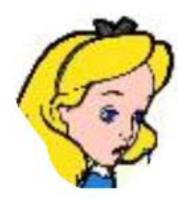

W. Edwards Deming


Machine Learning

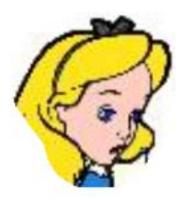


Machine Learning

Computer Science



Machine Learning


A > D > B > C

C > A > B > D

A > D > B > C E F G ?

?

...........

F

>

Theory Algorithms Applications

..........

ics.

,

,



10

ସ

0

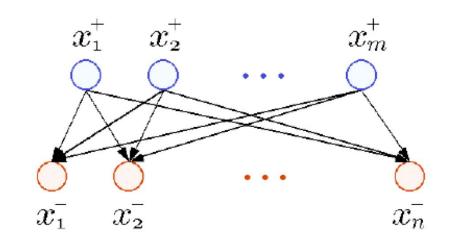
General Ranking Problem

- Instance space X
- ▶ Input: Training sample $S = ((x_1, x'_1, r_1), \dots, (x_m, x'_m, r_m)) \in (X^2 \times \mathbb{R})^m$
- ▶ Output: Ranking function $f: X \rightarrow \mathbb{R}$

Likes

合州

-


Bipartite Ranking Problem

Instance space X

▶ Input: Training sample $S = (S_+, S_-)$:

 $S_{+} = (x_{1}^{+}, \dots, x_{m}^{+}) \in X^{m}$ (positive examples) $S_{-} = (x_{1}^{-}, \dots, x_{n}^{-}) \in X^{n}$ (negative examples)

Output: Ranking function $f: X \to \mathbb{R}$

Bipartite Ranking Problem

Instance space X

▶ Input: Training sample $S = (S_+, S_-)$:

 $S_{+} = (x_{1}^{+}, \dots, x_{m}^{+}) \in X^{m} \quad \text{(positive examples)}$ $S_{-} = (x_{1}^{-}, \dots, x_{n}^{-}) \in X^{n} \quad \text{(negative examples)}$

▶ Output: Ranking function $f : X \rightarrow \mathbb{R}$

► Expected error: $\operatorname{er}(f) = \operatorname{P}_{(x,x') \sim \mathcal{D}_+ \times \mathcal{D}_-} \left[f(x) < f(x') \right]$

• Empirical error: $\widehat{\mathbf{er}}_{S}(f) = \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} 1(f(x_{i}^{+}) < f(x_{j}^{-}))$

Generalization Bounds Review

Informally:

How does the empirical performance of a learned function generalize to its expected performance on future data?

Formally:

Let $f_S: X \to \mathbb{R}$ denote the ranking function learned from $S \in X^m \times X^n$.

- ► Expected error: $\operatorname{er}(f_S) = \operatorname{P}_{(x,x') \sim \mathcal{D}_+ \times \mathcal{D}_-} \left[f_S(x) < f_S(x') \right]$
- Empirical error: $\widehat{\operatorname{er}}_{S}(f_{S}) = \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \mathbb{1}(f_{S}(x_{i}^{+}) < f_{S}(x_{j}^{-}))$

Assume $S \sim \mathcal{D}^m_+ \times \mathcal{D}^n_-$. Can we bound $\operatorname{er}(f_S)$ in terms of $\widehat{\operatorname{er}}_S(f_S)$?

Generalization Bounds Based on Uniform Convergence

Let $f_S : X \to \mathbb{R}$ denote the ranking function learned from $S \in X^m \times X^n$. Want to bound $\operatorname{er}(f_S)$ in terms of $\widehat{\operatorname{er}}_S(f_S)$.

Uniform convergence approach: If $f_S \in \mathcal{F}$, then $\mathbf{P}_S\left[\left|\mathbf{er}(f_S) - \widehat{\mathbf{er}}_S(f_S)\right| \ge \epsilon\right] \le \mathbf{P}_S\left[\sup_{f \in \mathcal{F}} \left|\mathbf{er}(f) - \widehat{\mathbf{er}}_S(f)\right| \ge \epsilon\right].$ Sufficient to bound this probability

[Vapnik & Chervonenkis, 1971]

$$\begin{array}{l} \textbf{Bounding} \ \mathbf{P}_{S} \left[\sup_{f \in \mathcal{F}} \left| \mathbf{er}(f) - \widehat{\mathbf{er}}_{S}(f) \right| \geq \epsilon \right] \\ \\ \textbf{Step 1: Symmetrization} \\ \mathbf{P}_{S} \left[\sup_{f \in \mathcal{F}} \left| \mathbf{er}(f) - \widehat{\mathbf{er}}_{S}(f) \right| \geq \epsilon \right] \\ \\ \end{bmatrix} \leq 2 \mathbf{P}_{S,\widetilde{S}} \left[\sup_{f \in \mathcal{F}} \left| \widehat{\mathbf{er}}_{\widetilde{S}}(f) - \widehat{\mathbf{er}}_{S}(f) \right| \geq \frac{\epsilon}{2} \right] \end{array}$$

Step 2: Permutations and reduction to a finite class

Uniform Convergence Bound

Theorem. Let \mathcal{F} be a class of real-valued functions on X. Then for any $0 < \delta < 1$, we have with probability at least $1 - \delta$:

$$\sup_{f\in\mathcal{F}} \left| \mathbf{er}(f) - \widehat{\mathbf{er}}_S(f) \right| < \sqrt{\frac{8(m+n)}{mn}} \left(\ln \pi_{\mathcal{F}}(2m,2n) + \ln \left(\frac{4}{\delta}\right) \right).$$

[Agarwal et al, 2005]

Theory Algorithms Applications

Bipartite Ranking: Basic Algorithmic Framework

Minimize a convex upper bound on the empirical ranking error, possibly with some regularization, over some class of ranking functions:

$$\min_{f \in \mathcal{F}} \left[\frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \ell(f, x_i^+, x_j^-) + \lambda N(f) \right]$$

where

- $\ell(f, x_i^+, x_j^-)$: convex upper bound on $\mathbf{1}(f(x_i^+) < f(x_j^-))$
 - N(f) : regularizer
 - $\lambda > 0$: regularization parameter
 - \mathcal{F} : class of ranking functions

Bipartite RankBoost Algorithm

$$\min_{f \in \mathcal{L}(\mathcal{F}_{\text{base}})} \left[\frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \ell_{\text{exp}}(f, x_i^+, x_j^-) \right]$$

$$\ell_{\exp}(f, x_i^+, x_j^-) = \exp\left(-\left(f(x_i^+) - f(x_j^-)\right)\right)$$

$$\mathcal{L}(\mathcal{F}_{\text{base}}) = \text{linear combinations of functions in some}$$

base class $\mathcal{F}_{\text{base}}$

[Freund et al, 2003]

Bipartite RankSVM Algorithm

$$\min_{f \in \mathcal{F}_K} \left[\frac{1}{mn} \sum_{i=1}^m \sum_{j=1}^n \ell_{\text{hinge}}(f, x_i^+, x_j^-) + \frac{\lambda}{2} \|f\|_K^2 \right]$$

$$\ell_{\text{hinge}}(f, x_i^+, x_j^-) = \left(1 - \left(f(x_i^+) - f(x_j^-)\right)\right)_+ \left[u_+ = \max(u, 0)\right]$$

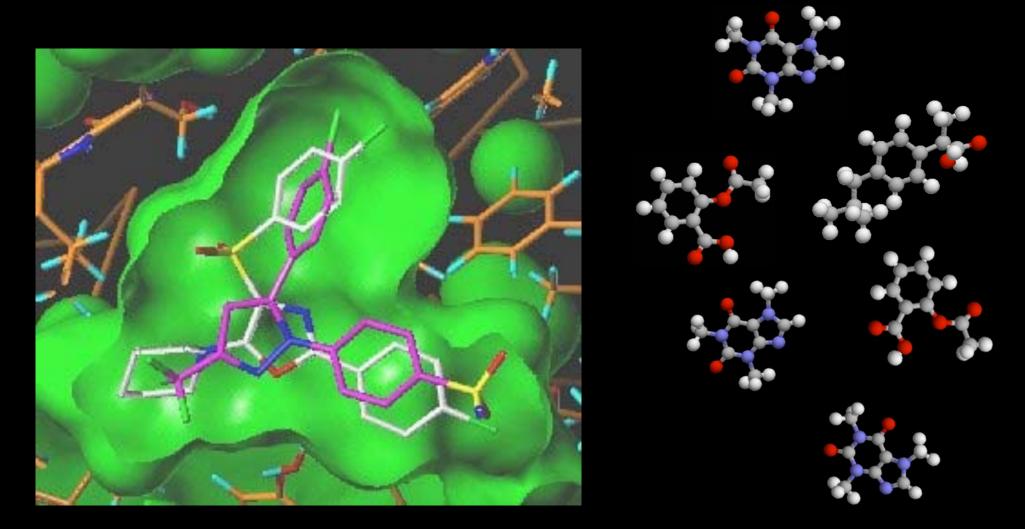
$$\mathcal{F}_K = \text{reproducing kernel Hilbert space (RKHS)}$$

with kernel function K
$$N(f) = \frac{\|f\|_K^2}{2}$$

[Herbrich et al, 2000; Joachims, 2002; Rakotomamonjy, 2004]

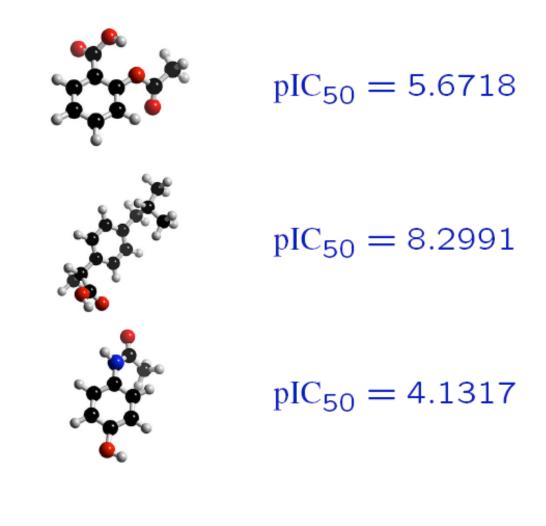
Bipartite RankNet Algorithm

$$\min_{f \in \mathcal{F}_{\text{neural}}} \left[\frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \ell_{\text{logistic}}(f, x_i^+, x_j^-) \right]$$


$$\ell_{\text{logistic}}(f, x_i^+, x_j^-) = \log\left(1 + \exp\left(-\left(f(x_i^+) - f(x_j^-)\right)\right)\right)$$

$$\mathcal{F}_{\text{neural}} = \text{functions represented by some class of neural networks}$$

[Burges et al, 2005]


Theory Algorithms Applications

Application to Drug Discovery

Problem: Millions of structures in a chemical library. How do we identify the most promising ones?

Formulation as a Ranking Problem with Real-Valued Labels

.

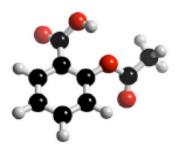
Ranking With Real-Valued Labels

- Instance space X
- ▶ Real-valued labels $Y = \mathbb{R}$
- ▶ Input: Training sample $S = ((x_1, y_1), \dots, (x_m, y_m)) \in (X \times \mathbb{R})^m$

▶ Output: Ranking function $f: X \rightarrow \mathbb{R}$

Expected error:

 $\mathbf{er}(f) = \mathbf{E}_{((x,y),(x',y')) \sim \mathcal{D} \times \mathcal{D}} \left[|y - y'| \mathbf{1}((y - y')(f(x) - f(x')) < 0) \right]$


Empirical error:

$$\widehat{\operatorname{er}}_{S}(f) = \frac{1}{\binom{m}{2}} \sum_{i=1}^{m-1} \sum_{j=i+1}^{m} |y - y'| \, \mathbb{1}((y_{i} - y_{j})(f(x_{i}) - f(x_{j})) < 0)$$

Cheminformatics Data Sets

[Sutherland et al, 2004]

Data Set	No. of Compounds	No. of Chemical (2.5D) Descriptors	pIC ₅₀ Values
DHFR inhibitors	361	70	3.3 – 9.8
COX2 inhibitors	292	74	4.0-9.0

DHFR Results Using RankSVM

2.5D chemical descriptors Gaussian kernel

Training	Ranking error		
size	SVR RankSVN		
24	0.4755	0.4601	
48	0.3430	0.3509	
72	0.2840	0.2726	
96	0.2483	0.2351	
120	0.2171 0.2121		
144	0.2023 0.2032		
168	0.2019	0.1817	
192	0.1808	0.1749	
216	0.1816 0.1722		
237	0.1714	0.1681	

FP2 molecular fingerprints Tanimoto kernel

Training	Ranking error		
size	SVR RankSVN		
24	0.3793	0.3546	
48	0.2905	0.2896	
72	0.2517	0.2421	
96	0.2343	0.2201	
120	0.2147	0.2052	
144	0.2166	0.1988	
168	0.2096	0.1966	
192	0.2056	0.1962	
216	0.1907	0.1787	
237	0.1924	0.1798	

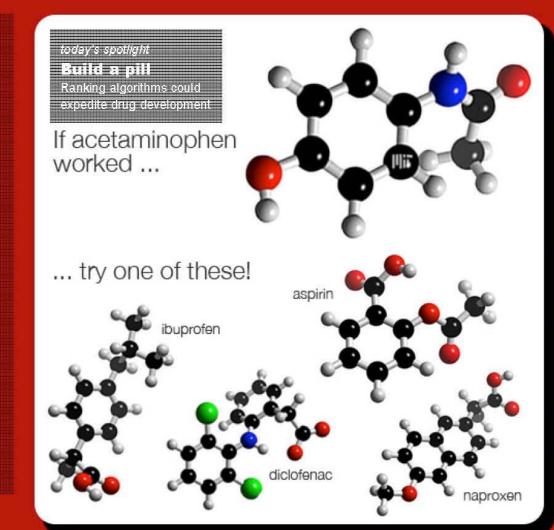
[Agarwal et al, 2010]

about

Massachusetts Institute of Technology 🍴 Wednesday, April 14, 2010 🧿 MIT Google 🍥 People 🥥 Offices

visiting | maps | offices+services admissions undergrad | graduate | financial aid

education schools+courses | OpenCourseWare


research labs+centers | lincoln lab | libraries

community students | faculty | staff | alumni

life@MIT arts | athletics | video

initiatives energyⁱ cancer | diversity | global

impact industry | public service

news

Letter to the community on MIT's financial condition

In The World: Better wound treatment for all

Toward more efficient wireless power delivery

research | campus | press

events

Memorial service for former MIT President Howard W. Johnson (today)

Artists Beyond the Desk concert (today)

Of Note: Celebrating SA+P's new Program in Art, Culture and Technology (tomorrow)

Legatum Lecture: Entrepreneur and investor Chuck Lacy (tomorrow)

GIVE TO MIT 🜔

Application to Bioinformatics

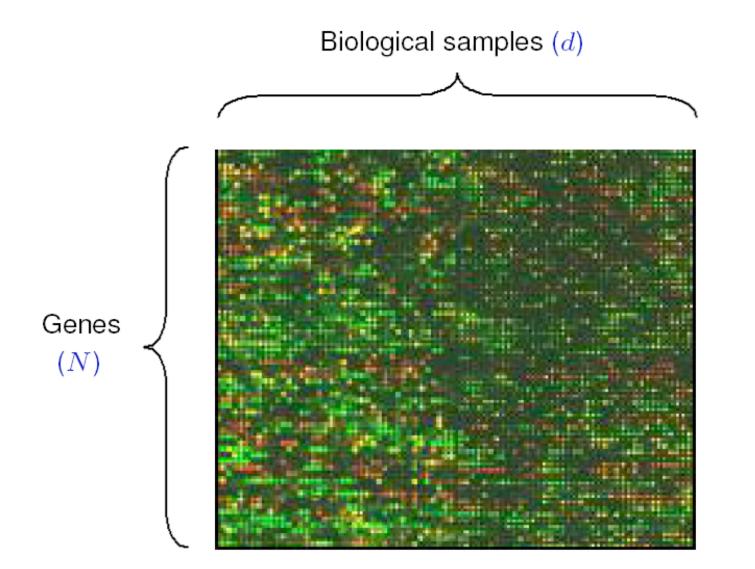
Searching for genetic determinants in the new millennium

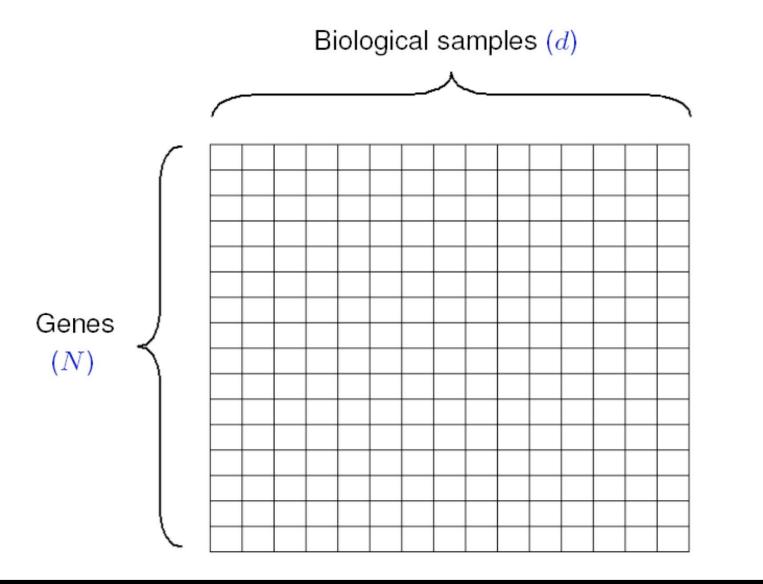
N.J. Risch

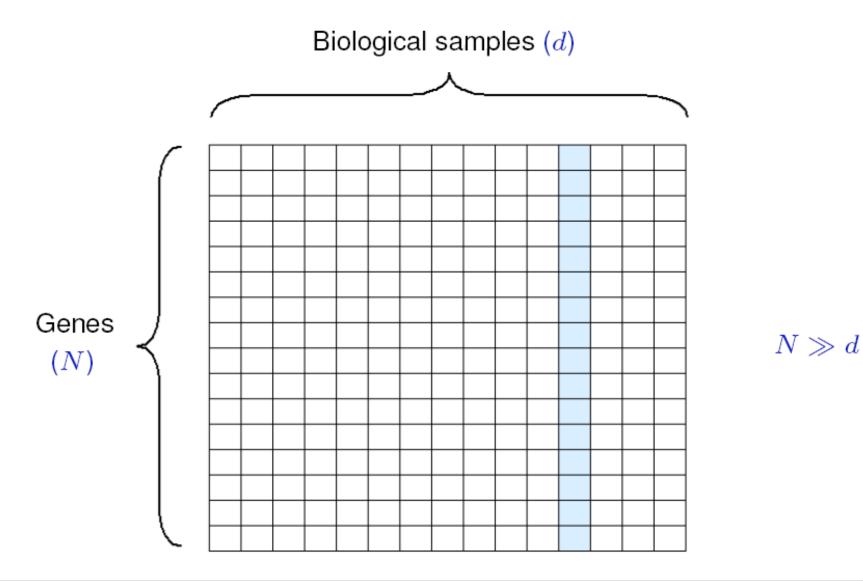
Human genetics is now at a critical juncture. The molecular methods used successfully to identify the genes underlying rare mendelian syndromes are failing to find the numerous genes causing more common, familial, nonmendelian diseases . . .

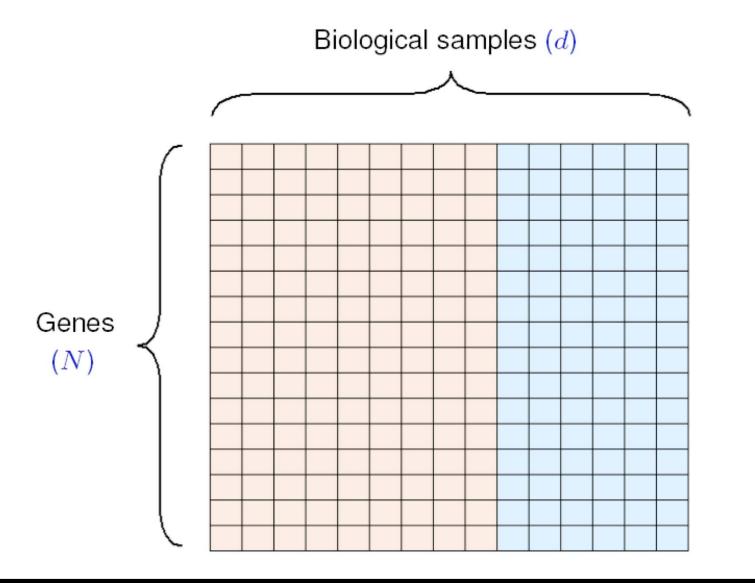
Nature 405:847-856, 2000

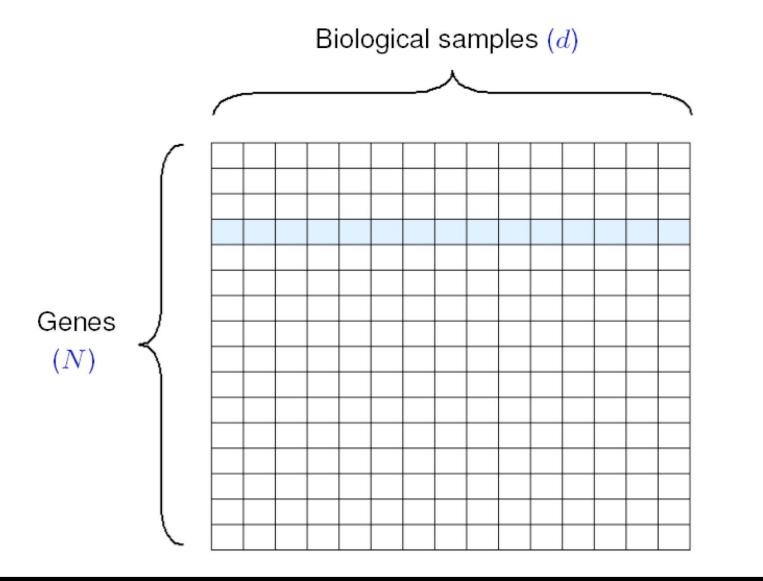
Application to Bioinformatics

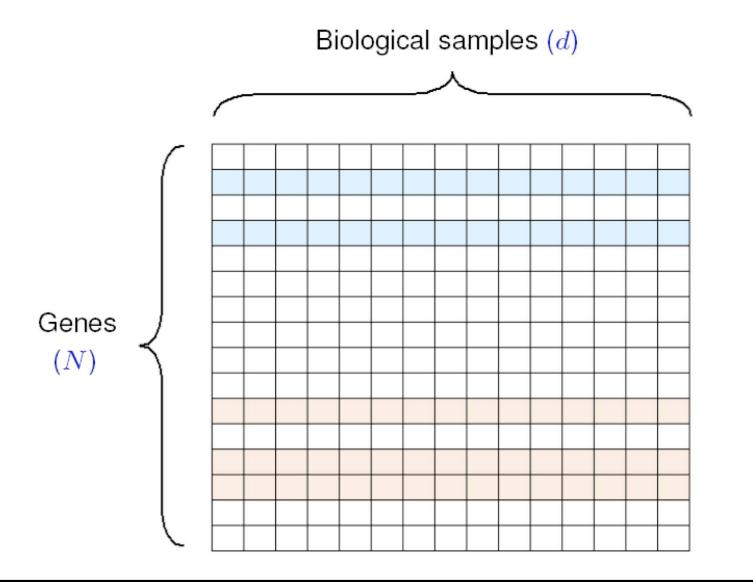

Searching for genetic determinants in the new millennium

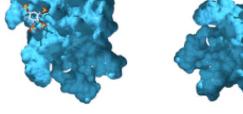

N.J. Risch

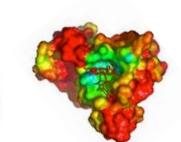

With the human genome sequence nearing completion, new opportunities are being presented for unravelling the complex genetic basis of nonmendelian disorders based on large-scale genomewide studies




Nature 405:847-856, 2000

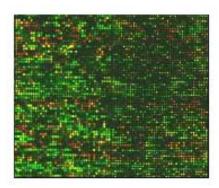






Formulation as a Bipartite Ranking Problem

Relevant


••

Not relevant

Microarray Gene Expression Data Sets

[Golub et al, 1999; Alon et al, 1999]

Data Set	No. of Genes	No. of Tissue Samples	Notes
Leukemia	7129	72	25 AML / 47 ALL
Colon cancer	2000	62	40 tumor / 22 normal

Selection of Training Genes

Leukemia

Positive genes: Markers for AML/ALL

Myeloperoxidase CD13 CD33 HOXA9 Homeo box A9 V-myb CD19 CD10 (CALLA) TCL1 (T cell leukemia) C-myb Deoxyhypusine synthase

Negative genes

157 genes involved in physiological cellular functions

Colon cancer

Positive genes: Markers for colon cancer

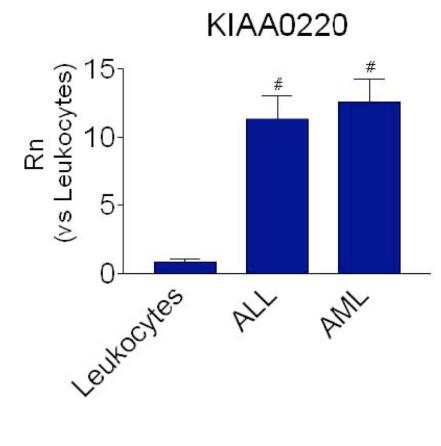
Phospholipase A2 Keratin 6 isoform PTP-H1 TF-IIIA V-raf oncogene MAPK kinase 1 CEA Oncoprotein 18 PEP carboxykinase ERK kinase 1

Negative genes

56 genes involved in physiological cellular functions

Top-Ranking Genes for Leukemia Returned by RankBoost

Known marker;


Known therapeutic target; Potential therapeutic target;

x No link found.

	Gene	Relevance Summary	t-Statistic Rank	Pearson Rank
1.	KIAA0220		6628	2461
2.	G-gamma globin	•	3578	3567
З.	Delta-globin	•	3663	3532
4.	Brain-expressed HHCPA78 homolog		6734	2390
5.	Myeloperoxidase	•	139	6573
6.	Disulfide isomerase precursor		6650	575
7.	Nucleophosmin	•	405	1115
8.	CD34	•	6732	643
9.	Elongation factor-1 β	х	4460	3413
10.	CD24	•	81	1
11.	60S ribosomal protein L23		1950	73
12.	5-aminolevulinic acid synthase	•	4750	3351

[Agarwal & Sengupta, 2009]

Biological Validation

[Agarwal et al, 2010]

Further Topics & Some Pointers [Incomplete!] • Ranking performance measures that focus on accuracy at the top [Yue et al, 2007; Clemencon & Vayatis, 2007; Cossock & Zhang, 2008; Rudin, 2009; Agarwal, 2010; also see IR ranking algorithms below]

 Statistical consistency of ranking algorithms
[Clemencon & Vayatis, 2007; Clemencon & Vayatis, 2008; Cossock & Zhang, 2008; Duchi et al, 2010]

Other types of ranking problems, such as label ranking
[Crammer & Singer, 2003; Shalev-Shwartz & Singer, 2006] and
subset ranking [Cossock & Zhang, 2008]

• Ranking algorithms for information retrieval [many, many recent papers; see Liu, 2009 for a survey]

• Other applications of ranking, such as game move prediction [Stern et al, 2007], recommendation systems [Stern et al, 2009], manhole event prediction [Rudin et al, 2010]