$$
\begin{gathered}
\text { CME302/ } \\
\text { CS } 237 A \\
\hline 9 / 28 / 05 \\
\hline
\end{gathered}
$$

$$
\begin{gathered}
-y^{\prime \prime}+\sigma y^{\prime}=f \\
0<x<1
\end{gathered}
$$

$$
x_{i}=i l, h=\frac{1}{N+1}
$$

$$
\begin{aligned}
& -y^{\prime \prime}\left(x_{1}\right) \approx \frac{-y\left(x_{i-1}\right)-2 y\left(x_{1}\right)-y\left(x_{i+1}\right)}{h^{2}} \\
& y^{\prime}\left(y_{1}\right) \approx \frac{y\left(x_{i+1}\right)-y\left(x_{i-1}\right)}{\partial h} \\
& y^{\prime}\left(x_{i}\right) \approx \frac{y\left(x_{i-1}\right)-y\left(x_{i}\right)}{h} \\
& -y^{\prime \prime}+\sigma y^{\prime}=f \\
& -\frac{y_{i-1}+2 y_{i}-y_{i+1}}{h^{2}}+\sigma\left(\frac{\left.y_{i+1}-y_{i-1}\right)}{2 h}\right)=f_{i}
\end{aligned}
$$

$$
\begin{gathered}
-\left(1+\frac{\sigma h}{2}\right) y_{i+}+2 y_{i}-\left(1-\frac{\sigma_{h}}{2}\right) y_{i \cdots}=h^{2} f_{i} \\
f_{i}=f\left(x_{i}\right) \quad i=1,2, \ldots v \\
y^{\prime} 0=\alpha, y(1)=\beta . \\
y_{0}=\alpha, y_{N+1}=\beta \\
\left(\begin{array}{cc}
a, b & 0 \\
c & - \\
0 & \cdots \\
0
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{2} \\
\vdots \\
y_{N}
\end{array}\right)=q
\end{gathered}
$$

$$
T y=g
$$

T: tri-diagonal

$$
-y^{\prime \prime}+\sigma y^{\prime}=f
$$

$\sigma \equiv 0$, thi-dragoridmatixx symnetic $T^{\top}=T$.

$$
\left|y\left(x_{i}\right)-y_{i}\right|=?
$$

$$
\begin{aligned}
& \left(\begin{array}{ccc}
A & B & 0 \\
C & A & \\
& & \\
0 & C & A
\end{array}\right) \\
& A_{P \times P}, B_{P \times P} \\
& \frac{B L O K K}{B L O C K} \\
& \text { TOEPLITZ MATRIX } \\
& \text { TRILDIAGONAL MATRIX }
\end{aligned}
$$

$$
\left\{x_{i}, y_{i}\right\}_{i=1}^{n}
$$

$$
\begin{aligned}
p_{l}(x)= & a_{0}+a_{1} x+\cdots+a_{l} x^{l} \\
& \sum_{i=1}^{n}\left(y_{i}-p_{l}\left(x_{i}\right)\right)^{2}=\text { min. }
\end{aligned}
$$

$$
\begin{aligned}
\phi^{(a)}= & \left(y-x_{a}\right)^{\top}\left(y-x_{a}\right) \\
= & y^{\top} y-y^{\top} x_{i}^{a}-a_{i}^{\top} x^{\top} y \\
& +a_{\sim}^{\top} x^{\top} x_{a} \\
\left(\tilde{a}^{\top} x^{\top} y\right)^{\top}= & y^{\top} x \underset{\sim}{a} \\
= & y^{\top} y-2 a^{\top} x^{\top} y+a^{\top} x^{\top} x a \\
\frac{\partial \varphi(a)}{\partial a}= & -2 x^{\top} y+2 x^{\top} x_{a},
\end{aligned}
$$

$$
\begin{aligned}
& \text { grad } y=0 \\
& X^{\top} X_{a}=X^{\top} y \\
& \text { Normal Equations }
\end{aligned}
$$

Hankel Matrix

$$
\phi(\hat{z})=m i
$$

$$
\frac{\text { Issues }}{\text { Model: polynomial? }}
$$

Splines
Numerical procedure: Normal
x_{i} vary greatly

$$
\begin{aligned}
f_{l}(x)=a_{0}+a_{1}(x & -\mu)+a_{2}(x-\mu)^{2} \\
& +\cdots a_{1}(x-\mu)^{l}
\end{aligned}
$$

$$
p_{l}(x)=b_{0} q_{0}(x)+\cdots+b_{0} q_{l}(x)
$$

$q_{k}(x)$: poly of doge k

$$
\sum_{i=1}^{c} q_{r}\left(x_{i}\right) q_{s}\left(x_{i}\right)=0 \quad r \notin s .
$$

$$
\begin{aligned}
& X=
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
X^{\top} X_{a}^{a}=X^{\top} y \\
Q^{\top} Q_{\underset{\sim}{t}}=Q^{\top} y
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{Q^{\top} Q=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)}{X_{l}=\left(x^{x^{\prime}} x_{1}^{\prime},, x_{1}^{\prime}\right)} \\
& X_{A-1}=\left(X_{e} \cdot x_{2}^{e+1}\right) \\
& x_{t+1} x_{t n} a=x_{t, r}^{\top} y
\end{aligned}
$$

$$
\begin{aligned}
& q_{t+1}^{(x)} \\
& Q_{9+1}=\left(q_{0}(x), q_{1}(x), \ldots, q_{e+1}(x)\right) \\
& q_{j}(x)=\left(\begin{array}{c}
q_{j}(x) \\
\vdots \\
q_{j}\left(x_{p}\right)
\end{array}\right) \\
& Q_{0+1}^{\top} Q_{0+1}=\binom{0}{0}
\end{aligned}
$$

$$
\begin{aligned}
& Q_{l+1}^{\top} Q_{l+1} b_{l+1}=Q_{l+1}^{\top} y \\
& b_{l+1}=\left(\begin{array}{c}
b_{l} \\
\sim_{e} \\
x
\end{array}\right)
\end{aligned}
$$

Constimiti $\quad a \geqslant 0$

$$
c^{\top} \underset{\sim}{a}=\underset{\sim}{0} ;{\underset{a}{a} a=x^{2} .}^{\top}
$$

$$
\begin{aligned}
& q(a)=\sum_{i=1}^{n}\left(y_{i}-p_{i}\left(x_{i}\right)\right)^{2} \\
& \varphi(a)=\sum\left|y_{i}-p_{k}\left(x_{i}\right)\right| \\
& a \quad \min \max \left|y_{i}-p_{k}\left(x_{i}\right)\right| \\
& \text { NORMS }
\end{aligned}
$$

Due to an unfortunate human error, slides 19-24 were lost. Please refer to the lecture notes for this part.

$$
\begin{aligned}
& 1 \cdot\left\|x_{2}\right\|_{\infty}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right)^{\frac{1}{2}} \leq n^{\frac{1}{2}} \operatorname{mox}_{i=1}\left|x_{i}\right| \\
&=n^{\frac{1}{2}}\left\|x_{\sim}^{x}\right\|_{\infty} \\
& c_{1}=1, c_{2}=\sqrt{n} \\
& \frac{1}{n}\|x\|_{1} \leq\left\|x_{\sim}^{x}\right\|_{a} \leq\left\|x_{2}\right\|,
\end{aligned}
$$

$$
\begin{aligned}
& \left|x^{\top} y\right| \leq\|x\|_{4} \cdot u y \|_{2} \\
& \text { Canchy-Schwartz }
\end{aligned}
$$

Abolute evror

$$
\| x-y \mid 1
$$

Relative ersor

$$
\frac{\|x-y\|}{\|x\|}
$$

point-wise.

$$
\frac{x_{i}-y_{i}}{x_{i}}=z_{i}, \quad\|z\|_{1}
$$

