A NOTE ON PAIRWISE PIVOTING

Given a non-singular matrix

$$
A=\left[\begin{array}{cccccc}
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times
\end{array}\right]
$$

we want to perform Gaussian elimination to A on a machine with limited memory. Assuming that we are only allowed to store two rows in the working memory at a time. Then one way to include some form of pivoting will be as follows.
Step 1. Compare the magnitude of the leading entries in the rows 1 and 2,

$$
A^{(0)}=A=\left[\begin{array}{cccccc}
\boxtimes & \times & \times & \times & \times & \times \\
\boxtimes & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times
\end{array}\right]
$$

and choose the larger entry as the pivot.
Step 2. Permute rows 1 and 2 accordingly to bring the larger entry into the pivoting position.
Step 3. Eliminate the entry below the pivot

$$
A^{(1)}=\left[\begin{array}{cccccc}
\boxtimes & \times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times
\end{array}\right] .
$$

Notice that the elements in bold are now changed because of the row operation (unless, of course, if the entry below the pivot is 0 to begin with, then we don't do anything and proceed to the next stage).
Step 4. Repeat Step 1 through Step 4 with rows 1 and 3 of the matrix

$$
A^{(1)}=\left[\begin{array}{cccccc}
\boxtimes & \times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times & \times \\
\boxtimes & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times
\end{array}\right]
$$

Date: November 3, 2005, version 1.0, bug reports: lekheng@stanford.edu.
to get

$$
A^{(2)}=\left[\begin{array}{cccccc}
\boxtimes & \times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times & \times \\
\boxtimes & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times
\end{array}\right]
$$

repeat until we have

$$
A^{(n)}=\left[\begin{array}{cccccc}
\times & \times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times & \times
\end{array}\right] .
$$

Step 5. Now repeat Steps 1 through Steps 5 to the $(n-1) \times(n-1)$ principal block $A^{(n)}[2: n ; 2: n]$ to get

$$
B^{(n)}=\left[\begin{array}{cccccc}
\times & \times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times & \times \\
0 & 0 & \times & \times & \times & \times \\
0 & 0 & \times & \times & \times & \times \\
0 & 0 & \times & \times & \times & \times \\
0 & 0 & \times & \times & \times & \times
\end{array}\right]
$$

Step 6. Repeat until you get

$$
U^{(n)}=\left[\begin{array}{cccccc}
\times & \times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times & \times \\
0 & 0 & \times & \times & \times & \times \\
0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times \\
0 & 0 & 0 & 0 & 0 & \times
\end{array}\right] .
$$

In the homework, you are required to do this for Gauss-Jordan elimination instead of Gaussian elimination. The idea is similar but now you will need to eliminate the entry above the pivot in Step 5:

$$
B^{(n)}=\left[\begin{array}{cccccc}
\times & \boxtimes & \times & \times & \times & \times \\
0 & \times & \times & \times & \times & \times \\
0 & 0 & \times & \times & \times & \times \\
0 & 0 & \times & \times & \times & \times \\
0 & 0 & \times & \times & \times & \times \\
0 & 0 & \times & \times & \times & \times
\end{array}\right] .
$$

Comparing Gaussian elimination with pairwise pivoting and partial pivoting, you will quickly see that pairwise pivoting offers the following advantages:

- Pairwise pivoting avoids a search for a largest pivot down a column.
- As in partial pivoting, pairwise pivoting has the property that the multipliers are always bounded by 1 .
- Pairwise pivoting permits greater parallelism. Observe that the following entries (labelled as $n=(1, \ldots,(9)$ can be eliminated simultaneously in the nth stage:

$$
\left[\begin{array}{cccccc}
\times & \times & \times & \times & \times & \times \\
(1) & \times & \times & \times & \times & \times \\
(2) & (3) & \times & \times & \times & \times \\
(3) & (4) & 5 & \times & \times & \times \\
(4) & (5) & (6) & 7 & \times & \times \\
(5) & (6) & 7 & (8) & 9 & \times
\end{array}\right] .
$$

Your program does not need to exhibit this parallel feature.
Pairwise pivoting has some serious disadvantages too - most notably a 4^{n} factor in the error bound. Another point is that while partial pivoting requires 1 row interchange to zero out all entries below a pivot, pairwise pivoting may take up to n row interchanges (STEP 2).

