
A NOTE ON PAIRWISE PIVOTING

Given a non-singular matrix

A =


× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×

 ,

we want to perform Gaussian elimination to A on a machine with limited memory. Assuming that
we are only allowed to store two rows in the working memory at a time. Then one way to include
some form of pivoting will be as follows.

Step 1. Compare the magnitude of the leading entries in the rows 1 and 2,

A(0) = A =


� × × × × ×
� × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×


and choose the larger entry as the pivot.

Step 2. Permute rows 1 and 2 accordingly to bring the larger entry into the pivoting position.
Step 3. Eliminate the entry below the pivot

A(1) =


� × × × × ×
0 ××× ××× ××× ××× ×××
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×

 .

Notice that the elements in bold are now changed because of the row operation (unless,
of course, if the entry below the pivot is 0 to begin with, then we don’t do anything and
proceed to the next stage).

Step 4. Repeat Step 1 through Step 4 with rows 1 and 3 of the matrix

A(1) =


� × × × × ×
0 × × × × ×
� × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×



Date: November 3, 2005, version 1.0, bug reports: lekheng@stanford.edu.

1



to get

A(2) =


� × × × × ×
0 × × × × ×
0 × × × × ×
� × × × × ×
× × × × × ×
× × × × × ×

 ;

repeat until we have

A(n) =


× × × × × ×
0 × × × × ×
0 × × × × ×
0 × × × × ×
0 × × × × ×
0 × × × × ×

 .

Step 5. Now repeat Steps 1 through Steps 5 to the (n−1)×(n−1) principal block A(n)[2:n; 2:n]
to get

B(n) =


× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 × × × ×
0 0 × × × ×
0 0 × × × ×

 .

Step 6. Repeat until you get

U (n) =


× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 0 × × ×
0 0 0 0 × ×
0 0 0 0 0 ×

 .

In the homework, you are required to do this for Gauss-Jordan elimination instead of Gaussian
elimination. The idea is similar but now you will need to eliminate the entry above the pivot in
Step 5:

B(n) =


× � × × × ×
0 × × × × ×
0 0 × × × ×
0 0 × × × ×
0 0 × × × ×
0 0 × × × ×

 .

Comparing Gaussian elimination with pairwise pivoting and partial pivoting, you will quickly
see that pairwise pivoting offers the following advantages:

• Pairwise pivoting avoids a search for a largest pivot down a column.
• As in partial pivoting, pairwise pivoting has the property that the multipliers are always

bounded by 1.

2



• Pairwise pivoting permits greater parallelism. Observe that the following entries (labelled
as n = ➀, . . . , ➈) can be eliminated simultaneously in the nth stage:

× × × × × ×
➀ × × × × ×
➁ ➂ × × × ×
➂ ➃ ➄ × × ×
➃ ➄ ➅ ➆ × ×
➄ ➅ ➆ ➇ ➈ ×

 .

Your program does not need to exhibit this parallel feature.
Pairwise pivoting has some serious disadvantages too — most notably a 4n factor in the error

bound. Another point is that while partial pivoting requires 1 row interchange to zero out all
entries below a pivot, pairwise pivoting may take up to n row interchanges (Step 2).

3


