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1. COMPUTING THE INVERSE

Using the LU decomposition, one can compute the inverse of a matrix. A natural method to
compute the inverse of an n X n matrix A is to solve the matrix equation

AX =1
by solving the systems of equations
Axj=ej, j=1,...,n

Since only the right-hand side is different in each of these systems, we need only compute the LU
decomposition of A once, which requires 2n3/3 operations. For simplicity, we assume that pivoting
is not required, and note that the case where pivoting is required can be handled in a similar
fashion.

Given the LU decomposition, we compute A~! by solving the systems Ly; =e; and Ux; = y;
for j = 1,...,n. Computing each column x; of A~ requires n? operations, resulting in a total of
2n3 /3 + n(n?) = 5n3/3 operations.

We can compute A~! more efficiently by noting that A=! = U~'L~! and computing U~!, L7,
and the product U~'L~! directly. Since the inverse of an upper triangular matrix is also an upper
triangular matrix, computing column j of U~! requires only approximately j2/2 operations, since,
in solving the system Ux; = e;, we can ignore the last n — j components of x; since we know that
they are equal to zero. As a result, computing U ! requires only n3/6 operations. A similar result
holds for computing L', which is a lower triangular matrix.

To compute the product A=' = U7'L~!, we note that if we number the northeast-to-southwest
diagonals of A™! starting with 1 for the upper left diagonal (the (1,1) element) and n for the
lower right diagonal (the (n,n) element), then elements along diagonal j require only n — j + 1
multiplications to compute. It follows that the total operation count to compute the product of
U'and L7 is

1
(2n—1)+22n—3)+32n —5)+ -+ (n—1)2+n~ gn?’.
Therefore, the overall operation count to compute A~! using this method is 4n3/3.

2. THE SIMPLEX METHOD

In order to implement the Simplex Algorithm, it is necessary to solve three systems of linear
equations at each iteration; namely

Bxr =25 2.1
Blw=¢ 2.2
Bt = —g™ (2.3)
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If the LU decomposition of B is known, then it is easy to solve the three systems of equations.
We have already shown how to solve systems (2.1) and (2.3), using the LU decomposition. Since
BT =UTLT, solving (2.2) merely requires the solving of Uy = ¢ and then LTw = y.

In the Simplex Algorithm we change only one column of B at a time. If the LU decomposition
of B is known, we can determine the LU decomposition of the new matrix B by simply updating
the previous decomposition. This process can be done efficiently and in a manner that insures
numerical stability.

Suppose Gaussian elimination with partial pivoting has been used on B so that

pm=Urm=1) . pOTV B = 1.
Let
B = [b(l),b(z),...,b(m)] and U = [u(l),u(z), e ,u(m)].
Because the last (m — k) components of u(¥) are zero,
PEFDR+1),,(R) — o, (k)

since PFHDIICHD Jinearly combines the bottom (m — k) elements of u(®). Thus,
uw®) = pEIFE) p=1)11(R=1) . pO Mgk

If we let
B =W p@ . pbD g plth o pm)],
and
7&) — pE)11kR) .. pMO71)
Then
T(s—1) _ [T(l)b(l), o ,T(Sfl)b(sflkT(Sfl)g’T(sfl)b(SH)’ o ,T(Sfl)b(m)]
= [u(l)’ cuED =l g pls= s+ ’T(S—l)b(m)].
Therefore, to find the new LU decomposition of B we need only compute o), ps) . mm=b,

P(m=1) 55 that
plm=D1p(m=1) | ]5(5)1:[(8)T(<9—1)[g7 b(5+1), o 7b(m)} - [ﬂ(s)’a(s'i'l)’ o ’ﬂ(m)],

where @(®) is a new vector whose last (m — k) components are zero. If g replaces b(™) | then
about m?/2 multiplications are required to compute the new U. However, if g replaces b the
decomposition must be completely recomputed.

We can update the LU decomposition in a more efficient manner which unfortunately requires
more storage. Let us write

By = LgUp.

Let the column sy of By be replaced by the column vector gg. As long as we revise the ordering of
the unknowns accordingly we may insert gg into the last column position, shifting columns sy + 1
through m of By one position to the left to make room. We will call the result B;, and we can
easily check that it has the decomposition

By = LoH;,

where H; is a matrix that is upper Hessenberg in its last m — sg + 1 columns, and upper-triangular
in its first sg — 1 columns.

The first sg — 1 columns of H; are identical with those of Uy. The next m — sg are identical with
the last m — so columns of Uy, and the last column of H; is the vector L 1 go-

H; can be reduced to upper-triangular form by Gaussian elimination with row interchanges.
Here, however, we need only concern ourselves with the interchanges of pairs of adjacent rows.
Thus, U; is gotten from H; by applying a sequence of simple transformations:

Uy =P nm L plon(o) g (2.4)



where each Pl(k) is the identity matrix with a single nonzero subdiagonal element g,(gl) in the (k+1,k)

position, and each II(%) is either the identity matrix or the identity matrix with the kth and (k+1)st
rows exchanged, the choice being made so that | g,gl)\ <1.

The essential information in all of the transformations can be stored in m — sy locations plus an
additional m — sp bits (to indicate the interchanges). If we let

1 —1 —1 —1
Lyt =P hnime L plein ) ot
then we have achieved the decomposition
By = LU;.

The transition from By to Bjy1, where i represents the ith time through steps (2)-(7) of the
Simplex Algorithm, is to be made exactly as the transition from By to By. Any system of linear
equations involving the matrix B; for any ¢ is to be solved by applying the sequences of transfor-
mations defined by (2.4) and then solving the upper triangular system of equations.

As we have already pointed out, it requires

m?/3 4+ O(m?)

multiplication-type operations to produce an initial LU decomposition,

BoJI = .
The solution for any system B;x = v must be found according to the LU decomposition method
by computing

y=L;"v, (2.5)
followed by solving

Uix = y. (2.6)
The application of Ly! to v in (2.5) will require m(m — 1)/2 operations. The application of the

remaining transformations in L; ' will require at most i(m — 1) operations. Solving (2.6) costs
m(m + 1)/2 operations. Hence, the cost of (2.5) and (2.6) together is not greater than

m? +i(m —1)

operations, and a reasonable expected figure would be m? + %(m —1).

3. GAUSS-JORDAN ELIMINATION

A variant of Gaussian elimination is called Gauss-Jordan elimination. It entails zeroing elements
above the diagonal as well as below, using elementary row operations (cf. LDU factorization). The
result is a decomposition A = LM T D, where L is a unit lower triangular matrix, D is a diagonal
matrix, and M is also a unit lower triangular matrix. We can then solve the system Ax = b by
solving the systems

Ly =b, MTz:y, Dx = z.
The benefit of Gauss-Jordan elimination is that it maintains full vector lengths throughout the
algorithm, making it particularly suitable for vector computers.

4. LDU FACTORIZATION

A variant of LU factorization is called LDU factorization. It entails zeroing elements above
the diagonal as well as below, using elementary column operations (cf. Gauss-Jordan elimination)
that are similar to the elementary row operations used in Gaussian elimination. The result is a
decomposition A = LDU, where L is a unit lower triangular matrix, D is a diagonal matrix, and
U is also a unit upper triangular matrix. We can then solve the system Ax = b by solving the
systems

Ly=b, Dz=y, Ux=z.



5. UNIQUENESS OF THE LU DECOMPOSITION

It is natural ask whether the LU decomposition is unique. To determine this, we assume that
A has two LU decompositions, A = L1U; and A = LoUsy. From L1U; = LyUs we obtain L2_1L1 =
UU ! The inverse of a unit lower triangular matrix is a unit lower triangular matrix, and the
product of two unit lower triangular matrices is a unit lower triangular matrix, so Ly 1L, must be
a unit lower triangular matrix. Similarly, UsU; !is an upper triangular matrix. The only matrix

that is both upper triangular and unit lower triangular is the identity matrix I, so we must have
L1 = L2 and U1 = UQ.
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