
CME 302: NUMERICAL LINEAR ALGEBRA
FALL 2005/06
LECTURE 6

GENE H. GOLUB

1. Issues with Floating-point Arithmetic

We conclude our discussion of floating-point arithmetic by highlighting two issues that frequently
arise in practice.

First of all, relationships among numbers that are known to be true in exact arithmetic do not
necessarily hold when using floating-point arithmetic. For example, suppose that x > y > 0, and
that a > 0. Then, in exact arithmetic, ax > ay > 0, but in floating-point arithmetic, we can only
assume that ax ≥ ay ≥ 0.

Second, the order in which floating-point arithmetic operations are performed can drastically
affect the result. For example, suppose that we want to compute e−x, where x > 0. Using the
Taylor series for ex, we know that

e−x = 1− x +
x2

2
− x3

3!
+ · · ·

but for sufficiently large x, this means obtaining small numbers by subtracting larger ones, and
therefore the computation is susceptible to a phenomenon known as catastrophic cancellation, in
which subtracting numbers that are nearly equal causes the loss of significant digits (since such
digits in the result of the subtraction are equal to zero). An alternative approach is to compute

e−x =
1

1 + x + x2

2 + x3

3! + · · ·
which avoids this problem.

As a rule, it is best to try to avoid subtractions altogether, instead trying to add numbers that
are guaranteed to be the same sign. For example, given the quadratic equation x2 + bx + c = 0, we
can compute the roots by applying the quadratic formula as follows:

x+ =
−b + sgn(−b)

√
b2 − 4c

2
, x− =

c

x+
.

2. Rank-1 Updating and the Inverse

Suppose that we have solved the problem Ax = b and we wish to solve the perturbed problem

(A + uv>)y = b.

Such a perturbation is called a rank-one update of A, since the matrix uv> has rank 1. As an
example, we might find that there was an error in the element a11 and we update it with the value
ā11. We can accomplish this update by setting

Ā = A + (ā11 − a11)e1e>1 , e1 =

1
0
...
0

 .

Date: October 18, 2005, version 1.0.
Notes originally due to James Lambers. Minor editing by Lek-Heng Lim.

1

For a general rank-one update, we can use the Sherman-Morrison formula, which we will derive
here. Multiplying through the equation (A + uv>)y = b by A−1 yields

(I + A−1uv>)y = A−1b = x.

We therefore need to find (I +wv>)−1 where w = A−1u. We assume that (I +wv>)−1 is a matrix
of the form (I + σwv>) where σ is some constant. From the relationship

(I + wv>)(I + σwv>) = I

we obtain

σwv> + wv> + σwv>wv> = 0.

However, the quantity v>w is a scalar, so this simplifies to

(σ + 1 + σv>w)wv> = 0

which yields

σ = − 1
1 + v>w

.

It follows that the solution y to the perturbed problem is given by

y = (I + σwv>)x = x + σvxw

and the perturbed inverse is given by

(A + uv>)−1 = (I + A−1uv>)−1A

=
(

I − 1
1 + v>w

wv>
)

A−1

= A−1 − 1
1 + v>A−1u

A−1uv>A−1.

An efficient algorithm for solving the perturbed problem (A +uv>)y = b can therefore proceed as
follows:

(1) Solve Ax = b
(2) Solve Aw = u
(3) Compute σ = − 1

1+v>w

(4) Compute y = x + σ(v>x)w

An alternative approach is to note that

(A + uv>)−1 = [A(I + A−1uv>)]−1

= (I + σA−1uv>)A−1

= A−1 + σA−1uv>A−1

which yields

(A + uv>)−1b = A−1(I + σuv>A−1)b

= A−1(b + σ(v>A−1b)u)

and therefore we can solve (A + uv>)y = b by solving a problem of the form Ax = b where the
right-hand side b is perturbed.

2

3. Gaussian Elimination

We often wish to solve
Ax = b

where A is an m × n matrix and b is an m-vector. For now, we assume that m = n and that A
has rank n. If we can write

A = PQ

then we can solve the system Ax = PQx = b by solving

Py = b
Qx = y

Therefore we would like to find such a decomposition where the above systems are simple to solve.
We now discuss a few scenarios where this is the case.

(1) If the matrix A is diagonal, then the system Ax = b has the solution xi = bi/aii for i =
1, . . . , n. The solution can be computed in only n divisions. Furthermore, each component
of x can be computed independently, and therefore the algorithm can be parallelized.

(2) If AA> = I, then Ax = b can be solved simply by computing the matrix-vector product x =
A>b. This requires only O(n2) multiplications and additions, and can also be parallelized.

(3) If A is a lower triangular matrix, i.e. if aij = 0 for i < j, then the system of equations
Ax = b takes the form

a11x1 = b1

a12x1 + a22x2 = b2
...

. . .
...

an1x1 + · · · + annxn = bn

which can be solved by the process of forward substitution

x1 = b1/a11

x2 = (b2 − a21x1)/a22

...

xn =
(
bn −

∑n−1
j=1 anjxj

)
/ann

This algorithm cannot be parallelized, since each component xi depends on xj for j < i,
but it is still efficient, as it requires only O(n2) multiplications and additions. In the case
where A is an upper triangular matrix, i.e. aij = 0 whenever i > j, a similar process known
as back substitution can be used.

Note that the solution method for the problem Ax = b depends on the structure of A. A may be
a sparse or dense matrix, or it may have one of many well-known structures, such as being a banded
matrix, or a Hankel matrix. We will consider the general case of a dense, unstructured matrix A,
and obtain a decomposition A = LU , where L is lower triangular and U is upper triangular.

This decomposition is achieved using Gaussian elimination. We write out the system Ax = b as

a11x1 + · · · + a1nxn = b1

a21x1 + · · · + a2nxn = b2
...

...
...

an1x1 + · · · + annxn = bn

We proceed by multiplying the first equation by −a21/a11 and adding it to the second equation,
and in general multiplying the first equation by −ai1/a11 and adding it to equation i. We obtain

3

the following equivalent system

a11x1 + a12x2 + · · · + a1nxn = b1

0x1 + a′22x2 + · · · + a′2nxn = b′2
...

...
...

0x1 + a′n2x2 + · · · + a′nnxn = b′n

Continuing in this fashion, adding multiples of the second equation to each subsequent equation to
make all elements below the diagonal equal to zero, we obtain an upper triangular system.

This process of transforming A to an upper triangular matrix U is equivalent to multiplying A
by a sequence of matrices to obtain U . Specifically, we have M1A = A2 where

A2 =

a11 a12 · · · a1n

0 a
(2)
22 · · · a

(2)
2n

...
...

...
0 a

(2)
n2 · · · a

(2)
nn

and

M1 =

1 0

−`21 1
... 0

. . .
−`n1 1

 , `i1 =
ai1

a11
.

Similarly, if we define M2 by

M2 =

1
0 1
0 −`32 1
...

...
. . .

0 −`n2 1

 , `i2 =
a

(2)
i2

a
(2)
22

then

M2A2 = A3 =

a11 a12 a13 · · · a1n

0 a
(2)
22 a

(2)
23 · · · a

(2)
2n

0 0 a
(3)
33 · · · a

(3)
3n

...
...

...
...

0 0 a
(3)
n3 · · · a

(3)
nn

In general, we have

Mk =

1

0
. . .

...
. . . 1

... −`k+1,k 1

...
...

. . .
0 −`nk 1

and

Mn−1Mn−2 · · ·M1A = An ≡

u11 · · · u1n

0 u22 · · · u2n
...

. . .
...

0 · · · 0 unn

or, equivalently,

A = M−1
1 M−1

2 · · ·M−1
n−1U.

4

It turns out that M−1
j is very easy to compute. We claim that

M−1
1 =

1 0

`21 1
... 0

. . .
`n1 1

To see this, consider the product

M1M
−1
1 =

1 0

−`21 1
... 0

. . .
−`n1 1

1 0
`21 1
... 0

. . .
`n1 1

which can easily be verified to be equal to the identity matrix. In general, we have

M−1
k =

1

0
. . .

...
. . . 1

... `k+1,k 1

...
...

. . .
0 `nk 1

Now, consider the product

M−1
1 M−1

2 =

1 0

`21 1
... 0

. . .
`n1 1

1
0 1
0 `32 1
...

...
. . .

0 `n2 1

=

1

`21 1
... `32 1
...

...
. . .

`n1 `n2 1

It can be shown that

M−1
1 M−1

2 · · ·M−1
n−1 =

1

`21
. . .

... `32
. . .

...
...

.
`n1 `n2 · · · `n,n−1 1

It follows that under proper circumstances, we can write A = LU where

L =

1

`21
. . .

... `32
. . .

...
...

.
`n1 `n2 · · · `n,n−1 1

 , U =

u11 · · · u1n

0 u22 · · · u2n
...

. . .
...

0 · · · 0 unn

5

Given this decomposition, we can easily compute the determinant of A:

det A = detLU = detLdet U = 1 ·
n∏

i=1

uii

What exactly are proper circumstances? We must have a
(k)
kk 6= 0, or we cannot proceed with the

decomposition. For example, if

A =

0 1 11
3 7 2
2 9 3

 or A =

1 3 4
2 6 4
7 1 2

Gaussian elimination will fail. In the first case, it fails immediately; in the second case, it fails after
the subdiagonal entries in the first column are zeroed, and we find that a

(k)
22 = 0. In general, we

must have det Aii 6= 0 for i = 1, . . . , n where

Aii =

a11 · · · a1i
...

...
ai1 · · · aii

for the LU factorization to exist.

How can we obtain the LU factorization for a general non-singular matrix? If A is nonsingular,
then some element of the first column must be nonzero. If ai1 6= 0, then we can interchange row
i with row 1 and proceed. This is equivalent to multiplying A by a permutation matrix Π1 that
interchanges row 1 and row i:

Π1 =

0 · · · · · · 0 1 0 · · · 0
1

. . .
1

1 0 · · · · · · 0 · · · · · · 0
1

. . .
1

Thus M1Π1A = A2. Then, since A2 is nonsingular, some element of column 2 of A2 below the
diagonal must be nonzero. Proceeding as before, we compute M2Π2A2 = A3, where Π2 is another
permutation matrix. Continuing, we obtain

A = (Mn−1Πn−1 · · ·M1Π1)−1U.

It can easily be shown that ΠA = LU where Π is a permutation matrix.
Most often, Πi is chosen so that row i is interchanged with row j, where a

(i)
ij = maxi≤j≤n |a(i)

ij |.
This guarantees that |`ij | ≤ 1. This strategy is known as partial pivoting. Another common
strategy, complete pivoting, uses both row and column interchanges to ensure that at step i of
the algorithm, the element aii is the largest element in absolute value from the entire submatrix
obtained by deleting the first i − 1 rows and columns. Often, however, other criteria is used to
guide pivoting, due to considerations such as preserving sparsity.

Department of Computer Science, Gates Building 2B, Room 280, Stanford, CA 94305-9025
E-mail address: golub@stanford.edu

6

