
CME 302: NUMERICAL LINEAR ALGEBRA
FALL 2005/06
LECTURE 5

GENE H. GOLUB

1. Perturbation Theory

Suppose we want to solve
Ax = b.

We actually have an approximation ξ such that

x = ξ + e.

The question is, how can we use norms to bound the relative error in ξ? We define the residual r
by

r = b−Aξ = A(x− ξ) = Ae

Note that r = 0 if Ax = b. From the relations ‖r‖ ≤ ‖A‖‖e‖ and ‖e‖ ≤ ‖A−1‖‖r‖, we obtain

‖r‖
‖A‖

≤ ‖e‖ ≤ ‖A−1‖‖r‖.

It follows that the relative error is bounded as follows:

‖r‖
‖A‖‖x‖

≤ ‖e‖
‖x‖

≤ ‖A−1‖‖r‖
‖x‖

≤ ‖A−1‖‖A‖ ‖r‖
‖b‖

since ‖A‖‖x‖ ≥ ‖b‖. The quantity
κ(A) = ‖A−1‖‖A‖

is called the condition number of A. The condition number serves as a measure of how perturbation
in the data of the problem Ax = b affects the solution.

How does a perturbation in A affect the solution x? To answer this question, we define A(ε) to
be a function of the size of the perturbation ε, with A(0) = A. Starting with

A(ε)A−1(ε) = I

and differentiating with respect to epsilon yields

A(ε)
dA−1(ε)

dε
+

dA(ε)
dε

A−1(ε) = 0

or
dA−1(ε)

dε
= −A−1(ε)

dA(ε)
dε

A−1(ε).

Now, suppose that x(ε) satisfies
(A + εE)x(ε) = b.

Date: October 26, 2005, version 1.0.
Notes originally due to James Lambers. Minor editing by Lek-Heng Lim.

1

Using Taylor series, we obtain

x(ε) = (A + εE)−1b

= x(0) + ε
dx(ε)

dε

∣∣∣∣
ε=0

+ O(ε2)

= x(0) + ε

(
−A−1(ε)

dA(ε)
dε

A−1(ε)
)

b + O(ε2)

= x(0) + ε(−A−1EA−1)b + O(ε2)

= x(0) + ε(−A−1E)x + O(ε2)

Taking norms, we obtain

‖x(ε)− x(0)‖ ≤ |ε|‖A−1‖2‖E‖‖b‖+ O(ε2)

from which it follows that the relative perturbation in x is
‖x(ε)− x‖

‖x‖
≤ |ε|‖A−1‖‖A‖‖E‖

‖A‖
+ O(ε2) ≤ κ(A)ρ + O(ε2)

where ρ = ‖εE‖/‖A‖ is the relative perturbation in A.
Since the exact solution to Ax = b is given by x = A−1b, we are also interested in examining

(A + E)−1 where E is some perturbation. Can we say something about ‖(A + E)−1 − A−1‖? We
assume that ‖A−1E‖ = r < 1. We have

A + E = A(I + A−1E) = A(I − F), F = −A−1E

which yields

‖(I − F)−1‖ ≤ 1
1− r

.

From

(A + E)−1 −A−1 = (I + A−1E)−1A−1 −A−1

= (I + A−1E)−1(A−1 − (I + A−1E)A−1)

= (I + A−1E)−1(−A−1EA−1)

we obtain
‖(A + E)−1 −A−1‖ ≤ 1

1− r
‖A−1‖2‖E‖

or
‖(A + E)−1 −A−1‖

‖A−1‖
≤ 1

1− r
κ(A)

‖E‖
‖A‖

.

2. Inexact Computation

2.1. Number representation. Real numbers can be represented using floating-point notation: a
floating-point representation such as

y = ±d1 · · · dsds+1 · · · 10e

A real number may not necessarily have a unique floating-point representation, as the following
examples indicate:

y = ±0.899 · · · 9 · · · × 100

= ±0.90 · · · 0 · · · × 100

or even worse,

y = +0.99 · · · 9× 100

= +0.10 · · · 0× 101

2

How can we represent y? We can use a chopped representation

ỹ = ±.d1 · · · ds × 103

or possibly
ỹ = ±.d1 · · · ds−1d̄s × 10ē

where

d̄s =

ds ds+1 < 5,

(ds + 1) mod 9 ds+1 > 5,

? ds+1 = 5.

where the value of d̄s when ds = 5 depends on what convention is used for rounding. Note that e
can change if ds+1 > 5. We often write ỹ = fl(y) where fl(·) means “floating-point representation
of y”.

Floating point numbers can be represented in base β as

y = ±.d1 · · · ds × βe

where m ≤ e ≤ M and the digits dj satisfy

1 ≤ d1 ≤ β − 1, 0 ≤ dj ≤ β − 1, j = 2, . . . , s.

This is a normalized floating-point number. The sequence of significant digits d1 · · · ds is called the
mantissa, and the number e is called the exponent.

Suppose s = 1, m = −1, and M = 1. Then the representable numbers are

+0.1× 10−1 +0.2× 10−1 · · · +0.9× 10−1

+0.1× 100 +0.2× 100 · · · +0.9× 100

+0.1× 101 +0.2× 101 · · · +0.9× 101

and 27 negative numbers. Note that the distribution is not uniform. In the previous example, the
representable numbers are

−9,−8, . . . ,−1,−0.9,−0.8, . . . ,−0.1,−0.09, . . . ,−0.01, 0, 0.1, . . .

Note that there are large gaps between integers.
Now, suppose that s = 3, and that we multiply two numbers y1 = 0.999 and y2 = 0.999. The

exact product is y1 × y2 = 0.998001, but the computed product is fl(y1 × y2) = 0.998. We will
write fl(y1 op y2) to indicate some numerical calculation.

On the IBM 360, we have base 16 (hexadecimal). In general,

y = (±.d1 · · · ds)β × βe,

= ±
(

d1

β
+

d2

β2
+ · · ·+ ds

βs

)
× β3, β = 16,

with 1 ≤ d1 ≤ β − 1 and 0 ≤ dj ≤ β1 for 2 ≤ j ≤ s. For the IBM 360, floating-point numbers are
represented using s = 6, m = −64 and M = 63, while double-precision floating-point numbers are
represented using s = 14, m = −64, and M = 63. If, for the result of any operation, e < −64, then
underflow has occurred. On the other hand, the scenario e > 63 is called overflow.

2.2. Roundoff Error in Arithmetic Operations. We need to consider the error arising from
computing the results of arithmetic expressions. In general,

z = fl(x op y) = (x op y)(1 + δ)

where |δ| ≤ β−(s−1) ≡ u when results are truncated, or |δ| ≤ 1
2β−(s−1) when results are rounded.

Therefore the relative error in fl(x op y) is∣∣∣∣fl(x op y)− (x op y)
x op y

∣∣∣∣ = |δ| ≤ u

where u is known as the unit roundoff.

3

We can use this idea sequentially to bound the error in more complex computations. Suppose
we want to compute

sn = x1 + x2 + · · ·+ xn.

If we use the numerical algorithm

s0 = 0
s1 = s0 + x1

s2 = s1 + x2

...
sn = sn−1 + xn

the corresponding computer algorithm is

σ0 = 0

σ1 = fl(σ0 + x1)

σ2 = fl(σ1 + x2)
...

σn = fl(σn−1 + xn)

Expanding the expressions for the σi, we obtain

σ1 = fl(σ0 + x1) = (σ0 + x1)(1 + δ1)

σ2 = fl(σ1 + x2) = (σ1 + x2)(1 + δ2) = σ1(1 + δ2) + x2(1 + δ2) = (σ1 + x1)(1 + δ1)(1 + δ2) + x2(1 + δ2)
...

σn = x1(1 + δ1) · · · (1 + δn) + x2(1 + δ2) · · · (1 + δn) + · · ·+ xn(1 + δn) =
n∑

j=1

xj

n∏
k=j

(1 + δk) =
n∑

j=1

xj(1 + ηj)

where

(1 + ηj) =
n∏

k=j

(1 + δk) = x1 + · · ·+ xn +
n∑

j=1

ηjxj .

In summary, ∣∣∣∣∣σn −
n∑

i=1

xi

∣∣∣∣∣ ≤
n∑

j=1

|ηj ||xj |, |ηj | ≤ (n− j + 1)u + O(u)2

if 0 < xi1 ≤ xi2 ≤ · · · ≤ xin . It would seem to imply that we should add the numbers in that order
since the numbers are weighted. A better procedure is to add the numbers in pairs, resulting in
the bound

|1 + ηi| ≤ 1 + pu

where n = 2p. In this case, the error is uniformly distributed.
For the product of n numbers p = x1 · · ·xn, we obtain the computed results

Π1 = fl(x1x2) = (x1x2)(1 + ε1)

Π2 = fl(Π2x3) = (x1x2x3)(1 + ε1)(1 + ε2)
...

Πn = fl(Πn−1xn) = (x1 · · ·xn)(1 + ε1) · · · (1 + εn−1) = p(1 + ηn−1)

where
|ηn−1| ≤ (n− 1)u + O(u2).

4

2.3. Common Computations. It is frequently necessary to compute the inner product

s =
n∑

i=1

uivi

Now
fl(ui × vi) = (ui × vi)(1 + γi), |γi| ≤ u.

Therefore, if we wish to compute

fl(s) =
n∑

j=1

xjyj(1 + ηj)

and (1 + ηj) will depend on how the computation is performed. If we do serial addition, then

(1 + ηj) =
n∏

k=j

(1 + δk)(1 + γj).

If we do pairwise addition and n = 2p, then

(1 + ηj) =

(
p∑

k=1

(1 + δikj
)

)
(1 + γj).

In computing inner products one must be quite careful; otherwise the underflow or overflow problem
can be quite serious.

Suppose one wishes to compute

s =
n∑

i=1

x2
i .

It is quite possible that overflow will occur. One solution is to scale. Suppose

|x±| ≥ |xj |, j = 1, 2, . . . , n

and x± = αβp. Then one should compute

s =

[
n∑

i=1

(
xi

βp

)2
]

β2p.

This requires two passes; there are better ways of performing the calculation.
We can build up analysis of many problems. This has been done extensively for linear algebra

by J. H. Wilkinson. The analysis can be automated; R. Moore has used interval arithmetic for
determining bounds on the solution.

It is a general principle that one should add terms of a similar sign. Suppose we wish to compute

s2 =
n∑

i=1

(xi − x̄)2, x̄ =
1
n

n∑
i=1

xi. (2.1)

It is well known that

s2 =
n∑

i=1

x2
i − nx̄2 (2.2)

and this formula is frequently used. But it is very bad, especially if the xi’s are large but s2 is
small. Then, you can be subtracting two large numbers. Formula (2.1) is more stable but requires
two passes. First, you must compute the mean and then the quantity s2. We could try writing

s2 =
n∑

i=1

(xi − ν)2 + η(ν2 − x̄2)

where ν is some approximation to x̄.

5

3. IEEE floating point numbers

These notes are due to Lieven Vandenberghe of UCLA.

3.1. Floating point numbers with base 10.
• Notation.

x = ±(.d1d2 · · · dn)10 · 10e

– .d1d2 · · · dn is the mantissa (di integer, 0 ≤ di ≤ 9, d1 6= 0 if x 6= 0)

– n is the mantissa length (or precision)
– e is the exponent (emin ≤ e ≤ emax)

• Interpretation.

x = ±(d110−1 + d210−2 + · · ·+ dn10−n) · 10e

• Example. (with n = 7)

12.625 = +(.1262500)10 · 102

= +(1 · 10−1 + 2 · 10−2 + 6 · 10−3 + 2 · 10−4 + 5 · 10−5 + 0 · 10−6 + 0 · 10−7) · 102

used in pocket calculators
• Properties.

– a finite set of numbers
– unequally spaced distance between floating point numbers varies

∗ the smallest number greater than 1 is 1 + 10−n+1

∗ the smallest number greater than 10 is 10 + 10−n+2, . . .
– largest positive number:

+(.999 · · · 9)10 · 10emax = (1− 10−n)10emax

– smallest positive number:

xmin = +(.100 · · · 0)10 · 10emin = 10emin−1

3.2. Floating point numbers with base 2.
• Notation.

x = ±(.d1d2 · · · dn)2 · 2e

– .d1d2 · · · dn is the mantissa (di ∈ {0, 1}, d1 = 1 if x 6= 0)
– n is the mantissa length (or precision)
– e is the exponent (emin ≤ e ≤ emax)

• Interpretation.

x = ±(d12−1 + d22−2 + · · ·+ dn2−n) · 2e

• Example. (with n = 8):

12.625 = +(.11001010)2 · 24

= +(1 · 2−1 + 1 · 2−2 + 0 · 2−3 + 0 · 2−4 + 1 · 2−5 + 0 · 2−6 + 1 · 2−7 + 0 · 2−8) · 24

used in almost all computers
• Properties.

– a finite set of unequally spaced numbers
– largest positive number:

xmax = +(.1 · · · 1)2 · 2emax = (1− 2−n)2emax

– smallest positive number:

xmin = +(.100 · · · 0)2 · 2emin = 2emin−1

6

• in practice, the number system includes subnormal numbers: unnormalized small numbers
(d1 = 0, e = emin), and the number 0

3.3. IEEE floating point standard. Specifies two binary floating point number formats:
• IEEE standard single precision:

n = 24, emin = −125, emax = 128

requires 32 bits: 1 sign bit, 23 bits for mantissa, 8 bits for exponent.
• IEEE standard double precision:

n = 53, emin = −1021, emax = 1024

requires 64 bits: 1 sign bit, 52 bits for mantissa, 11 bits for exponent; used in almost all
modern computers

3.4. Machine precision.
• Definition. The machine precision of a binary floating point number system with mantissa

length n is defined as
εM = 2−n

• Example. IEEE standard double precision (n = 53):

εM = 2−53 ≈ 1.1102 · 10−16

• Interpretation. 1 + 2εM is the smallest floating point number greater than 1:

(.10 · · · 01)2 · 21 = 1 + 21−n = 1 + 2εM .

3.5. Rounding error. A floating-point number system is a finite set of numbers; all other numbers
must be rounded

• Notation. fl(x) is the floating-point representation of x
• Rounding rules used in practice:

– numbers are rounded to the nearest floating-point number
– in case of a tie: round to the number with least significant bit 0 (“round to nearest

even”)
• Example. numbers x ∈ (1, 1 + 2εM) are rounded to 1 or 1 + 2εM :

– fl(x) = 1 if 1 < x ≤ 1 + εM

– fl(x) = 1 + 2εM if 1 + εM < x < 1 + 2εM

• gives another interpretation of εM : numbers between 1 and 1 + εM are indistinguishable
from 1

3.6. Rounding error and machine precision. General result (no proof):
|fl(x)− x|

|x|
≤ εM .

• machine precision gives a bound on the relative error due to rounding
• number of correct (decimal) digits in fl(x) is roughly

− log10 εM

i.e., about 15 or 16 in IEEE precision
• fundamental limit on accuracy of numerical computation

Department of Computer Science, Gates Building 2B, Room 280, Stanford, CA 94305-9025
E-mail address: golub@stanford.edu

7

