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1. Jordan Canonical Form

An n× n matrix A can be decomposed as

A = QJQ∗

where the matrix J is a block diagonal matrix

J =

J1

. . .
Jk


and each block Jr, for r = 1, . . . , k, has the form

Jr =


λr 1

. . . . . .
. . . 1

λr


where Jr is nr × nr. This decomposition of A is known as the Jordan canonical form.

The Jordan canonical form provides valuable information about the eigenvalues of A. The values
λj , for j = 1, . . . , k, are the eigenvalues of A. For each distinct eigenvalue λ, the number of Jordan
blocks having λ as a diagonal element is equal to the number of linearly independent eigenvectors
associated with λ. This number is called the geometric multiplicity of the eigenvalue λ. The sum
of the sizes of all of these blocks is called the algebraic multiplicity of λ.

We now consider Jr’s eigenvalues. We have

λ(Jr) = λr, . . . , λr

where λr is repeated nr times. But, because

Jr − λrI =


0 1

. . . . . .
. . . 1

0


is a matrix of rank nr − 1, it follows that the homogeneous system (Jr − λrI)x = 0 has only one
vector (up to a scalar multiple) for a solution, and therefore there is only one eigenvector associated
with this Jordan block.
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The unique unit vector that solves (Jr−λrI)x = 0 is the vector e1 = [1, 0, . . . , 0]>. Now, consider
the matrix

(Jr − λrI)2 =



0 1
. . . . . .

. . . . . .
. . . 1

0





0 1
. . . . . .

. . . . . .
. . . 1

0

 =



0 0 1
. . . . . . . . .

. . . . . . 1
. . . 0

0

 .

It is easy to see that (Jr − λrI)2e2 = 0. Continuing in this fashion, we can conclude that

(Jr − λrI)kek = 0, k = 1, . . . , nr − 1.

The Jordan form can be used to easily compute powers of a matrix. For example, one can easily
show that

A2 = QJQ−1QJQ−1 = QJ2Q

and, in general,
Ak = QJkQ.

Due to its structure, it is easy to compute powers of a Jordan block Jr. We have

Jk
r =


λr 1

. . . . . .
. . . 1

λr


k

= (λrI + K)k, K =


0 1

. . . . . .
. . . 1

0


=

k∑
j=0

(
k

j

)
λk−j

r Kj

which yields, for k > nr,

Jk
r =



λk
r

(
k
1

)
λk−1

r

(
k
2

)
λk−2

r · · ·
(

k
nr−1

)
λ

k−(nr−1)
r

. . . . . .
...

. . . . . .
...

. . .
...

λk
r


.

For example, λ 1 0
0 λ 1
0 0 λ

3

=

λ3 3λ2 3λ
0 λ3 3λ2

0 0 λ3

 .

We now consider an application of the Jordan canonical form. Consider the system of differential
equations

y′(t) = Ay(t), y(t0) = y0.

Using the Jordan form, we can rewrite this system as

y′(t) = QJQ−1y(t).
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Multiplying through by Q−1 yields

Q−1y′(t) = JQ−1y(t),

which can be rewritten as
z′(t) = Jz(t),

where z = Q−1y(t). This new system has the initial condition

z(t0) = z0 = Q−1y0.

If we assume that J is a diagonal matrix (which is true in the case where A has a full set of linearly
independent eigenvectors), then the system decouples into scalar equations of the form

z′i(t) = λizi(t),

where λi is an eigenvalue of A. This equation has the solution

zi(t) = eλi(t−t0)zi(0),

and therefore the solution to the original system is

y(t) = Q

eλ1(t−t0)

. . .
eλn(t−t0)

Q−1y0.

2. Systems of Linear Equations

The main content of the course will be concerned with solving problems of the form

Ax = b

where A is an m×n matrix of rank r. Of course, we cannot solve such problems generally, because
the nature of the solution is influenced greatly by the relationship between m, n, and r. For
example, if m = n = r, then there is a unique solution. On the other hand, if m < n and m = r,
then there are infinitely many solutions, and often we need to find the unique solution that satisfies
certain constraints. This is the basis for linear programming. Finally, if m > n, there may not be
a solution, in which case we need to solve a least squares problem to find the vector x that comes
as close as possible, in some sense, to solving the problem.

3. Some Results Involving Norms

If ‖A‖ < 1, then ‖Am‖ → 0 as m → ∞. Since ‖A‖ is a continuous function of the elements of
A, it follows that Am → 0. However, if ‖A‖ > 1, it does not follow that ‖Am‖ → ∞. For example,
suppose

A =
[
0.99 106

0 0.99

]
.

In this case, ‖A‖∞ > 1, but because ρ(A) < 1, there must exist some norm ‖A‖α such that
‖A‖α < 1.

For matrices A such that ‖A‖ < 1 for some natural norm, we also have the following result.

Theorem 1. If, for some natural norm, ‖A‖ < 1, then
(a) I −A is nonsingular
(b)

1
1 + ‖A‖

≤ ‖(I −A)−1‖ ≤ 1
1− ‖A‖

.

Proof. (a) Assume I − A is singular. Then, there exists a vector z 6= 0 such that (I − A)z = 0.
Therefore z = Az and

‖z‖ = ‖Az‖ ≤ ‖A‖‖z‖.
Therefore ‖A‖ ≥ 1, which is a contradiction.
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(b) Since I = (I −A)(I −A)−1, we have

‖I‖ ≤ ‖(I −A)‖‖(I −A)−1‖
but since we are using a natural norm, ‖I‖ = 1, so, by the triangle inequality, we have

1 ≤ (1 + ‖A‖)‖(I −A)−1‖,
thus proving the left inequality. For the right inequality, (I −A)−1(I −A) = I yields

(I −A)−1 − (I −A)−1A = I

or
(I −A)−1 = I + (I −A)−1A.

Taking norms, we obtain

‖(I −A)−1‖ ≤ 1 + ‖A‖‖(I −A)−1‖
which, by the fact that ‖A‖ < 1, proves the right inequality true.
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