CME 302: NUMERICAL LINEAR ALGEBRA
FALL 2005/06
LECTURE 3

GENE H. GOLUB

1. SINGULAR VALUE DECOMPOSITION

Suppose A is an m X n real matrix with m > n. Then we can write

A=UxVT,
where
01
U'uv=1I, VV=I, =
On
0
The diagonal elements o, ¢ = 1,...,n, are all nonnegative, and can be ordered such that
0'120'22"'20'r>07 Jr+1:"':0n:0

where r is the rank of A. This decomposition of A is called the singular value decomposition, or
SVD. The values o;, for i = 1,2,...,n, are the singular values of A. The columns of U are the left
singular vectors, and the columns of V' are the right singular vectors.

An alternative decomposition of A omits the singular values that are equal to zero:

A=UxV",
where U is an m X r matrix satisfying U'U =1,, V is an n X r matrix satisfying VTV =1I,, and
> is an 7 x r diagonal matrix with diagonal elements o1, ...,0,. The columns of U are the left
singular vectors corresponding to the nonzero singular values of A, and form an orthogonal basis
for the range of A. The columns of V are the right singular vectors corresponding to the nonzero
singular values of A, and are each orthogonal to the null space of A.

Summarizing, the SVD of an m x n real matrix A is A = USV " where U is an m x m orthogonal
matrix, V' is an n X n orthogonal matrix, and 3 is an m X n diagonal matrix with nonnegative
diagonal elements; the condensed SVD of A is A = USVT where U is an m x r matrix with
orthogonal columns, V is an n x r matrix with orthogonal columns, and ¥ is an r x r diagonal
matrix with positive diagonal elements equal to the nonzero diagonal elements of . The number
r is the rank of A.

If A is an m x m matrix and o, > 0, then

At =whH iy lut=ve-tuT,
We will see that this representation of the inverse can be used to obtain a pseudo-inverse (also
called generalized inverse or Moore-Penrose inverse) of a matrix A in the case where A does not

actually have an inverse.
We now mention some additional properties of the singular values and singular vectors. We have

ATA=vTuTusvT =vETe)v.
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The matrix 'Y is a diagonal matrix with diagonal elements o?, 1 =1,...,n, which are also the

eigenvalues of AT A, with corresponding eigenvectors v;, where v; is the ith column of V. Similarly,
AAT = USETUT, from which we can easily see that the columns of U are eigenvectors of AAT,
corresponding to the eigenvalues 01-2 ,i=1,...,n.

Earlier we had shown that

1A]l2 = [p(AT A)]2.

Since the eigenvalues of AT A are simply the squares of the singular values of A, we can also say
that

|All2 = o1.

Another way to arrive at this same conclusion is to take advantage of the fact that the 2-norm
of a vector is invariant under multiplication by an orthogonal matrix, i.e. if QTQ = I, then
Ix|l2 = ||@x]||2. Therefore

1Allz = lUSV T |l2 = [[S]|2 = o1.

2. LEAST SQUARES, PSEUDO-INVERSE, AND PROJECTION

The singular value decomposition is very useful in studying the linear least squares problem.
Suppose that we are given an m-vector b and an m x n matrix A, and we wish to find x such that

|b — Ax||2 = minimum.
From the SVD of A, we can simplify this minimization problem as follows:
Ib — Ax|3 = [|b - UZV "x|3

= |UTb - %V |3

= llc - =yl

=(c1 —o1y1)* + -+ (e — opyr)*+

Crpq o e,
where ¢ = U'b and y = V "x. We see that in order to minimize ||Ax — b||2, we must set y; = ¢;/o;
for i = 1,...,r, but the unknowns y;, for ¢ = r + 1,...,m, can have any value, since they do not

influence ||c — Xyl|2. Therefore, if A does not have full rank, there are infinitely many solutions to
the least squares problem. However, we can easily obtain the unique solution of minimum 2-norm

by setting y,41 =+ = ym = 0.
In summary, the solution of minimum length to the linear least squares problem is
x=Vy=VSte=VSTU'b=A4%b
where ¥ is a diagonal matrix with entries

r o1
0y

<

Tt =

0

and AT = VETUT. The matrix A7 is called the pseudo-inverse of A. In the case where A has full
rank, the pseudo-inverse is equal to A~!. Note that AT is independent of b.

The solution x of the least-squares problem minimizes ||Ax — b||, and therefore is the vector that
solves the system Ax = b as closely as possible. However, we can use the SVD to show that x is
the exact solution to a related system of equations.



We write b = by + bs, where
b1 = AA*b, by = (I — AA")b.
The matrix AAT has the form

AAt =uxvivstuT =usstu’ =U [{] 8] U'.

It follows that b; is a linear combination of uy, ..., u,, the columns of U that form an orthogonal
basis for the range of A. From x = A*b we obtain

Ax = AA*b = Pb = by,

where P = AAT. Therefore, the solution to the least squares problem, is also the exact solution to
the system Ax = Pb.
It can be shown that the matrix P has the properties
(1) P=PT
(2) P2=P
In other words, the matrix P is a projection. In particular, it is a projection onto the space
spanned by the columns of A, i.e. the range of A.

3. SOME PROPERTIES OF THE SVD

While the previous discussion assumed that A was a real matrix, the SVD exists for complex
matrices as well. In this case, the decomposition takes the form

A=UXV"

where, for general A, A* = A", the complex conjugate of the transpose. A* is often written as AX,
and is equivalent to the transpose for real matrices.

Using the SVD, we can easily establish a lower bound for the largest singular value o of A, which
also happens to be equal to || Al|2, as previously discussed. First, let us consider the case where A is
symmetric and positive definite. Then, we can write A = UAU* where U is an orthogonal matrix

and A is a diagonal matrix with real and positive diagonal elements Ay > --- > A, which are the
eigenvalues of A. We can then write
x*Ax x*UAU*x vy Ay
max = maXx ————— = max <X\
T*r x*UU*x y*y

where y = U*x. Now, we consider the case of general A and try to find an upper bound for the
expression
|u*Av|
max —————.
SN Talllv s
We have, by the Cauchy-Schwarz inequality,
|u*Av| |lu* U V*v| |x*Yy| |x*y|

max ———— = max :maX7<U max ———
av20 [ullol[v]z — wvA0 [U*ulla[VEv]ls — xy#0 [x[follyllz = ' xy#0 [[x[2llylls =

g1.

4. EXISTENCE OF SVD

We will now prove the existence of the SVD. We define
- 0 A
i-[o 4]
It is easy to verify that A = A*, and therefore A has the decomposition A = ZAZ* where Z is an

orthogonal matrix and A is a diagonal matrix with real diagonal elements. If z is a column of Z,
then we can write



and therefore
0 Al x| _|x
Aol ly] Ty

Ay = ox, A*x=oy.

or, equivalently,

Now, suppose that we apply A to the vector obtained from z by negating y. Then we have

ol B L] =[5

In other words, if o # 0 is an eigenvalue, then —o is also an eigenvalue. ~
Suppose that we normalize the eigenvector z of A so that z*z = 2. Since A is symmetric,
eigenvectors corresponding to different eigenvalues are orthogonal, so it follows that

X
[x* y*] [y] = 0.

This yields the system of equations

x'x+y'y =2

x*x—y'y=0
which has the unique solution

x'x=1, y'y=1.
From the relationships Ay = ox, A*x =y, we obtain
A*Ay = oy, AA*x =o’x.

Therefore, if +0 are eigenvalues of A, then o2 is an eigenvalue of both AA* and A*A.

_ To complete the proof, we note that we can represent the matrix of normalized eigenvectors of
A corresponding to nonzero eigenvalues as

Z_ 1 | X X
el v
It follows that

A=ZNZ"
_1lx X)[s o )[xr v
T2y -Y||0 =% |X* -Y*
_l[xs, —X%,] (X v
T2|YE, YR |XT YT
_17 0 2X%,Y*
T2 2Y e Xt 0
[ 0 X%y
T lYs.Xxt 0

and therefore

A=XX%Y* A" =YX X"
where X is an m X r matrix, X is r X r, and Y is n X r, and r is the rank of A. This represents the
“condensed” SVD.
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