CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06
 LECTURE 3

GENE H. GOLUB

1. Singular Value Decomposition

Suppose A is an $m \times n$ real matrix with $m \geq n$. Then we can write

$$
A=U \Sigma V^{\top},
$$

where

$$
U^{\top} U=I_{m}, \quad V^{\top} V=I_{n}, \quad \Sigma=\left[\begin{array}{ccc}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{n}
\end{array}\right]
$$

The diagonal elements $\sigma_{i}, i=1, \ldots, n$, are all nonnegative, and can be ordered such that

$$
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>0, \quad \sigma_{r+1}=\cdots=\sigma_{n}=0
$$

where r is the rank of A. This decomposition of A is called the singular value decomposition, or SVD. The values σ_{i}, for $i=1,2, \ldots, n$, are the singular values of A. The columns of U are the left singular vectors, and the columns of V are the right singular vectors.

An alternative decomposition of A omits the singular values that are equal to zero:

$$
A=\tilde{U} \tilde{\Sigma} \tilde{V}^{\top}
$$

where \tilde{U} is an $m \times r$ matrix satisfying $\tilde{U}^{\top} \tilde{U}=I_{r}, \tilde{V}$ is an $n \times r$ matrix satisfying $\tilde{V}^{\top} \tilde{V}=I_{r}$, and $\tilde{\Sigma}$ is an $r \times r$ diagonal matrix with diagonal elements $\sigma_{1}, \ldots, \sigma_{r}$. The columns of \tilde{U} are the left singular vectors corresponding to the nonzero singular values of A, and form an orthogonal basis for the range of A. The columns of \tilde{V} are the right singular vectors corresponding to the nonzero singular values of A, and are each orthogonal to the null space of A.

Summarizing, the SVD of an $m \times n$ real matrix A is $A=U \Sigma V^{\top}$ where U is an $m \times m$ orthogonal matrix, V is an $n \times n$ orthogonal matrix, and Σ is an $m \times n$ diagonal matrix with nonnegative diagonal elements; the condensed SVD of A is $A=\tilde{U} \tilde{\Sigma} \tilde{V}^{\top}$ where \tilde{U} is an $m \times r$ matrix with orthogonal columns, \tilde{V} is an $n \times r$ matrix with orthogonal columns, and $\tilde{\Sigma}$ is an $r \times r$ diagonal matrix with positive diagonal elements equal to the nonzero diagonal elements of Σ. The number r is the rank of A.

If A is an $m \times m$ matrix and $\sigma_{m}>0$, then

$$
A^{-1}=\left(V^{\top}\right)^{-1} \Sigma^{-1} U^{-1}=V \Sigma^{-1} U^{\top} .
$$

We will see that this representation of the inverse can be used to obtain a pseudo-inverse (also called generalized inverse or Moore-Penrose inverse) of a matrix A in the case where A does not actually have an inverse.

We now mention some additional properties of the singular values and singular vectors. We have

$$
A^{\top} A=V \Sigma^{\top} U^{\top} U \Sigma V^{\top}=V\left(\Sigma^{\top} \Sigma\right) V^{\top} .
$$

Date: October 26, 2005, version 1.0.
Notes originally due to James Lambers. Minor editing by Lek-Heng Lim.

The matrix $\Sigma^{\top} \Sigma$ is a diagonal matrix with diagonal elements $\sigma_{i}^{2}, i=1, \ldots, n$, which are also the eigenvalues of $A^{\top} A$, with corresponding eigenvectors v_{i}, where v_{i} is the i th column of V. Similarly, $A A^{\top}=U \Sigma \Sigma^{\top} U^{\top}$, from which we can easily see that the columns of U are eigenvectors of $A A^{\top}$, corresponding to the eigenvalues $\sigma_{i}^{2}, i=1, \ldots, n$.

Earlier we had shown that

$$
\|A\|_{2}=\left[\rho\left(A^{\top} A\right)\right]^{1 / 2} .
$$

Since the eigenvalues of $A^{\top} A$ are simply the squares of the singular values of A, we can also say that

$$
\|A\|_{2}=\sigma_{1} .
$$

Another way to arrive at this same conclusion is to take advantage of the fact that the 2-norm of a vector is invariant under multiplication by an orthogonal matrix, i.e. if $Q^{\top} Q=I$, then $\|\mathbf{x}\|_{2}=\|Q \mathbf{x}\|_{2}$. Therefore

$$
\|A\|_{2}=\left\|U \Sigma V^{\top}\right\|_{2}=\|\Sigma\|_{2}=\sigma_{1} .
$$

2. Least squares, pseudo-inverse, and projection

The singular value decomposition is very useful in studying the linear least squares problem. Suppose that we are given an m-vector \mathbf{b} and an $m \times n$ matrix A, and we wish to find \mathbf{x} such that

$$
\|\mathbf{b}-A \mathbf{x}\|_{2}=\text { minimum } .
$$

From the SVD of A, we can simplify this minimization problem as follows:

$$
\begin{aligned}
&\|\mathbf{b}-A \mathbf{x}\|_{2}^{2}=\left\|\mathbf{b}-U \Sigma V^{\top} \mathbf{x}\right\|_{2}^{2} \\
&=\left\|U^{\top} \mathbf{b}-\Sigma V^{\top} \mathbf{x}\right\|_{2}^{2} \\
&=\|\mathbf{c}-\Sigma \mathbf{y}\|_{2}^{2} \\
&=\left(c_{1}-\sigma_{1} y_{1}\right)^{2}+\cdots+\left(c_{r}-\sigma_{r} y_{r}\right)^{2}+ \\
& c_{r+1}^{2}+\cdots+c_{m}^{2}
\end{aligned}
$$

where $\mathbf{c}=U^{\top} \mathbf{b}$ and $\mathbf{y}=V^{\top} \mathbf{x}$. We see that in order to minimize $\|A \mathbf{x}-\mathbf{b}\|_{2}$, we must set $y_{i}=c_{i} / \sigma_{i}$ for $i=1, \ldots, r$, but the unknowns y_{i}, for $i=r+1, \ldots, m$, can have any value, since they do not influence $\|\mathbf{c}-\Sigma \mathbf{y}\|_{2}$. Therefore, if A does not have full rank, there are infinitely many solutions to the least squares problem. However, we can easily obtain the unique solution of minimum 2-norm by setting $y_{r+1}=\cdots=y_{m}=0$.

In summary, the solution of minimum length to the linear least squares problem is

$$
\mathbf{x}=V \mathbf{y}=V \Sigma^{+} \mathbf{c}=V \Sigma^{+} U^{\top} \mathbf{b}=A^{+} \mathbf{b}
$$

where Σ^{+}is a diagonal matrix with entries

$$
\Sigma^{+}=\left[\begin{array}{cccccc}
\sigma_{1}^{-1} & & & & & \\
& \ddots & & & & \\
& & \sigma_{r}^{-1} & & & \\
& & & 0 & & \\
& & & & \ddots & \\
& & & & 0
\end{array}\right]
$$

and $A^{+}=V \Sigma^{+} U^{\top}$. The matrix A^{+}is called the pseudo-inverse of A. In the case where A has full rank, the pseudo-inverse is equal to A^{-1}. Note that A^{+}is independent of \mathbf{b}.

The solution \mathbf{x} of the least-squares problem minimizes $\|A \mathbf{x}-\mathbf{b}\|$, and therefore is the vector that solves the system $A \mathbf{x}=\mathbf{b}$ as closely as possible. However, we can use the SVD to show that \mathbf{x} is the exact solution to a related system of equations.

We write $\mathbf{b}=\mathbf{b}_{1}+\mathbf{b}_{2}$, where

$$
\mathbf{b}_{1}=A A^{+} \mathbf{b}, \quad \mathbf{b}_{2}=\left(I-A A^{+}\right) \mathbf{b} .
$$

The matrix $A A^{+}$has the form

$$
A A^{+}=U \Sigma V^{\top} V \Sigma^{+} U^{\top}=U \Sigma \Sigma^{+} U^{\top}=U\left[\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right] U^{\top} .
$$

It follows that \mathbf{b}_{1} is a linear combination of $\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}$, the columns of U that form an orthogonal basis for the range of A. From $\mathbf{x}=A^{+} \mathbf{b}$ we obtain

$$
A \mathbf{x}=A A^{+} \mathbf{b}=P \mathbf{b}=\mathbf{b}_{1}
$$

where $P=A A^{+}$. Therefore, the solution to the least squares problem, is also the exact solution to the system $A \mathbf{x}=P \mathbf{b}$.

It can be shown that the matrix P has the properties
(1) $P=P^{\top}$
(2) $P^{2}=P$

In other words, the matrix P is a projection. In particular, it is a projection onto the space spanned by the columns of A, i.e. the range of A.

3. Some properties of the SVD

While the previous discussion assumed that A was a real matrix, the SVD exists for complex matrices as well. In this case, the decomposition takes the form

$$
A=U \Sigma V^{*}
$$

where, for general $A, A^{*}=\bar{A}^{\top}$, the complex conjugate of the transpose. A^{*} is often written as A^{H}, and is equivalent to the transpose for real matrices.

Using the SVD, we can easily establish a lower bound for the largest singular value σ_{1} of A, which also happens to be equal to $\|A\|_{2}$, as previously discussed. First, let us consider the case where A is symmetric and positive definite. Then, we can write $A=U \Lambda U^{*}$ where U is an orthogonal matrix and Λ is a diagonal matrix with real and positive diagonal elements $\lambda_{1} \geq \cdots \geq \lambda_{n}$ which are the eigenvalues of A. We can then write

$$
\max \frac{x^{*} A x}{x^{*} x}=\max \frac{\mathbf{x}^{*} U \Lambda U^{*} \mathbf{x}}{\mathbf{x}^{*} U U^{*} \mathbf{x}}=\max \frac{\mathbf{y}^{*} \Lambda \mathbf{y}}{\mathbf{y}^{*} \mathbf{y}} \leq \lambda_{1}
$$

where $\mathbf{y}=U^{*} \mathbf{x}$. Now, we consider the case of general A and try to find an upper bound for the expression

$$
\max _{\mathbf{u}, \mathbf{v} \neq 0} \frac{\left|\mathbf{u}^{*} A \mathbf{v}\right|}{\|\mathbf{u}\|_{2}\|\mathbf{v}\|_{2}} .
$$

We have, by the Cauchy-Schwarz inequality,

$$
\max _{\mathbf{u}, \mathbf{v} \neq 0} \frac{\left|\mathbf{u}^{*} A \mathbf{v}\right|}{\|\mathbf{u}\|_{2}\|\mathbf{v}\|_{2}}=\max _{\mathbf{u}, \mathbf{v} \neq 0} \frac{\left|\mathbf{u}^{*} U \Sigma V^{*} \mathbf{v}\right|}{\left\|U^{*} \mathbf{u}\right\|_{2}\left\|V^{*} \mathbf{v}\right\|_{2}}=\max _{\mathbf{x}, \mathbf{y} \neq 0} \frac{\left|\mathbf{x}^{*} \Sigma \mathbf{y}\right|}{\|\mathbf{x}\|_{2}\|\mathbf{y}\|_{2}} \leq \sigma_{1} \max _{\mathbf{x}, \mathbf{y} \neq 0} \frac{\left|\mathbf{x}^{*} \mathbf{y}\right|}{\|\mathbf{x}\|_{2}\|\mathbf{y}\|_{2}} \leq \sigma_{1} .
$$

4. Existence of SVD

We will now prove the existence of the SVD. We define

$$
\tilde{A}=\left[\begin{array}{cc}
0 & A \\
A^{*} & 0
\end{array}\right]
$$

It is easy to verify that $\tilde{A}=\tilde{A}^{*}$, and therefore \tilde{A} has the decomposition $\tilde{A}=Z \Lambda Z^{*}$ where Z is an orthogonal matrix and Λ is a diagonal matrix with real diagonal elements. If \mathbf{z} is a column of Z, then we can write

$$
\tilde{A} \mathbf{z}=\sigma \mathbf{z}, \quad \mathbf{z}=\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{y}
\end{array}\right]
$$

and therefore

$$
\left[\begin{array}{cc}
0 & A \\
A^{*} & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{y}
\end{array}\right]=\sigma\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{y}
\end{array}\right]
$$

or, equivalently,

$$
A \mathbf{y}=\sigma \mathbf{x}, \quad A^{*} \mathbf{x}=\sigma \mathbf{y}
$$

Now, suppose that we apply \tilde{A} to the vector obtained from \mathbf{z} by negating \mathbf{y}. Then we have

$$
\left[\begin{array}{cc}
0 & A \\
A^{*} & 0
\end{array}\right]\left[\begin{array}{c}
\mathbf{x} \\
-\mathbf{y}
\end{array}\right]=\left[\begin{array}{c}
-A \mathbf{y} \\
A^{*} \mathbf{x}
\end{array}\right]=\left[\begin{array}{c}
-\sigma \mathbf{x} \\
\sigma \mathbf{y}
\end{array}\right]=-\sigma\left[\begin{array}{c}
\mathbf{x} \\
-\mathbf{y}
\end{array}\right]
$$

In other words, if $\sigma \neq 0$ is an eigenvalue, then $-\sigma$ is also an eigenvalue.
Suppose that we normalize the eigenvector \mathbf{z} of \tilde{A} so that $\mathbf{z}^{*} \mathbf{z}=2$. Since \tilde{A} is symmetric, eigenvectors corresponding to different eigenvalues are orthogonal, so it follows that

$$
\left[\begin{array}{ll}
\mathbf{x}^{*} & \mathbf{y}^{*}
\end{array}\right]\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{y}
\end{array}\right]=0
$$

This yields the system of equations

$$
\begin{aligned}
& \mathbf{x}^{*} \mathbf{x}+\mathbf{y}^{*} \mathbf{y}=2 \\
& \mathbf{x}^{*} \mathbf{x}-\mathbf{y}^{*} \mathbf{y}=0
\end{aligned}
$$

which has the unique solution

$$
\mathbf{x}^{*} \mathbf{x}=1, \quad \mathbf{y}^{*} \mathbf{y}=1
$$

From the relationships $A \mathbf{y}=\sigma \mathbf{x}, A^{*} \mathbf{x}=\mathbf{y}$, we obtain

$$
A^{*} A \mathbf{y}=\sigma^{2} \mathbf{y}, \quad A A^{*} \mathbf{x}=\sigma^{2} \mathbf{x}
$$

Therefore, if $\pm \sigma$ are eigenvalues of \tilde{A}, then σ^{2} is an eigenvalue of both $A A^{*}$ and $A^{*} A$.
To complete the proof, we note that we can represent the matrix of normalized eigenvectors of \tilde{A} corresponding to nonzero eigenvalues as

$$
\tilde{Z}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
X & X \\
Y & -Y
\end{array}\right]
$$

It follows that

$$
\begin{aligned}
\tilde{A} & =\tilde{Z} \Lambda \tilde{Z}^{*} \\
& =\frac{1}{2}\left[\begin{array}{cc}
X & X \\
Y & -Y
\end{array}\right]\left[\begin{array}{cc}
\Sigma_{r} & 0 \\
0 & -\Sigma_{r}
\end{array}\right]\left[\begin{array}{cc}
X^{*} & Y^{*} \\
X^{*} & -Y^{*}
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{cc}
X \Sigma_{r} & -X \Sigma_{r} \\
Y \Sigma_{r} & Y \Sigma_{r}
\end{array}\right]\left[\begin{array}{cc}
X^{*} & Y^{*} \\
X^{*} & -Y^{*}
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{cc}
0 & 2 X \Sigma_{r} Y^{*} \\
2 Y \Sigma_{r} X^{*} & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
0 & X \Sigma_{r} Y^{*} \\
Y \Sigma_{r} X^{*} & 0
\end{array}\right]
\end{aligned}
$$

and therefore

$$
A=X \Sigma_{r} Y^{*}, \quad A^{*}=Y \Sigma_{r} X^{*}
$$

where X is an $m \times r$ matrix, Σ is $r \times r$, and Y is $n \times r$, and r is the rank of A. This represents the "condensed" SVD.

Department of Computer Science, Gates Building 2B, Room 280, Stanford, CA 94305-9025
E-mail address: golub@stanford.edu

