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1. Singular Value Decomposition

Suppose A is an m× n real matrix with m ≥ n. Then we can write

A = UΣV >,

where

U>U = Im, V >V = In, Σ =


σ1

. . .
σn

0

 .

The diagonal elements σi, i = 1, . . . , n, are all nonnegative, and can be ordered such that

σ1 ≥ σ2 ≥ · · · ≥ σr > 0, σr+1 = · · · = σn = 0

where r is the rank of A. This decomposition of A is called the singular value decomposition, or
SVD. The values σi, for i = 1, 2, . . . , n, are the singular values of A. The columns of U are the left
singular vectors, and the columns of V are the right singular vectors.

An alternative decomposition of A omits the singular values that are equal to zero:

A = Ũ Σ̃Ṽ >,

where Ũ is an m× r matrix satisfying Ũ>Ũ = Ir, Ṽ is an n× r matrix satisfying Ṽ >Ṽ = Ir, and
Σ̃ is an r × r diagonal matrix with diagonal elements σ1, . . . , σr. The columns of Ũ are the left
singular vectors corresponding to the nonzero singular values of A, and form an orthogonal basis
for the range of A. The columns of Ṽ are the right singular vectors corresponding to the nonzero
singular values of A, and are each orthogonal to the null space of A.

Summarizing, the SVD of an m×n real matrix A is A = UΣV > where U is an m×m orthogonal
matrix, V is an n × n orthogonal matrix, and Σ is an m × n diagonal matrix with nonnegative
diagonal elements; the condensed SVD of A is A = Ũ Σ̃Ṽ > where Ũ is an m × r matrix with
orthogonal columns, Ṽ is an n × r matrix with orthogonal columns, and Σ̃ is an r × r diagonal
matrix with positive diagonal elements equal to the nonzero diagonal elements of Σ. The number
r is the rank of A.

If A is an m×m matrix and σm > 0, then

A−1 = (V >)−1Σ−1U−1 = V Σ−1U>.

We will see that this representation of the inverse can be used to obtain a pseudo-inverse (also
called generalized inverse or Moore-Penrose inverse) of a matrix A in the case where A does not
actually have an inverse.

We now mention some additional properties of the singular values and singular vectors. We have

A>A = V Σ>U>UΣV > = V (Σ>Σ)V >.
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The matrix Σ>Σ is a diagonal matrix with diagonal elements σ2
i , i = 1, . . . , n, which are also the

eigenvalues of A>A, with corresponding eigenvectors vi, where vi is the ith column of V . Similarly,
AA> = UΣΣ>U>, from which we can easily see that the columns of U are eigenvectors of AA>,
corresponding to the eigenvalues σ2

i , i = 1, . . . , n.
Earlier we had shown that

‖A‖2 = [ρ(A>A)]1/2.

Since the eigenvalues of A>A are simply the squares of the singular values of A, we can also say
that

‖A‖2 = σ1.

Another way to arrive at this same conclusion is to take advantage of the fact that the 2-norm
of a vector is invariant under multiplication by an orthogonal matrix, i.e. if Q>Q = I, then
‖x‖2 = ‖Qx‖2. Therefore

‖A‖2 = ‖UΣV >‖2 = ‖Σ‖2 = σ1.

2. Least squares, pseudo-inverse, and projection

The singular value decomposition is very useful in studying the linear least squares problem.
Suppose that we are given an m-vector b and an m× n matrix A, and we wish to find x such that

‖b−Ax‖2 = minimum.

From the SVD of A, we can simplify this minimization problem as follows:

‖b−Ax‖2
2 = ‖b− UΣV >x‖2

2

= ‖U>b− ΣV >x‖2
2

= ‖c− Σy‖2
2

= (c1 − σ1y1)2 + · · ·+ (cr − σryr)2+

c2
r+1 + · · ·+ c2

m

where c = U>b and y = V >x. We see that in order to minimize ‖Ax−b‖2, we must set yi = ci/σi

for i = 1, . . . , r, but the unknowns yi, for i = r + 1, . . . ,m, can have any value, since they do not
influence ‖c−Σy‖2. Therefore, if A does not have full rank, there are infinitely many solutions to
the least squares problem. However, we can easily obtain the unique solution of minimum 2-norm
by setting yr+1 = · · · = ym = 0.

In summary, the solution of minimum length to the linear least squares problem is

x = V y = V Σ+c = V Σ+U>b = A+b

where Σ+ is a diagonal matrix with entries

Σ+ =



σ−1
1

. . .
σ−1

r

0
. . .

0


and A+ = V Σ+U>. The matrix A+ is called the pseudo-inverse of A. In the case where A has full
rank, the pseudo-inverse is equal to A−1. Note that A+ is independent of b.

The solution x of the least-squares problem minimizes ‖Ax−b‖, and therefore is the vector that
solves the system Ax = b as closely as possible. However, we can use the SVD to show that x is
the exact solution to a related system of equations.
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We write b = b1 + b2, where

b1 = AA+b, b2 = (I −AA+)b.

The matrix AA+ has the form

AA+ = UΣV >V Σ+U> = UΣΣ+U> = U

[
Ir 0
0 0

]
U>.

It follows that b1 is a linear combination of u1, . . . ,ur, the columns of U that form an orthogonal
basis for the range of A. From x = A+b we obtain

Ax = AA+b = Pb = b1,

where P = AA+. Therefore, the solution to the least squares problem, is also the exact solution to
the system Ax = Pb.

It can be shown that the matrix P has the properties
(1) P = P>

(2) P 2 = P

In other words, the matrix P is a projection. In particular, it is a projection onto the space
spanned by the columns of A, i.e. the range of A.

3. Some properties of the SVD

While the previous discussion assumed that A was a real matrix, the SVD exists for complex
matrices as well. In this case, the decomposition takes the form

A = UΣV ∗

where, for general A, A∗ = Ā>, the complex conjugate of the transpose. A∗ is often written as AH ,
and is equivalent to the transpose for real matrices.

Using the SVD, we can easily establish a lower bound for the largest singular value σ1 of A, which
also happens to be equal to ‖A‖2, as previously discussed. First, let us consider the case where A is
symmetric and positive definite. Then, we can write A = UΛU∗ where U is an orthogonal matrix
and Λ is a diagonal matrix with real and positive diagonal elements λ1 ≥ · · · ≥ λn which are the
eigenvalues of A. We can then write

max
x∗Ax

x∗x
= max

x∗UΛU∗x
x∗UU∗x

= max
y∗Λy
y∗y

≤ λ1

where y = U∗x. Now, we consider the case of general A and try to find an upper bound for the
expression

max
u,v 6=0

|u∗Av|
‖u‖2‖v‖2

.

We have, by the Cauchy-Schwarz inequality,

max
u,v 6=0

|u∗Av|
‖u‖2‖v‖2

= max
u,v 6=0

|u∗UΣV ∗v|
‖U∗u‖2‖V ∗v‖2

= max
x,y 6=0

|x∗Σy|
‖x‖2‖y‖2

≤ σ1 max
x,y 6=0

|x∗y|
‖x‖2‖y‖2

≤ σ1.

4. Existence of SVD

We will now prove the existence of the SVD. We define

Ã =
[

0 A
A∗ 0

]
.

It is easy to verify that Ã = Ã∗, and therefore Ã has the decomposition Ã = ZΛZ∗ where Z is an
orthogonal matrix and Λ is a diagonal matrix with real diagonal elements. If z is a column of Z,
then we can write

Ãz = σz, z =
[
x
y

]
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and therefore [
0 A

A∗ 0

] [
x
y

]
= σ

[
x
y

]
or, equivalently,

Ay = σx, A∗x = σy.

Now, suppose that we apply Ã to the vector obtained from z by negating y. Then we have[
0 A

A∗ 0

] [
x
−y

]
=

[
−Ay
A∗x

]
=

[
−σx
σy

]
= −σ

[
x
−y

]
.

In other words, if σ 6= 0 is an eigenvalue, then −σ is also an eigenvalue.
Suppose that we normalize the eigenvector z of Ã so that z∗z = 2. Since Ã is symmetric,

eigenvectors corresponding to different eigenvalues are orthogonal, so it follows that[
x∗ y∗

] [
x
y

]
= 0.

This yields the system of equations

x∗x + y∗y = 2

x∗x− y∗y = 0

which has the unique solution
x∗x = 1, y∗y = 1.

From the relationships Ay = σx, A∗x = y, we obtain

A∗Ay = σ2y, AA∗x = σ2x.

Therefore, if ±σ are eigenvalues of Ã, then σ2 is an eigenvalue of both AA∗ and A∗A.
To complete the proof, we note that we can represent the matrix of normalized eigenvectors of

Ã corresponding to nonzero eigenvalues as

Z̃ =
1√
2

[
X X
Y −Y

]
.

It follows that

Ã = Z̃ΛZ̃∗

=
1
2

[
X X
Y −Y

] [
Σr 0
0 −Σr

] [
X∗ Y ∗

X∗ −Y ∗

]
=

1
2

[
XΣr −XΣr

Y Σr Y Σr

] [
X∗ Y ∗

X∗ −Y ∗

]
=

1
2

[
0 2XΣrY

∗

2Y ΣrX
∗ 0

]
=

[
0 XΣrY

∗

Y ΣrX
∗ 0

]
and therefore

A = XΣrY
∗, A∗ = Y ΣrX

∗

where X is an m× r matrix, Σ is r× r, and Y is n× r, and r is the rank of A. This represents the
“condensed” SVD.
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