
Chapter 1

Introduction

1.1 Systems of Linear Equations

The main content of the course will be concerned with solving problems of
the form

Ax = b

where A is an m × n matrix of rank r. The most common sources of such
problems are:

• Solution of problems arising in physical modelling

• Data analysis

Of course, we cannot solve such problems generally, because the nature
of the solution is influenced greatly by the relationship between m, n, and
r. For example, if m = n = r, then there is a unique solution. On the other
hand, if m < n and m = r, then there are infinitely many solutions, and
often we need to find the unique solution that satisfies certain constraints.
This is the basis for linear programming. Finally, if m > n, there may not
be a solution, in which case we need to solve a least squares problem to find
the vector x that comes as close as possible, in some sense, to solving the
problem.

1.2 Numerical Solution of Differential Equations

Physical phenomena such as fluid flow, heat diffusion and electromagnetism
can often be modelled as differential equations. For example, the funda-
mental laws governing electromagnetic phenomena can be summarized by
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Maxwell’s equations, which can be written in differential form as

∇×E = −∂B
∂t

∇×H = J +
∇D
∇t

∇ ·D = ρ

∇ ·B = 0

Unfortunately, such equations are often impossible to solve analytically, ei-
ther due to the complexity of the equations themselves or of the shape of the
domain. Thus, such systems are often solved approximately by discretizing
the domain and approximating the differential operators with finite differ-
ences, which gives rise to systems of linear equations.
As an example, suppose that we wish to solve the differential equation

−y′′ + σy′ = f, 0 < x < 1,

with boundary conditions

y(0) = α, y(1) = β.

Let
h =

1
N + 1

, xi = ih, i = 0, 1, . . . , N + 1.

Then
−y′′(xi) ∼

−yi−1 + 2yi − yi+1

h2
,

and for the first derivative, we use a centered difference approximation,

y′(xi) ∼
yi+1 − yi−1

2h
.

Alternatively, we can use the forward difference

y′(xi) ∼
yi+1 − yi

h
.

In other words, the difference approximation becomes

−yi−1 + 2yi − yi+1

h2
+ σ

(
yi+1 − yi−1

2h

)
= fi, i = 1, 2, . . . , N

or

−
(

1 +
σh

2

)
yi−1 + 2yi −

(
1− σh

2

)
yi+1 = h2fi ≡ gi
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where fi ≡ f(xi). We therefore have a system of linear equations for the
points yi. This system can be described using matrix notation as

a b

c
. . . . . .
. . . . . . . . .

. . . . . . b
c a




y1

y2
...
...

yN

 = g

or
Ty = g,

where the matrix T is tridiagonal. While systems involving tridiagonal ma-
trices are easy to solve in general, this particular system is even simpler
because the entries of T are constant along each diagonal. We call such a
matrix a Toeplitz matrix. When σ = 0, then T = T T and it is also positive
definite.

Sometimes it is useful to reorder the variables in order to facilitate the
application of certain algorithms. For example, notice that in our discretiza-
tion, the value of the solution at odd-numbered nodes (y2i+1) depend only
on the values at even-numbered nodes (y2i and y2i+2), and vice versa. Ma-
trices with this property are said to possess a red-black ordering, or property
(A). Thus, if we reorder the notes so that the odd-numbered nodes come
first, followed by the even ones, we obtain a system with the following form:

× | ×
× | × ×

× | × ×
× | × ×

−− −− −− −− + −− −− −− −−
× × | ×

× × | ×
× × | ×

× | ×





y1

y3

y5

y7

y2

y4

y6

y8


=



g1

g3

g5

g7

g2

g4

g6

g8


Having set up such a linear system, two major issues arise:

1. How accurately and efficiently can the linear system be solved? Such
questions are the major focus of this course. Such issues are common
to all problems involving linear systems and will be discussed in the
subsequent sections (in the context of data fitting).
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2. How well does the discretized solution (of the linear system) approxi-
mate the continuous solution of the differential equation, i.e. what can
we say about the error

max
i
|yi − y(xi)|?

This is a major topic in Numerical Solution of Differential Equations
(237B and C).

1.3 Data Analysis

Problems that involve analyzing large amounts of data frequently require
linear algebra techniques as well. For example, search engines often need to
rank their search results in order of importance. Such rankings can be mod-
elled as the stationary distribution of a Markov chain with a large number
of states (in the order of billions), which is actually an eigenvalue problem in
disguise. Linear algebra problems also arise from data mining and statistical
analysis.

We shall consider a simple problem which will illustrate many of the
issues associated with numerical linear algebra. Suppose that we are given
a set of observations {yj , xj}n

j=1. We would like to fit this data by a model.
For instance, we might write

p`(x) = b0 + b1x + · · ·+ b`x
`.

Now, let’s choose the ` + 1 parameters {bj}`
j=0 to minimize the modeling

error

φ(b) =
N∑

j=1

(yj − p`(xj))2

over all coefficient vectors b. We introduce the following notation:

X =


1 x1 · · · x`

1

1 x2 · · · x`
2

...
...

...
1 xN · · · x`

N

 , y =

 y1
...

yN


and

‖x‖2 =

(
N∑

i=1

|xi|2
)1/2

.
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Then
φ(b) = (y −Xb)T (y −Xb)

so

φ(b) = yTy − yT Xb− bT XTy + bT XT Xb

= yTy − 2bT XTy + bT XT Xb

Differentiating with respect to each bi, we obtain

∂φ(b)
∂bi

= −2XTy + 2XT Xb.

Setting ∇φ = 0 to obtain the minimizing value of b, we have

XT Xb = XTy.

This system of linear equations is known as the normal equations.
If we write

xr =


xr

1

xr
2
...

xr
N


then X = (x0,x1, . . . ,x`) and for i, j = 0, 1, . . . , ` we have

[XT X]ij = (xi)Txj

=
N∑

r=1

xi
rx

j
r

=
N∑

r=1

xi+j
r

≡ µi+j

and therefore

XT X =


µ0 µ1 µ2 · · · µ`

µ1 µ2 µ`+1

µ2
...

µ` µ`+1 µ2`

 .
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Matrices of this form (where the coefficients are constant along the anti-
diagonals) arise quite often and are known as Hankel matrices1. It has
(2` + 1) parameters, namely the values µj for j = 0, 1, . . . , 2`.

Does the solution b̃ to the normal equations yield a minimum value for
φ(b)? Suppose b̂ = b̃ + δ. Then

φ(b̂) = (y −Xb̂)T (y −Xb̂)
= (y −Xb̃−Xδ)T (y −Xb̃−Xδ)
= (y −Xb̃)T (y −Xb̃)− δT XT (y −Xb̃)− (y −Xb̃)Xδ + δT XT Xδ

= (y −Xb̃)T (y −Xb̃) + δT XT Xδ

Since δT XT Xδ = ‖Xδ‖2
2 ≥ 0, it follows that

φ(b̂) ≥ (y −Xb̃)T (y −Xb̃) = φ(b̃)

and therefore b̃ is a vector that minimizes φ. Is the solution b̃ unique? If
X has full column rank, then δT XT Xδ > 0 for all nonzero δ and therefore
we must have δ = 0 for φ(b̂) to be a minimum. Otherwise, b̂ is a solution
whenever Xδ = 0, so the solution is not unique. In such cases, a unique solu-
tion b̃ is often determined by requiring that a solution must be of minimum
length; i.e.

b̃T b̃ ≤ b̂T b̂

for any solution b̂. Later we shall discuss how such a solution can be found.
Another way of solving the least squares problem is to use the residual

vector, which is given by
r = y −Xb. (1.1)

Using the normal equations, we can conclude that

XT r = XTy −XT Xb = 0. (1.2)

We can combine equations (1.1) and (1.2) to obtain the augmented system[
I X

XT 0

](
r
b

)
= 0.

1Matrices whose coefficients are constant along diagonals also arise frequently. Such
matrices are called Toeplitz.
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1.4 Issues in Data Fitting

In the previous section, we followed a three-step process to fit the original
data to a function:

1. We chose to model the data using a polynomial approximation

2. We formed the normal equations, whose solution would yield the best
approximation possible given the chosen model

3. We solved the linear system to obtain the approximation.

We will now discuss some issues that commonly arise from these three
stages of data fitting.

1.4.1 Modeling with Polynomial Approximations

Implicitly we assumed that we know xi exactly. We can drop this assumption
and use the statistical model

yj = p`(xj) + εj

where εj is noise, and
xj = ξj + ηj

where ηj is noise, uncorrelated to the noise εj . We might want to consider
minimizing both

(y −Xb)T (y −Xb)

and
(x− ξ)T (x− ξ).

1.4.2 Forming the Normal Equations

We have assumed that XT X is formed exactly, but we need to consider error
in computing the entries of XT X. For example, if we need to compute x5

i

where xi ≈ 103, x5
i ≈ 1015, and therefore we need 15 places to compute the

matrix XT X exactly. Because precision is limited, roundoff error must be
taken into account when computing the entries.

Can we reduce the effect of roundoff error by choosing another basis?
Suppose that we know our values of xi are approximately some value a.
Then we can shift by a to obtain the representation

p`(x) = a0 + a1(x− a) + · · ·+ a`(x− a)`
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resulting in entries of smaller magnitude in XT X. Another strategy is to
use the approximation

p`(x) = c0q0(x) + · · ·+ c`q`(x)

where q`(x) is a polynomial of degree ` and

N∑
i=1

qr(xi)qs(xi) = 0

whenever r 6= s. Such polynomials are called orthogonal polynomials. Using

Q =

 q0(x1) q1(x1) · · · q`(x1)
...

...
q0(xN ) · · · · · · q`(xN )


we obtain

XT X = QT Q =

 d0

. . .
d`


where

dr =
N∑

i=1

(qr(xi))2.

1.4.3 Updating and Downdating

In forming the normal equations, we need to consider the situation where
the value of the degree ` is increased. In other words, we want to increase
the order of the approximating polynomial so

X`+1 = [X` x`+1]

XT
`+1X`+1 =

[
XT

`

(x`+1)T

] [
X` x`+1

]
=

[
XT

` X` XT
` x`+1

(x`+1)T X` (x`+1)Tx`+1

]
resulting in the updated normal equations

XT
`+1X`+1b`+1 = XT

`+1y`+1.
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Note that in the case of orthogonal polynomials, QT
`+1Q`+1 is a diagonal

matrix so that the coefficients c0, . . . , c` do not change.
Another common scenario is that we might add one more observation

xr
N → xr

N+1 =


xr

1
...

xr
N

xr
N+1

 .

These modifications are examples of updating problems, where we seek to
obtain the solution of a modified problem more efficiently by updating the
solution to the original problem, rather than recomputing the solution to the
modified problem from the beginning. It is also not uncommon to have to
solve downdating problems, where the solution is affected by the removal of
data from the original problem. The above discussion shows that orthogonal
polynomials are particularly well-suited to updating and downdating, which
is just one reason why they are used so frequently in data-fitting applications.

1.4.4 Solving Linear Equations

In solving systems of linear equations, the following questions arise:

• How can we perform computations accurately?

• Are there alternative methods of solution?

• Can specialized methods for structured matrices such as Hankel ma-
trices or Toeplitz matrices be used?

In many applications, systems involving sparse matrices must be solved,
and as a result many methods, some of which we will discuss, have been
developed for these cases. Furthermore, the advent of vector and parallel
architectures have led to the development of new methods for solving linear
systems.

A common difficulty is the occurrence of an ill-posed problem. The ques-
tion that must be answered when solving any linear system is, can small
changes in data make a large change in solution? A priori bounds and a
posteriori bounds can be used to help answer this question.

Another consideration is that many linear systems must be solved subject
to constraints such as

CTb = 0
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for some given matrix C, or
bTb = α2

for some known constant α. For example, one may wish to fit data using
different functions on different intervals, in which case such constraints can
be used to make the composite function smooth. This is the idea behind
cubic splines.

Finally, it makes sense to ask, why minimize φ(b) =
∑N

j=1(yj−p`(xj))2?
Instead, why not minimize

φ(b) =
N∑

j=1

|yj − p`(xj)|?

Minimizing alternative measures of error such as this is possible, but the
sum of squares lends itself to minimization more naturally than these other
measures, as will be discussed later.

10



Chapter 2

Matrix Analysis

This chapter establishes the fundamental concepts used in numerical linear
algebra:

• Vector and matrix norms,

• Gerschgorin theorem,

• Singular value decomposition,

• Projections and pseudo-inverses,

• Jordan canonical form.

2.1 Vector Norms

A real-valued function f(x) defined on a vector space is said to be a norm if

1. For any vector x, f(x) ≥ 0, and f(x) = 0 if and only if x = 0.

2. f(αx) = |α|f(x) for any scalar α.

3. f(x + y) ≤ f(x) + f(y) for any two vectors x and y.

We indicate f(x) = ‖x‖.
Consider

ν(x) =

n
∑

i=1

|xi|.

Is this a norm?

1. Clearly ν(x) ≥ 0, and the only way that ν(x) = 0 is if x = 0.
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2. We have

ν(αx) =

n
∑

i=1

|αxi|

= |α|
n
∑

i=1

|xi|

= |α|ν(x).

3. Using the triangle inequality for scalars, we obtain

ν(x + y) =
n
∑

i=1

|xi + yi|

≤
n
∑

i=1

|xi| + |yi|

≤ ν(x) + ν(y).

We define the p-norm ‖x‖p by

‖x‖p = (|x1|p + · · · + |xn|p)1/p .

The 1-norm

‖x‖1 =

n
∑

i=1

|xi|

is the same as the function ν(x) discussed above. Another common norm is
the 2-norm

‖x‖2 =

(

n
∑

i=1

|xi|2
)1/2

.

It can be shown that for any p, we have

(max
i

|xi|p)1/p ≤ ‖x‖p =

(

n
∑

i=1

|xi|p
)1/p

≤ (nmax
i

|xi|p)1/p

from which it follows that

max
i

|xi| ≤ ‖x‖p ≤ n1/p max
i

|xi|.

Therefore, as p → ∞, we obtain the infinity norm

‖x|∞ = lim
p→∞

‖x‖p = max
i

|xi|.
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This norm is also known as the Chebyshev norm. It is easy to verify that it
is in fact a norm.

A variation of the p-norm is the weighted p-norm, defined by

‖x‖p,w =

(

n
∑

i=1

wi|xi|p
)1/p

.

It can be shown that this is a norm as long as the weights wi, i = 1, . . . , n,
are strictly positive. Another common norm is the A-norm, defined in terms
of a matrix A by

‖x‖A = (xT Ax)1/2,

which is a norm provided that the matrix A is positive definite.
We now highlight some additional, and useful, relationships involving

norms. First of all, the triangle inequality generalizes directly to sums of
more than two vectors:

‖x + y + z‖ ≤ ‖x + y‖ + ‖z‖ ≤ ‖x‖ + ‖y‖ + ‖z‖,

and in general,
∥

∥

∥

∥

∥

m
∑

i=1

xi

∥

∥

∥

∥

∥

≤
m
∑

i=1

‖xi‖.

What can we say about the norm of the difference of two vectors? While we
know that ‖x − y‖ ≤ ‖x‖ + ‖y‖, we can obtain a more useful relationship
as follows: From

‖x‖ = ‖(x − y) + y‖ ≤ ‖x − y‖ + ‖y‖

we obtain
‖x − y‖ ≥ ‖x‖ − ‖y‖.

Similarly, from
‖y‖ = ‖y − x + x‖ = ‖x − y‖ + ‖x‖

it follows that
‖x − y‖ ≥ ‖y‖ − ‖x‖

and therefore
|‖x‖ − ‖y‖| ≤ ‖x − y‖.

There are also interesting relationships among different norms. First and
foremost, all norms are, in some sense, equivalent. In particular, given two
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norms ‖x‖α and ‖x‖β , there exist constants c1 and c2, independent of x,
such that

c1‖x‖α ≤ ‖x‖β ≤ c2‖x‖α.

For example, from the definition of the ∞-norm, we have

‖x‖∞ ≤ ‖x‖2 ≤
√

n‖x‖∞.

It is also not hard to show that

1

n
‖x‖1 ≤ ‖x‖∞ ≤ ‖x‖1.

We also have a relationship that applies to products of norms, the Hölder

inequality

|xT y| ≤ ‖x‖p‖y‖q ,
1

p
+

1

q
= 1.

A well-known corollary arises when p = q = 2, the Cauchy-Schwarz inequal-

ity

|xTy| ≤ ‖x‖2‖y‖2.

It is interesting to note that by setting x = (1, 1, . . . , 1), the Hölder inequality
yields the relationships

|
n
∑

i=1

yi| ≤
n
∑

i=1

|yi|,

|
n
∑

i=1

yi| ≤ nmax
i

|yi|,

and

|
n
∑

i=1

yi| ≤
√

n

(

n
∑

i=1

|yi|2
)1/2

.

A very important property of norms is that they are all continuous func-
tions of the entries of their arguments. It follows that a sequence of vectors
x0,x1, . . . converges to a vector x if and only if

lim
k→∞

‖xk − x‖ = 0

for any norm. For this reason, norms are very useful to measure the error
in an approximation. Three commonly used measures of the error in an
approximation x̂ to a vector x are the absolute error

εabs = ‖x − x̂‖,
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the relative error

εrel =
‖x − x̂‖
‖x‖ ,

and the point-wise error

εelem = ‖y‖, yi =
x̂i − xi

xi
.

2.2 Matrix Norms

A real-valued function f(A) defined on the space of m×n matrices is called
a norm if

1. f(A) ≥ 0, and f(A) = 0 if and only if A = 0,

2. f(A + B) ≤ f(A) + f(B),

3. f(αA) = |α|f(A).

Often, we add the condition that f(A) satisfy the submultiplicative property

f(AB) ≤ f(A)f(B).

We write ‖A‖ = f(A). An example of a matrix norm is the Frobenius norm

‖A‖F =

(

m
∑

i=1

n
∑

i=1

|aij |2
)1/2

.

On the other hand, the function

f(A) = max
i,j

|aij|

is not a norm because it does not satisfy the submultiplicative property, but
for an appropriate choice of a constant c, the function f(A) = cmaxi,j |aij |
is a norm.

Note that the submultiplicative property implies that

‖An‖ ≤ ‖A‖n,

from which it follows that if ‖A‖ < 1, then, as n → ∞, ‖An‖ → 0, and
therefore An → 0 as well, due to the continuity of the matrix norm.

How can we define a matrix norm? It is natural to want to define matrix
norms in terms of vector norms, but we must be careful in doing so. For

5



example, if we choose to view an m × n matrix A as a vector α with mn
elements, then we have ‖A‖F = ‖α‖2. However, if we define a norm ‖A‖ν =
‖α‖∞, then the resulting matrix norm does not satisfy the submultiplicative
property. To see this, take

A =

[

1 1
0 0

]

, B =

[

1 0
1 0

]

.

Then

AB =

[

2 0
0 0

]

,

but ‖A‖α = ‖B‖α = 1, while ‖AB‖α = 2.
Instead, we take the approach of defining the natural norm

‖A‖ = sup
x6=0

‖Ax‖
‖x‖ = max

‖y‖=1
‖Ay‖.

where ‖x‖ is any given vector norm. We say that the vector norm ‖x‖
induces the matrix norm ‖A‖. Since the set of all vectors {y|‖y‖ = 1} is
compact and the norm ‖y‖ is continuous, there is some vector y such that
‖y‖ = 1 and ‖A‖ = ‖Ay‖.

We will now verify that the natural norm does in fact define a valid
matrix norm.

1. If A = 0, then clearly Ay = 0 for any y, so we must have ‖A‖ = 0.
Otherwise, aij ≤ 0 for some i, j. If we let y be the vector containing
all zero elements except for a 1 in the jth position, then ‖y‖ > 0 and
‖Ay‖ > 0, since Ay is the jth column of A, which is a nonzero vector.
Therefore

‖A‖ ≥ ‖Ay‖
‖y‖ > 0.

2. Let y0 be a vector satisfying ‖y0‖ = 1 and ‖A‖ = ‖Ay0‖. For any
constant α, we have

max
‖y‖=1

‖αAy‖ = ‖αAy0‖ = |α|‖Ay0‖ = |α|‖A‖.

3. Before we prove that the triangle inequality holds, it is useful to note
that for any matrix A and vector z,

‖Az‖ =

∥

∥

∥

∥

A‖z‖ z

‖z‖

∥

∥

∥

∥

= ‖z‖
∥

∥

∥

∥

A
z

‖z‖

∥

∥

∥

∥

≤ ‖z‖‖A‖.
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Then, for some vector y0 satisfying ‖y0‖ = 1, we have

‖A + B‖ = ‖(A + B)y0‖
≤ ‖Ay0‖ + ‖By0‖
≤ ‖A‖ + ‖B‖.

4. Using the property ‖Az‖ ≤ ‖A‖‖z‖, it follows that for some vector y0

satisfying ‖y0‖ = 1, we have

‖AB‖ = ‖A(By0)‖
≤ ‖A‖‖By0‖
≤ ‖A‖‖B‖.

We denote by ‖ ·‖p the natural norm induced by the vector p-norm. The
most commonly used matrix norms are ‖ · ‖1, ‖ · ‖2 and ‖ · ‖∞.

2.3 The Matrix ∞-norm

We will now try to arrive at an explicit expression for ‖A‖∞. We have

‖A‖∞ = max
‖y‖∞=1

‖Ay‖

= max
‖y‖∞=1

max
i

∣

∣

∣

∣

∣

∣

n
∑

j=1

aijyj

∣

∣

∣

∣

∣

∣

≤ max
‖y‖∞=1

max
i

n
∑

j=1

|aij ||yj|

≤ max
‖y‖∞=1

max
i

max
j

|yj|
n
∑

j=1

|aij |

≤ max
i

n
∑

j=1

|aij |.

Now, suppose that

max
i

n
∑

j=1

|aij | =
n
∑

j=1

|aIj |.

Let y be the vector with elements

yj =

{

+1 aIj ≥ 0
−1 aIj < 0

7



Then ‖y‖∞ = 1 and

‖Ay‖∞ =

n
∑

j=1

|aIj | = max
i

n
∑

j=1

|aij |.

Therefore the upper bound we obtained for ‖A‖∞ is actually assumed for
some unit vector y, from which it follows that

‖A‖∞ = max
i

n
∑

j=1

|aij |.

Similarly, the vector 1-norm

‖x‖1 =

n
∑

i=1

|xi|

induces the matrix 1-norm

‖A‖1 = max
j

n
∑

i=1

|aij |.

2.4 The Matrix 2-Norm

It is natural to ask whether there is a similar explicit expression for the
matrix 2-norm induced by the vector 2-norm

‖x‖2 =

(

n
∑

i=1

|xi|2
)1/2

.

One might suggest the Frobenius norm

‖A‖F =





n
∑

i=1

n
∑

j=1

|aij |2




1/2

,

but that is incorrect. We will now derive an explicit expression for the
induced matrix 2-norm.

Recalling the definition of the matrix 2-norm,

‖A‖2 = max
x6=0

‖Ax‖2

‖x‖2
,

8



we examine the expression

‖Ax‖2
2 = xT AT Ax.

The matrix AT A is symmetric and positive semi-definite, i.e. xT (AT A)x ≥ 0
for all nonzero x. As such, it has the decomposition

AT A = UΣUT

where U is an orthogonal matrix whose columns are the eigenvectors of AT A,
and Σ is a diagonal matrix of the form







σ2
1

. . .

σ2
n







where each σi is nonnegative and an eigenvalue of AT A. These eigenvalues
can be ordered such that

σ2
1 ≥ σ2

2 ≥ · · · ≥ σ2
r > 0, σ2

r+1 = · · · = σ2
n = 0,

where r is the rank of A. If we define w = U Tx, then we obtain

‖Ax‖2
2

‖x‖2
2

=
xT AT Ax

xTx

=
xT UΣUTx

xT UT Ux

=
wT Σw

wTw

=

∑n
i=1 σ2

i |wi|2
∑n

i=1 |wi|2
≤ σ2

1 .

It follows that
‖Ax‖2

‖x‖2
≤ σ1

for all nonzero x, but we must now determine whether this inequality is
actually an equality for any x. Since U is an orthogonal matrix, it follows
that there exists an x such that

w = UTx =











1
0
...
0











= e1,

9



in which case
xT AT Ax = eT

1 Σe1 = σ2
1 .

In fact, this vector x is the eigenvector of AT A corresponding to the eigen-
value σ2

1 .
We conclude that

‖A‖2 = σ1.

2.5 The Spectral Radius

The matrix 2-norm is also known as the spectral norm. This name is con-
nected to the fact that the norm is given by the square root of the largest
eigenvalue of AT A, and, in general, the spectral radius ρ(A) of a matrix A
is defined in terms of its largest eigenvalue:

ρ(A) = max
i

|λi|, Axi = λixi, xi 6= 0.

We now discuss some relationships between the norm of a matrix and
its spectral radius. First, suppose that

Axi = λixi.

Then, for any matrix norm,

‖Axi‖ = ‖λixi‖ = |λi|‖xi‖.

Therefore

|λi| =
‖Axi‖
‖xi‖

≤ ‖A‖.

Since this holds for any eigenvalue of A, it follows that

max
i

|λi| = ρ(A) ≤ ‖A‖.

We also have the following result:

Theorem For every ε > 0, there exists a matrix norm ‖A‖α such that

‖A‖α ≤ ρ(A) + ε.

The norm is dependent on the matrix A.

This result suggests that the largest eigenvalue of a matrix can be easily
approximated. A simple example is the case of the identity matrix I, whose

10



only eigenvalue is 1, and whose norm is equal to 1 for any natural matrix
norm.

As another example, let

A =















2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 1
−1 2















.

The eigenvalues of this matrix, which arises frequently in numerical methods
for solving differential equations, are known to be

λj = 2 + 2 cos
jπ

n + 1
, j = 1, 2, . . . , n.

The largest eigenvalue is

|λ1| = 2 + 2 cos
π

n + 1
≤ 4,

and ‖A‖∞ = 4, so in this case, the ∞-norm provides an excellent approxi-
mation.

On the other hand, suppose

A =

[

1 106

0 1

]

.

We have ‖A‖∞ = 106 + 1, but ρ(A) = 1, so in this case the norm yields a
poor approximation. However, suppose

D =

[

ε 0
0 1

]

.

Then

DAD−1 =

[

1 106ε
0 1

]

,

and ‖DAD−1‖∞ = 1 + 10−6ε,, which for sufficiently small ε, yields a much
better approximation to ρ(DAD−1) = ρ(A).

We can also show that all matrix norms are equivalent: for any two
matrix norms ‖A‖α and ‖A‖β , there exist constants c1 and c2 such that

c2‖A‖α ≤ ‖A‖β ≤ c1‖A‖α,

and the constants c1 and c2 are independent of the matrix A. For example,
for any m × n matrix A,

1√
n
‖A‖∞ ≤ ‖A‖2 ≤

√
m‖A‖∞.

11



2.6 Gerschgorin’s Theorem

Suppose that λ is an eigenvalue of A with corresponding eigenvector x; i.e.

Ax = λx.

Then, for i = 1, 2, . . . , n, we have

n
∑

j=1

aijxj = λxj.

Rearranging, we obtain

(aii − λ)xi = −
∑

j 6=i

aijxj,

and, taking absolute values yields

|aii − λ||xi| ≤
∑

j 6=i

|aij ||xj|.

Now, suppose that |xI | ≥ |xi|, for i = 1, 2, . . . , n. Then

|aII − λ| ≤
∑

j 6=I

|aIj |
|xj |
|xI |

≤
∑

j 6=I

|aIj |.

Since this bound applies to any eigenvalue of A, we can conclude that each
eigenvalue of A lies within the union of the Gerschgorin disks defined by

|λ − aii| ≤ ri, ri =
∑

j 6=i

|aij |, i = 1, 2, . . . , n.

This result is known as Gerschgorin’s Theorem.
Suppose that A = D + K, where D is a diagonal matrix with diagonal

entries dii = aii, and K represents the off-diagonal portion of A, with entries

Kij =

{

aij i 6= j
0 i = j

Then, define A(ε) = D+εK. Then A(0) = D and A(1) = A. The eigenvalues
of A(ε) are continuous functions of ε, so we can approximate the eigenvalues
of A by examining how the Gerschgorin disks change as ε changes. In par-
ticular, we can determine how many eigenvalues lie within individual disks
or unions of disks.
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2.7 The Singular Value Decomposition

Suppose A is an m × n real matrix with m ≥ n. Then we can write

A = UΣV T ,

where

UT U = Im, V T V = In, Σ =











σ1

. . .

σn

0











.

The diagonal elements σi, i = 1, . . . , n, are all nonnegative, and can be
ordered such that

σ1 ≥ σ2 ≥ · · · ≥ σr > 0, σr+1 = · · · = σn = 0

where r is the rank of A. This decomposition of A is called the singular value

decomposition, or SVD. The values σi, for i = 1, 2, . . . , n, are the singular

values of A. The columns of U are the left singular vectors, and the columns
of V are the right singular vectors.

An alternative decomposition of A omits the singular values that are
equal to zero:

A = Ũ Σ̃Ṽ T ,

where Ũ is an m × r matrix satisfying ŨT Ũ = Ir, Ṽ is an n × r matrix
satisfying Ṽ T Ṽ = Ir, and Σ̃ is an r × r diagonal matrix with diagonal
elements σ1, . . . , σr > 0. The columns of Ũ are the left singular vectors
corresponding to the nonzero singular values of A, and form an orthogonal
basis for the range of A. The columns of Ṽ are the right singular vectors
corresponding to the nonzero singular values of A, and are each orthogonal
to the null space of A.

If A is an m × m matrix and σm > 0, then

A−1 = (V T )−1Σ−1U−1 = V Σ−1UT .

We will see that this representation of the inverse can be used to obtain a
generalized inverse of a matrix A in the case where A does not actually have
an inverse.

While the previous discussion assumed that A was a real matrix, the
SVD exists for complex matrices as well. In this case, the decomposition
takes the form

A = UΣV ∗

13



where, for general A, A∗ = ĀT , the complex conjugate of the transpose. A∗

is often written as AH , and is equivalent to the transpose for real matrices.
We now mention some additional properties of the singular values and

singular vectors. We have

AT A = V ΣT UT UΣV T = V (ΣT Σ)V T .

The matrix ΣTΣ is a diagonal matrix with diagonal elements σ2
i , i =

1, . . . , n, which are also the eigenvalues of AT A, with corresponding eigen-
vectors vi, where vi is the ith column of V . Similarly, AAT = UΣΣTUT ,
from which we can easily see that the columns of U are eigenvectors of AAT ,
corresponding to the eigenvalues σ2

i , i = 1, . . . , n.
In section 2.4, we have shown that

‖A‖2 = [ρ(AT A)]1/2.

Since the eigenvalues of AT A are simply the squares of the singular values
of A, we can also say that

‖A‖2 = σ1.

Another way to arrive at this same conclusion is to take advantage of the
fact that the 2-norm of a vector is invariant under multiplication by an
orthogonal matrix, i.e. if QT Q = I, then ‖x‖2 = ‖Qx‖2. Therefore

‖A‖2 = ‖UΣV T ‖2 = ‖Σ‖2 = σ1.

2.8 Existence of the SVD

We will now prove the existence of the SVD. We define

Ã =

[

0 A
A∗ 0

]

.

It is easy to verify that Ã = Ã∗, and therefore Ã has the decomposition
Ã = ZΛZ∗ where Z is an orthogonal matrix and Λ is a diagonal matrix
with real diagonal elements. If z is a column of Z, then we can write

Ãz = σz, z =

[

x

y

]

and therefore
[

0 A
A∗ 0

] [

x

y

]

= σ

[

x

y

]
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or, equivalently,
Ay = σx, A∗x = σy.

Now, suppose that we apply Ã to the vector obtained from z by negating
y. Then we have

[

0 A
A∗ 0

] [

x

−y

]

=

[

−Ay

A∗x

]

=

[

−σx

σy

]

= −σ

[

x

−y

]

.

In other words, if σ 6= 0 is an eigenvalue, then −σ is also an eigenvalue.
Suppose that we normalize the eigenvector z of Ã so that z∗z = 2.

Since Ã is symmetric, eigenvectors corresponding to different eigenvalues
are orthogonal, so it follows that

[

x∗ y∗
]

[

x

y

]

= 0.

This yields the system of equations

x∗x + y∗y = 2

x∗x − y∗y = 0

which has the unique solution

x∗x = 1, y∗y = 1.

From the relationships Ay = σx, A∗x = y, we obtain

A∗Ay = σ2y, AA∗x = σ2x.

Therefore, if ±σ are eigenvalues of Ã, then σ2 is an eigenvalue of both AA∗

and A∗A.
To complete the proof, we note that we can represent the matrix of

normalized eigenvectors of Ã corresponding to nonzero eigenvalues as

Z̃ =
1√
2

[

X X
Y −Y

]

.
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It follows that

Ã = Z̃ΛZ̃∗

=
1

2

[

X X
Y −Y

] [

Σr 0
0 −Σr

] [

X∗ Y ∗

X∗ −Y ∗

]

=
1

2

[

XΣr −XΣr

Y Σr Y Σr

] [

X∗ Y ∗

X∗ −Y ∗

]

=
1

2

[

0 2XΣrY
∗

2Y ΣrX
∗ 0

]

=

[

0 XΣrY
∗

Y ΣrX
∗ 0

]

and therefore
A = XΣ̃Y ∗, A∗ = Y Σr

where X is an m× r matrix, Σ is r × r, and Y is n× r, and r is the rank of
A. This represents the “condensed” SVD.

2.9 Projections and pseudo-inverses

The singular value decomposition is very useful in studying the linear least
squares problem. Suppose that we are given an m-vector b and an m × n
matrix A, and we wish to find x such that

‖b − Ax‖2 = minimum.

From the SVD of A, we can simplify this minimization problem as follows:

‖b − Ax‖2
2 = ‖b− UΣV Tx‖2

2

= ‖UTb− ΣV Tx‖2
2

= ‖c − Σy‖2
2

= (c1 − σ1y1)
2 + · · · + (cr − σryr)

2 +

c2
r+1 + · · · + c2

m

where c = UTb and y = V Tx. We see that in order to minimize ‖Ax−b‖2,
we must set yi = ci/σi for i = 1, . . . , r, but the unknowns yi, for i =
r + 1, . . . ,m, can have any value, since they do not influence ‖c − Σy‖2.
Therefore, if A does not have full rank, there are infinitely many solutions
to the least squares problem. However, we can easily obtain the unique
solution of minimum 2-norm by setting yr+1 = · · · = ym = 0.
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In summary, the solution of minimum length to the linear least squares
problem is

x = V y

= V Σ+c

= V Σ+UTb

= A+b

where Σ+ is a diagonal matrix with entries

Σ+ =





















σ−1
1

. . .

σ−1
r

0
. . .

0





















and A+ = V Σ+UT . The matrix A+ is called the pseudo-inverse of A. In
the case where A has full rank, the pseudo-inverse is equal to A−1. Note
that A+ is independent of b.

The solution x of the least-squares problem minimizes ‖Ax − b‖, and
therefore is the vector that solves the system Ax = b as closely as possible.
However, we can use the SVD to show that x is the exact solution to a
related system of equations.

We write b = b1 + b2, where

b1 = AA+b, b2 = (I − AA+)b.

The matrix AA+ has the form

AA+ = UΣV T V Σ+UT = UΣΣ+UT = U

[

Ir 0
0 0

]

.

It follows that b1 is a linear combination of u1, . . . ,ur, the columns of U
that form an orthogonal basis for the range of A. From x = A+b we obtain

Ax = AA+b = Pb = b1,

where P = AA+. Therefore, the solution to the least squares problem, is
also the exact solution to the system Ax = Pb.

It can be shown that the matrix P has the properties
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1. P = P T

2. P 2 = P

In other words, the matrix P is a projection. In particular, it is a projection
onto the space spanned by the columns of A, i.e. the range of A.

The following theorem is due to Moore and Penrose:

Theorem. Let A be a real m-by-n matrix. If thre exists a matrix X such

that

1. AXA = A,

2. XAX = X,

3. (AX)T = AX,

4. (XA)T = XA,

then X is unique, and X = A+.

One can easily verify that A+ satisfies properties (1) through (4). Also,
if A has full column rank, then (AT A)−1AT also satisfies these conditions,
so we have

A+ = (AT A)−1AT

provided rank(A) = n.

2.10 Further applications of the SVD

Using the SVD, we can easily establish a lower bound for the largest sin-
gle value σ1 of A, which also happens to be equal to ‖A‖2, as previously
discussed. First, let us consider the case where A is symmetric and pos-
itive definite. Then, we can write A = UΛU ∗ where U is an orthogonal
matrix and Λ is a diagonal matrix with real and positive diagonal elements
λ1 ≥ · · · ≥ λn which are the eigenvalues of A. We can then write

max
x6=0

x∗Ax

x∗x
= max

x6=0

x∗UΛU∗x

x∗UU∗x
= max

y 6=0

y∗Λy

y∗y
≤ λ1

where y = U ∗x. Now, we consider the case of general A and try to find an
upper bound for the expression

max
u,v 6=0

|u∗Av|
‖u‖2‖v‖2

.
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We have, by the Cauchy-Schwarz inequality,

max
u,v 6=0

|u∗Av|
‖u‖2‖v‖2

= max
u,v 6=0

|u∗UΣV ∗v|
‖U∗u‖2‖V ∗v‖2

= max
x,y 6=0

|x∗Σy|
‖x‖2‖y‖2

≤ σ1 max
x,y 6=0

|x∗y|
‖x‖2‖y‖2

≤ σ1.

2.11 Jordan Canonical Form

An n × n matrix A can be decomposed as

A = QJQ−1

where the matrix J is a block diagonal matrix

J =







J1

. . .

Jk







and each block Jr, for r = 1, . . . , k, has the form

Jr =













λr 1
. . .

. . .

. . . 1
λr













where Jr is nr × nr. This decomposition of A is known as the Jordan

canonical form.
The Jordan canonical form provides valuable information about the

eigenvalues of A. The values λj , for j = 1, . . . , k, are the eigenvalues of
A. For each distinct eigenvalue λ, the number of Jordan blocks having λ as
a diagonal element is equal to the number of linearly independent eigenvec-
tors associated with λ. This number is called the geometric multiplicity of
the eigenvalue λ. The sum of the sizes of all of these blocks is called the
algebraic multiplicity of λ.

We now consider Jr’s eigenvalues. We have

λ(Jr) = λr, . . . , λr
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where λr is repeated nr times. But, because

Jr − λrI =













0 1
. . .

. . .

. . . 1
0













is a matrix of rank nr − 1, it follows that the homogeneous system (Jr −
λrI)x = 0 has only one vector (up to a scalar multiple) for a solution, and
therefore there is only one eigenvector associated with this Jordan block.

The unique unit vector that solves (Jr − λrI)x = 0 is the vector e1 =
[

1 0 · · · 0
]

. Now, consider the matrix

(Jr − λrI)2 =













0 1
. . .

. . .

. . . 1
0

























0 1
. . .

. . .

. . . 1
0













=



















0 0 1
. . .

. . .
. . .

. . .
. . . 1
. . . 0

0



















.

It is easy to see that (Jr − λrI)2e2 = 0. Continuing in this fashion, we can
conclude that

(Jr − λrI)kek = 0, k = 1, . . . , nr − 1.

The Jordan form can be used to easily compute powers of a matrix. For
example, one can easily show that

A2 = QJQ−1QJQ−1 = QJ2Q

and, in general,
Ak = QJkQ.

Due to its structure, it is easy to compute powers of a Jordan block Jr. We
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have

Jk
r =













λr 1
. . .

. . .

. . . 1
λr













k

= (λrI + K)k, K =













0 1
. . .

. . .

. . . 1
0













=

k
∑

j=0

(

k
j

)

λk−j
r Kj

which yields, for k > nr,

Jk
r =























λk
r

(

k
1

)

λk−1
r

(

k
2

)

λk−2
r · · ·

(

k
nr − 1

)

λ
k−(nr−1)
r

. . .
. . .

...
. . .

. . .
...

. . .
...

λk
r























.

For example,




λ 1 0
0 λ 1
0 0 λ





3

=





λ3 3λ2 3λ
0 λ3 3λ2

0 0 λ3



 .

We now consider an application of the Jordan canonical form. Consider
the system of differential equations

y′(t) = Ay(t), y(t0) = y0.

Using the Jordan form, we can rewrite this system as

y′(t) = QJQ−1y(t).

Multiplying through by Q−1 yields

Q−1y′(t) = JQ−1y(t),
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which can be rewritten as
z′(t) = Jz(t),

where z = Q−1y(t). This new system has the initial condition

z(t0) = z0 = Q−1y0.

If we assume that J is a diagonal matrix (which is true in the case where A
has a full set of linearly independent eigenvectors), then the system decouples
into scalar equations of the form

z′i(t) = λizi(t),

where λi is an eigenvalue of A. This equation has the solution

zi(t) = eλi(t−t0)zi(0),

and therefore the solution to the original system is

y(t) = Q







eλ1(t−t0)

. . .

eλn(t−t0)






Q−1y0.

Although the Jordan canonical form is a valuable tool in theoretical
linear algebra, it is difficult to compute in practice, because the Jordan
block structure is very sensitive to perturbations. To see why, consider the
matrix

A =

[

1 10−6

0 1

]

.

This matrix is not diagonalizable; it is similar to the Jordan block

J =

[

1 1
0 1

]

.

However, the nearby matrix

Ã =

[

1 0
0 1

]

is diagonalizable with two 1 × 1 Jordan blocks. Clearly, the Jordan form is
very difficult to compute in the presence of round-off errors.1

1A related problem is the ill-conditioning of eigenvalue problems involving matrices

with multiple eigenvalues. In contrast, the problem of computing singular values is nu-

merically stable, since it comes from the eigenvalues of symmetric matrices.
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2.12 Some Results Involving Norms

If ‖A‖ < 1, then ‖Am‖ → 0 as m → ∞. Since ‖A‖ is a continuous function
of the elements of A, it follows that Am → 0. However, if ‖A‖ > 1, it does
not follow that ‖Am‖ → ∞. For example, suppose

A =

[

0.99 106

0 0.99

]

.

In this case, ‖A‖∞ > 1, but because ρ(A) < 1, there must exist some norm
‖A‖α such that ‖A‖α < 1.

For matrices A such that ‖A‖ < 1 for some natural norm, we also have
the following result.

Theorem If, for some natural norm, ‖A‖ < 1, then

1. I − A is nonsingular

2.
1

1 + ‖A‖ ≤ ‖(I − A)−1‖ ≤ 1

1 − ‖A‖ .

Proof

1. Assume I −A is singular. Then, there exists a vector z 6= 0 such that
(I − A)z = 0. Therefore z = Az and

‖z‖ = ‖Az‖ ≤ ‖A‖‖z‖.

Therefore ‖A‖ ≥ 1, which is a contradiction.

2. Since I = (I − A)(I − A)−1, we have

‖I‖ ≤ ‖(I − A)‖‖(I − A)−1‖

but since we are using a natural norm, ‖I‖ = 1, so, by the triangle
inequality, we have

1 ≤ (1 + ‖A‖)‖(I − A)−1‖,

thus proving the left inequality. For the right inequality, (I−A)−1(I−
A) = I yields

(I − A)−1 − (I − A)−1A = I
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or
(I − A)−1 = I + (I − A)−1A.

Taking norms, we obtain

‖(I − A)−1‖ ≤ 1 + ‖A‖‖(I − A)−1‖

which, by the fact that ‖A‖ < 1, proves the right inequality true.
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Chapter 3

Inexact Computation

Computer arithmetic is necessarily inexact, since only a finite amount of
memory is available. This chapter presents a model for inexact arithmetic
that is appropriate for most architectures, and discusses issues that arise
from inexact computation.

3.1 Number representation

Real numbers can be represented using floating-point notation: a floating-
point representation such as

y = ±d1 · · · dsds+1 · · · 10e

A real number may not necessarily have a unique floating-point representa-
tion, as the following examples indicate:

y = ±0.899 · · · 9 · · · × 100

= ±0.90 · · · 0 · · · × 100

or even worse,

y = +0.99 · · · 9× 100

= +0.10 · · · 0× 101

How can we represent y? We can use a chopped representation

ỹ = ±.d1 · · · ds × 103

or possibly
ỹ = ±.d1 · · · ds−1d̄s × 10ē
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where

d̄s =


ds ds+1 < 5
(ds + 1) mod 9 ds+1 > 5
? ds+1 = 5

where the value of d̄s when ds = 5 depends on what convention is used for
rounding. Note that e can change if ds+1 > 5. We often write ỹ = fl(y)
where fl(·) means “floating-point representation of y”.

Floating point numbers can be represented in base β as

y = ±.d1 · · · ds × βe

where m ≤ e ≤ M and the digits dj satisfy

1 ≤ d1 ≤ β − 1, 0 ≤ dj ≤ β − 1, j = 2, . . . , s.

This is a normalized floating-point number. The sequence of significant digits
d1 · · · ds is called the mantissa, and the number e is called the exponent.

Suppose s = 1, m = −1, and M = 1. Then the representable numbers
are

+0.1× 10−1 +0.2× 10−1 · · · +0.9× 10−1

+0.1× 100 +0.2× 100 · · · +0.9× 100

+0.1× 101 +0.2× 101 · · · +0.9× 101

and 27 negative numbers. Note that the distribution is not uniform. In the
previous example, the representable numbers are

−9,−8, . . . ,−1,−0.9,−0.8, . . . ,−0.1,−0.09, . . . ,−0.01, 0, 0.1, . . .

Note that there are large gaps between integers.
Now, suppose that s = 3, and that we multiply two numbers y1 = 0.999

and y2 = 0.999. The exact product is y1× y2 = 0.998001, but the computed
product is fl(y1 × y2) = 0.998. We will write fl(y1 op y2) to indicate some
numerical calculation.

On the IBM 360, we have base 16 (hexadecimal). In general,

y = (±.d1 · · · ds)β × βe, β = 16

= ±
(

d1

β
+

d2

β2
+ · · ·+ ds

βs

)
× β3

with 1 ≤ d1 ≤ β − 1 and 0 ≤ dj ≤ β1 for 2 ≤ j ≤ s. For the IBM 360,
floating-point numbers are represented using s = 6, m = −64 and M = 63,
while double-precision floating-point numbers are represented using s = 14,
m = −64, and M = 63. If, for the result of any operation, e < −64, then
underflow has occurred. On the other hand, the scenario e > 63 is called
overflow.
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3.2 IEEE floating point numbers

Notes in this section are due to Lieven Vandenberghe of UCLA.

3.2.1 Floating point numbers with base 10

Notation:
x = ±(.d1d2 · · · dn)10 · 10e

• .d1d2 · · · dn is the mantissa (di integer, 0 ≤ di ≤ 9, d1 6= 0 if x 6= 0)

• n is the mantissa length (or precision)

• e is the exponent (emin ≤ e ≤ emax)

Interpretation: x = ±(d110−1 + d210−2 + · · ·+ dn10−n) · 10e

Example (with n = 7):

12.625 = +(.1262500)10 · 102

= +(1 · 10−1 + 2 · 10−2 + 6 · 10−3 + 2 · 10−4 + 5 · 10−5

+0 · 10−6 + 0 · 10−7) · 102

used in pocket calculators

Properties

• a finite set of numbers

• unequally spaced distance between floating point numbers varies

– the smallest number greater than 1 is 1 + 10−n+1

– the smallest number greater than 10 is 10 + 10−n+2, . . .

• largest positive number:

+(.999 · · · 9)10 · 10emax = (1− 10−n)10emax

• smallest positive number:

xmin = +(.100 · · · 0)10 · 10emin = 10emin−1
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3.2.2 Floating point numbers with base 2

Notation:
x = ±(.d1d2 · · · dn)2 · 2e

• .d1d2 · · · dn is the mantissa (di ∈ {0, 1}, d1 = 1 if x 6= 0)

• n is the mantissa length (or precision)

• e is the exponent (emin ≤ e ≤ emax)

Interpretation: x = ±(d12−1 + d22−2 + · · ·+ dn2−n) · 2e

Example (with n = 8):

12.625 = +(.11001010)2 · 24

= +(1 · 2−1 + 1 · 2−2 + 0 · 2−3 + 0 · 2−4 + 1 · 2−5

+0 · 2−6 + 1 · 2−7 + 0 · 2−8) · 24

used in almost all computers

a finite set of unequally spaced numbers

• largest positive number:

xmax = +(.1 · · · 1)2 · 2emax = (1− 2−n)2emax

• smallest positive number:

xmin = +(.100 · · · 0)2 · 2emin = 2emin−1

• in practice, the number system includes subnormal numbers: unnor-
malized small numbers (d1 = 0, e = emin), and the number 0

3.2.3 IEEE floating point standard

specifies two binary floating point number formats

IEEE standard single precision:

n = 24, emin = −125, emax = 128
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requires 32 bits: 1 sign bit, 23 bits for mantissa, 8 bits for exponent

IEEE standard double precision:

n = 53, emin = −1021, emax = 1024

requires 64 bits: 1 sign bit, 52 bits for mantissa, 11 bits for exponent

used in almost all modern computers

3.2.4 Machine precision

Definition: the machine precision of a binary floating point number system
with mantissa length n is defined as

εM = 2−n

Example: IEEE standard double precision (n = 53):

εM = 2−53 ≈ 1.1102 · 10−16

Interpretation: 1+2εM is the smallest floating point number greater than
1:

(.10 · · · 01)2 · 21 = 1 + 21−n = 1 + 2εM

3.2.5 Rounding error

a floating-point number system is a finite set of numbers; all other numbers
must be rounded

Notation: fl(x) is the floating-point representation of x

Rounding rules used in practice:

• numbers are rounded to the nearest floating-point number

• in case of a tie: round to the number with least significant bit 0 (“round
to nearest even”)

Example: numbers x ∈ (1, 1 + 2εM ) are rounded to 1 or 1 + 2εM :

• fl(x) = 1 if 1 < x ≤ 1 + εM

• fl(x) = 1 + 2εM if 1 + εM < x < 1 + 2εM

gives another interpretation of εM : numbers between 1 and 1 + εM are
indistinguishable from 1
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3.2.6 Rounding error and machine precision

General result:
|fl(x)− x|

|x|
≤ εM

(no proof)

• machine precision gives a bound on the relative error due to rounding

• number of correct (decimal) digits in fl(x) is roughly

− log10 εM

i.e., about 15 or 16 in IEEE precision

• fundamental limit on accuracy of numerical computation

3.3 Roundoff Error in Arithmetic Operations

We need to consider the error arising from computing the results of arith-
metic expressions. In general,

z = fl(x op y) = (x op y)(1 + δ)

where |δ| ≤ β−(s−1) ≡ u when results are truncated, or |δ| ≤ 1
2β−(s−1) when

results are rounded. Therefore the relative error in fl(x op y) is∣∣∣∣fl(x op y)− (x op y)
x op y

∣∣∣∣ = |δ| ≤ u

where u is known as the unit roundoff.
We can use this idea sequentially to bound the error in more complex

computations. Suppose we want to compute

sn = x1 + x2 + · · ·+ xn.

If we use the numerical algorithm

s0 = 0
s1 = s0 + x1

s2 = s1 + x2

...
sn = sn−1 + xn
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the corresponding computer algorithm is

σ0 = 0
σ1 = fl(σ0 + x1)
σ2 = fl(σ1 + x2)

...
σn = fl(σn−1 + xn)

Expanding the expressions for the σi, we obtain

σ1 = fl(σ0 + x1) = (σ0 + x1)(1 + δ1)
σ2 = fl(σ1 + x2) = (σ1 + x2)(1 + δ2)

= σ1(1 + δ2) + x2(1 + δ2)
= (σ1 + x1)(1 + δ1)(1 + δ2) + x2(1 + δ2)
...

σn = x1(1 + δ1) · · · (1 + δn) + x2(1 + δ2) · · · (1 + δn) +
· · ·+ xn(1 + δn)

=
n∑

j=1

xj

n∏
k=j

(1 + δk)

=
n∑

j=1

xj(1 + ηj), (1 + ηj) =
n∏

k=j

(1 + δk)

= x1 + · · ·+ xn +
n∑

j=1

ηjxj

In summary,∣∣∣∣∣σn −
n∑

i=1

xi

∣∣∣∣∣ ≤
n∑

j=1

|ηj ||xj |, |ηj | ≤ (n− j + 1)u + O(u)2

if 0 < xi1 ≤ xi2 ≤ · · · ≤ xin . It would seem to imply that we should add the
numbers in that order since the numbers are weighted. A better procedure
is to add the numbers in pairs, resulting in the bound

|1 + ηi| ≤ 1 + pu

where n = 2p. In this case, the error is uniformly distributed.
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For the product of n numbers p = x1 · · ·xn, we obtain the computed
results

Π1 = fl(x1x2) = (x1x2)(1 + ε1)
Π2 = fl(Π2x3) = (x1x2x3)(1 + ε1)(1 + ε2)

...
Πn = fl(Πn−1xn)

= (x1 · · ·xn)(1 + ε1) · · · (1 + εn−1)
= p(1 + ηn−1)

where
|ηn−1| ≤ (n− 1)u + O(u2).

3.4 Common Computations

It is frequently necessary to compute the inner product

s =
n∑

i=1

uivi

Now
fl(ui × vi) = (ui × vi)(1 + γi), |γi| ≤ u.

Therefore, if we wish to compute

fl(s) =
n∑

j=1

xjyj(1 + ηj)

and (1 + ηj) will depend on how the computation is performed. If we do
serial addition, then

(1 + ηj) =
n∏

k=j

(1 + δk)(1 + γj).

If we do pairwise addition and n = 2p, then

(1 + ηj) =

(
p∑

k=1

(1 + δikj
)

)
(1 + γj).
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In computing inner products one must be quite careful; otherwise the un-
derflow or overflow problem can be quite serious.

Suppose one wishes to compute

s =
n∑

i=1

x2
i .

It is quite possible that overflow will occur. One solution is to scale. Suppose

|x±| ≥ |xj |, j = 1, 2, . . . , n

and x± = αβp. Then one should compute

s =

(
n∑

i=1

(
xi

βp

)2
)

β2p.

This requires two passes; there are better ways of performing the calculation.
We can build up analysis of many problems. This has been done exten-

sively for linear algebra by J. H. Wilkinson. The analysis can be automated;
R. Moore has used interval arithmetic for determining bounds on the solu-
tion.

It is a general principle that one should add terms of a similar sign.
Suppose we wish to compute

s2 =
n∑

i=1

(xi − x̄)2, x̄ =
1
n

n∑
i=1

xi. (3.1)

It is well known that

s2 =
n∑

i=1

x2
i − nx̄2 (3.2)

and this formula is frequently used. But it is very bad, especially if the
xi’s are large but s2 is small. Then, you can be subtracting two large
numbers. Formula (3.1) is more stable but requires two passes. First, you
must compute the mean and then the quantity s2. We could try writing

s2 =
n∑

i=1

(xi − ν)2 + η(ν2 − x̄2)

where ν is some approximation to x̄.
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3.5 Issues with Floating-point Arithmetic

We conclude our discussion of floating-point arithmetic by highlighting two
issues that frequently arise in practice.

First of all, relationships among numbers that are known to be true in
exact arithmetic do not necessarily hold when using floating-point arith-
metic. For example, suppose that x > y > 0, and that a > 0. Then, in
exact arithmetic, ax > ay > 0, but in floating-point arithmetic, we can only
assume that ax ≥ ay ≥ 0.

Second, the order in which floating-point arithmetic operations are per-
formed can drastically affect the result. For example, suppose that we want
to compute e−x, where x > 0. Using the Taylor series for ex, we know that

e−x = 1− x +
x2

2
− x3

3!
+ · · ·

but for sufficiently large x, this means obtaining small numbers by sub-
tracting larger ones, and therefore the computation is susceptible to a phe-
nomenon known as catastrophic cancellation, in which subtracting numbers
that are nearly equal causes the loss of significant digits (since such digits
in the result of the subtraction are equal to zero). An alternative approach
is to compute

e−x =
1

1 + x + x2

2 + x3

3! + · · ·

which avoids this problem.
As a rule, it is best to try to avoid subtractions altogether, instead trying

to add numbers that are guaranteed to be the same sign. For example, given
the quadratic equation x2+bx+c = 0, we can compute the roots by applying
the quadratic formula as follows:

x+ =
−b + sign(−b)

√
b2 − 4c

2
, x− =

c

x+
.
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Chapter 4

Direct methods for the
solutions of linear systems

4.1 Direct vs. Iterative methods

Modern algorithms for solving linear systems Ax = b are largely divided
into two categories:

• Direct methods are based on explicit manipulation of the entries in
A. Most involve factoring A into a product of “simpler” matrices
(e.g. triangular or orthogonal matrices). In exact arithmetic, direct
methods yield the exact solution in a finite number of steps (which is
usually O(n3) unless sparsity structure is exploited).

• Iterative methods attempt to generate a sequence of approximations
x(i) which converges to the true solution x. Such algorithms are not
expected to yield the exact solution at any finite step k (although some
do; such methods are said to have “finite termination property”). In
general, iterative methods do not attempt to manipulate the entries
of A directly, but instead rely on performing matrix-vector products
Av, which makes them especially useful when A is not stored explicitly
(e.g. matrices that arise from the discretization of a differential oper-
ator). Convergence behavior (and hence the algorithmic complexity)
tends to be highly dependent on the properties of the matrix itself.

In this chapter, we focus our study on direct methods. We will consider
iterative methods in Chapter 6.
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4.2 Perturbation Theory for linear systems

Suppose we want to solve
Ax = b.

Because of inexact arithmetic, we actually have an approximation ξ such
that

x = ξ + e.

The question is, how can we use norms to bound the relative error in ξ? We
define the residual r by

r = b−Aξ

= A(x− ξ)
= Ae

Note that r = 0 if Ax = b. From the relations ‖r‖ ≤ ‖A‖‖e‖ and ‖e‖ ≤
‖A−1‖‖r‖, we obtain

‖r‖
‖A‖

≤ ‖e‖ ≤ ‖A−1‖‖r‖.

It follows that the relative error is bounded as follows:

‖r‖
‖A‖‖x‖

≤ ‖e‖
‖x‖
≤ ‖A

−1‖‖r‖
‖x‖

≤ ‖A−1‖‖A‖ ‖r‖
‖b‖

since ‖A‖‖x‖ ≥ ‖b‖. The quantity

κ(A) = ‖A−1‖‖A‖

is called the condition number of A. The condition number serves as a
measure of how perturbation in the data of the problem Ax = b affects the
solution.

How does a perturbation in A affect the solution x? To answer this
question, we define A(ε) to be a function of the size of the perturbation ε,
with A(0) = A. Starting with

A(ε)A−1(ε) = I

and differentiating with respect to epsilon yields

A(ε)
dA−1(ε)

dε
+

dA(ε)
dε

A−1(ε) = 0
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or
dA−1(ε)

dε
= −A−1(ε)

dA(ε)
dε

A−1(ε).

Now, suppose that x(ε) satisfies

(A + εE)x(ε) = b.

Using Taylor series, we obtain

x(ε) = (A + εE)−1b

= x(0) + ε
dx(ε)

dε

∣∣∣∣
ε=0

+ O(ε2)

= x(0) + ε

(
−A−1(ε)

dA(ε)
dε

A−1(ε)
)

b + O(ε2)

= x(0) + ε(−A−1EA−1)b + O(ε2)
= x(0) + ε(−A−1E)x + O(ε2)

Taking norms, we obtain

‖x(ε)− x(0)‖ ≤ |ε|‖A−1‖2‖E‖‖b‖+ O(ε2)

from which it follows that the relative perturbation in x is

‖x(ε)− x‖
‖x‖

≤ |ε|‖A−1‖‖A‖‖E‖
‖A‖

+ O(ε2)

≤ κ(A)ρ + O(ε2)

where ρ = ‖εE‖/‖A‖ is the relative perturbation in A.
Since the exact solution to Ax = b is given by x = A−1b, we are also

interested in examining (A + E)−1 where E is some perturbation. Can we
say something about ‖(A+E)−1−A−1‖? We assume that ‖A−1E‖ = r < 1.
We have

A + E = A(I + A−1E)
= A(I − F ), F = −A−1E

which yields

‖(I − F )−1‖ ≤ 1
1− r

.

From

(A + E)−1 −A−1 = (I + A−1E)−1A−1 −A−1

= (I + A−1E)(A−1 − (I + A−1E)A−1)
= (I + A−1E)−1(−A−1EA−1)
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we obtain
‖(A + E)−1 −A−1‖ ≤ 1

1− r
‖A−1‖2‖E‖

or
‖(A + E)−1 −A−1‖

‖A−1‖
≤ 1

1− r
κ(A)

‖E‖
‖A‖

.

4.3 A Special Case: Rank-1 Updates and the In-
verse

Suppose that we know how to solve the problem Ax = b, but we now wish
to solve the perturbed problem

(A + uvT )y = b.

Such a perturbation is called a rank-one update of A, since the matrix uvT

has rank 1. As an example, we might find that there was an error in the
element a11 and we update it with the value ā11. We can accomplish this
update by setting

Ā = A + (ā11 − a11)e1eT
1 , e1 =


1
0
...
0

 .

For a general rank-one update, we can use the Sherman-Morrison formula,
which we will derive here. Multiplying through the equation (A+uvT )y = b
by A−1 yields

(I + A−1uvT )y = A−1b = x.

We therefore need to find (I + wvT )−1 where w = A−1u. We assume that
(I + wvT )−1 is a matrix of the form (I + σwvT ) where σ is some constant.
From the relationship

(I + wvT )(I + σwvT ) = I

we obtain
σwvT + wvT + σwvTwvT = 0.

However, the quantity vTw is a scalar, so this simplifies to

(σ + 1 + σvTw)wvT = 0
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which yields

σ = − 1
1 + vTw

.

It follows that the solution y to the perturbed problem is given by

y = (I + σwvT )x = x + σvxw

and the perturbed inverse is given by

(A + uvT )−1 = (I + A−1uvT )−1A

=
(

I − 1
1 + vTw

wvT

)
A−1

= A−1 − 1
1 + vT A−1u

A−1uvT A−1.

An efficient algorithm for solving the perturbed problem (A + uvT )y = b
can therefore proceed as follows:

1. Solve Ax = b

2. Solve Aw = u

3. Compute σ = − 1
1+vT w

4. Compute y = x + σ(vTx)w

An alternative approach is to note that

(A + uvT )−1 = [A(I + A−1uvT )]−1

= (I + σA−1uvT )A−1

= A−1 + σA−1uvT A−1

which yields

(A + uvT )−1b = A−1(I + σuvT A−1)b
= A−1(b + σ(vT A−1b)u)

and therefore we can solve (A+uvT )y = b by solving a problem of the form
Ax = b where the right-hand side b is perturbed.
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4.4 Gaussian Elimination and the LU Factoriza-
tion

4.4.1 Basic Algorithm

We often wish to solve
Ax = b

where A is an m×n matrix and b is an m-vector. For now, we assume that
m = n and that A has rank n. If we can write

A = PQ

then we can solve the system Ax = PQx = b by solving

Py = b

Qx = y

Therefore we would like to find such a decomposition where the above sys-
tems are simple to solve. We now discuss a few scenarios where this is the
case.

1. If the matrix A is diagonal, then the system Ax = b has the solu-
tion xi = bi/aii for i = 1, . . . , n. The solution can be computed in
only n divisions. Furthermore, each component of x can be computed
independently, and therefore the algorithm can be parallelized.

2. If AAT = I, then Ax = b can be solved simply by computing the
matrix-vector product x = ATb. This requires only O(n2) multiplica-
tions and additions, and can also be parallelized.

3. If A is a lower triangular matrix, i.e. if aij = 0 for i < j, then the
system of equations Ax = b takes the form

a11x1 = b1

a12x1 + a22x2 = b2
...

an1x1 + · · · + annxn = bn
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which can be solved by the process of forward substitution

x1 = b1/a11

x2 = (b2 − a21x1)/a22

...

xn =

bn −
n−1∑
j=1

anjxj

 /ann

This algorithm cannot be parallelized, since each component xi de-
pends on xj for j < i, but it is still efficient, as it requires only O(n2)
multiplications and additions. In the case where A is an upper trian-
gular matrix, i.e. aij = 0 whenever i > j, a similar process known as
back substitution can be used.

Note that the solution method for the problem Ax = b depends on the
structure of A. A may be a sparse or dense matrix, or it may have one of
many well-known structures, such as being a banded matrix, or a Hankel
matrix. We will consider the general case of a dense, unstructured matrix
A, and obtain a decomposition A = LU , where L is lower triangular and U
is upper triangular.

This decomposition is achieved using Gaussian elimination. We write
out the system Ax = b as

a11x1 + · · · + a1nxn = b1

a21x1 + · · · + a2nxn = b2
... + · · · +

...
...

...
an1x1 + · · · + annxn = bn

We proceed by multiplying the first equation by −a21/a11 and adding it
to the second equation, and in general multiplying the first equation by
−ai1/a11 and adding it to equation i. We obtain the following equivalent
system

a11x1 + a12x2 + · · · + a1nxn = b1

0x1 + a′22x2 + · · · + a′2nxn = b′2
... +

... + · · · +
...

...
...

0x1 + a′n2x2 + · · · + a′nnxn = b′n

Continuing in this fashion, adding multiples of the second equation to each
subsequent equation to make all elements below the diagonal equal to zero,
we obtain an upper triangular system.
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This process of transforming A to an upper triangular matrix U is equiv-
alent to multiplying A by a sequence of matrices to obtain U . Specifically,
we have M1A = A2 where

A2 =


a11 a12 · · · a1n

0 a
(2)
22 · · · a

(2)
2n

...
...

...
0 a

(2)
n2 · · · a

(2)
nn


and

M1 =


1 0
−`21 1

... 0
. . .

−`n1 1

 , `i1 =
ai1

a11
.

Similarly, if we define M2 by

M2 =


1
0 1
0 −`32 1
...

...
. . .

0 −`n2 1

 , `i2 =
a

(2)
i2

a
(2)
22

then

M2A2 = A3 =


a11 a12 a13 · · · a1n

0 a
(2)
22 a

(2)
23 · · · a

(2)
2n

0 0 a
(3)
33 · · · a

(3)
3n

...
...

...
...

0 0 a
(3)
n3 · · · a

(3)
nn


In general, we have

Mk =



1

0
. . .

...
. . . 1

... −`k+1,k 1

...
...

. . .
0 −`nk 1


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and

Mn−1Mn−2 · · ·M1A = An ≡


u11 · · · u1n

0 u22 · · · u2n
...

. . .
...

0 · · · 0 unn


or, equivalently,

A = M−1
1 M−1

2 · · ·M
−1
n−1U.

It turns out that M−1
j is very easy to compute. We claim that

M−1
1 =


1 0

`21 1
... 0

. . .
`n1 1


To see this, consider the product

M1M
−1
1 =


1 0
−`21 1

... 0
. . .

−`n1 1




1 0
`21 1
... 0

. . .
`n1 1


which can easily be verified to be equal to the identity matrix. In general,
we have

M−1
k =



1

0
. . .

...
. . . 1

... `k+1,k 1

...
...

. . .
0 `nk 1


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Now, consider the product

M−1
1 M−1

2 =


1 0

`21 1
... 0

. . .
`n1 1




1
0 1
0 `32 1
...

...
. . .

0 `n2 1



=


1

`21 1
... `32 1
...

...
. . .

`n1 `n2 1


It can be shown that

M−1
1 M−1

2 · · ·M
−1
n−1 =



1

`21
. . .

... `32
. . .

...
...

. . . . . .
`n1 `n2 · · · `n,n−1 1


It follows that under proper circumstances, we can write A = LU where

L =



1

`21
. . .

... `32
. . .

...
...

. . . . . .
`n1 `n2 · · · `n,n−1 1


, U =


u11 · · · u1n

0 u22 · · · u2n
...

. . .
...

0 · · · 0 unn


Given this decomposition, we can easily compute the determinant of A:

det A = detLU = detLdet U = 1 ·
n∏

i=1

uii

What exactly are proper circumstances? We must have a
(k)
kk 6= 0, or we

cannot proceed with the decomposition. For example, if

A =

 0 1 11
3 7 2
2 9 3

 or A =

 1 3 4
2 6 4
7 1 2


10



Gaussian elimination will fail. In the first case, it fails immediately; in the
second case, it fails after the subdiagonal entries in the first column are
zeroed, and we find that a

(k)
22 = 0. In general, we must have det Aii 6= 0 for

i = 1, . . . , n where

Aii =

 a11 · · · a1i
...

...
ai1 · · · aii


for the LU factorization to exist.

4.4.2 Pivoting

How can we obtain the LU factorization for a general non-singular matrix?
If A is nonsingular, then some element of the first column must be nonzero.
If ai1 6= 0, then we can interchange row i with row 1 and proceed. This is
equivalent to multiplying A by a permutation matrix Π1 that interchanges
row 1 and row i:

Π1 =



0 · · · · · · · · · 1 0 · · · 0
1

. . .
1

1 0 · · · · · · 0 0 · · · 0
1

. . .
0 1


Thus M1Π1A = A2. Then, since A2 is nonsingular, some element of column
2 of A2 below the diagonal must be nonzero. Proceeding as before, we com-
pute M2Π2A2 = A3, where Π2 is another permutation matrix. Continuing,
we obtain

A = (Mn−1Πn−1 · · ·M1Π1)−1U.

It can easily be shown that ΠA = LU where Π is a permutation matrix.
Most often, Πi is chosen so that row i is interchanged with row j, where

a
(i)
ij = maxi≤j≤n |a(i)

ij |. This guarantees that |`ij | ≤ 1. This strategy is known
as partial pivoting. Another common strategy, complete pivoting, uses both
row and column interchanges to ensure that at step i of the algorithm, the
element aii is the largest element in absolute value from the entire submatrix
obtained by deleting the first i−1 rows and columns. Often, however, other
criteria is used to guide pivoting, due to considerations such as preserving
sparsity.
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4.4.3 Uniqueness of the LU Decomposition

It is natural ask whether the LU decomposition is unique. To determine this,
we assume that A has two LU decompositions, A = L1U1 and A = L2U2.
From L1U1 = L2U2 we obtain L−1

2 L1 = U2U
−1
1 . The inverse of a unit

lower triangular matrix is a unit lower triangular matrix, and the product
of two unit lower triangular matrices is a unit lower triangular matrix, so
L−1

2 L1 must be a unit lower triangular matrix. Similarly, U2U
−1
1 is an upper

triangular matrix. The only matrix that is both upper triangular and unit
lower triangular is the identity matrix I, so we must have L1 = L2 and
U1 = U2.

4.4.4 Computing the Inverse

Using the LU decomposition, one can compute the inverse of a matrix. A
natural method to compute the inverse of an n× n matrix A is to solve the
matrix equation

AX = I

by solving the systems of equations

Axj = ej , j = 1, . . . , n.

Since only the right-hand side is different in each of these systems, we need
only compute the LU decomposition of A once, which requires 2n3/3 op-
erations. For simplicity, we assume that pivoting is not required, and note
that the case where pivoting is required can be handled in a similar fashion.

Given the LU decomposition, we compute A−1 by solving the systems
Lyj = ej and Uxj = yj for j = 1, . . . , n. Computing each column xj of
A−1 requires n2 operations, resulting in a total of 2n3/3 + n(n2) = 5n3/3
operations.

We can compute A−1 more efficiently by noting that A−1 = U−1L−1 and
computing U−1, L−1, and the product U−1L−1 directly. Since the inverse
of an upper triangular matrix is also an upper triangular matrix, comput-
ing column j of U−1 requires only approximately j2/2 operations, since, in
solving the system Uxj = ej , we can ignore the last n − j components of
xj since we know that they are equal to zero. As a result, computing U−1

requires only n3/6 operations. A similar result holds for computing L−1,
which is a lower triangular matrix.

To compute the product A−1 = U−1L−1, we note that if we number the
northeast-to-southwest diagonals of A−1 starting with 1 for the upper left
diagonal (the (1,1) element) and n for the lower right diagonal (the (n, n)

12



element), then elements along diagonal j require only n−j+1 multiplications
to compute. It follows that the total operation count to compute the product
of U−1 and L−1 is

(2n− 1) + 2(2n− 3) + 3(2n− 5) + · · ·+ (n− 1)2 + n ≈ 1
3
n3.

Therefore, the overall operation count to compute A−1 using this method is
4n3/3.

4.4.5 Gauss-Jordan Elimination

A variant of Gaussian elimination is called Gauss-Jordan elimination. It en-
tails zeroing elements above the diagonal as well as below, using elementary
column operations that are similar to the elementary row operations used
in Gaussian elimination. The result is a decomposition A = LDMT , where
L is a unit lower triangular matrix, D is a diagonal matrix, and M is also
a unit lower triangular matrix. We can then solve the system Ax = b by
solving the systems

Ly = b, Dz = y, MTx = z.

The benefit of Gauss-Jordan elimination is that the diagonal system Dz = y
can be solved in parallel, since the elements of z can be computed indepen-
dently. The drawback is that the elimination process can be numerically
unstable, since the multipliers can be large.

4.4.6 Parallelism of Gaussian Elimination

Suppose that we wish to perform Gaussian elimination on the matrix A =[
a1 · · · an

]
. During the first step of the elimination, we compute

P (1)Π1A =
[

P (1)Π1a1 · · · P (1)Π1an

]
.

Clearly we can work on each column independently, leading to a parallel
algorithm. As the elimination proceeds, we obtain less benefit from paral-
lelism since fewer columns are being modified at each step.

4.5 The Cholesky Decomposition

4.5.1 Positive Definite Matrices

A matrix A is positive definite if xT Ax > 0 for all nonzero x. A positive
definite matrix has real and positive eigenvalues, and its leading principal

13



submatrices all have positive determinants. From the definition, it is easy
to see that all diagonal elements are positive.

To solve the system Ax = b where A is positive definite, we can compute
the Cholesky decomposition A = F T F where F is upper triangular. This
decomposition exists if and only if A is symmetric and positive definite. In
fact, attempting to compute the Cholesky decomposition of A is an efficient
method for checking whether A is symmetric positive definite. There are
several ways to write A = GGT for some matrix G since

A = FF T = FQQT F = (FQ)(FQ)T = GGT

for any orthogonal matrix Q, but for the Cholesky decomposition, we require
that F is lower triangular, with positive diagonal elements.

The Cholesky decomposition is also called the square root factorization,
although it is important to note that the matrix F in A = F T F is not the
square root of A, since it does not hold that F 2 = A unless A is a diagonal
matrix. The square root of A can be computed by using the fact that A has
the decomposition A = UΛUT where Λ is a diagonal matrix whose diagonal
elements are the eigenvalues of A and U is an orthogonal matrix whose
columns are the eigenvectors of A. It follows that

A = UΛUT = (UΛ1/2UT )(UΛ1/2UT ) = SS

where S = UΛ1/2UT is the square root of A.
We can compute F by examining the matrix equation A = FF T on an

element-by-element basis, writing
a11 · · · a1n

a21 · · · a2n
...

...
an1 · · · ann

 =


f11

f21 f22
...

...
. . .

fn1 fn2 · · · fnn




f11 f21 · · · fn1

f22
...

. . .
...

fnn

 .

From the above matrix multiplication we see that f2
11 = a11, from which it

follows that
f11 =

√
a11.

From the relationship f11fi1 = ai1 and the fact that we already know f11,
we obtain

fi1 =
ai1

f11
, i = 2, . . . , n.

14



Proceeding to the second column of F , we see that f2
21 + f2

22 = a22. Since
we already know f21, we have

f22 =
√

a22 − f2
21.

Next, we use the relation f21fi1 + f22fi2 = a2i to compute

fi1 =
a2i − f21fi1

f22
.

In general, we can use the relationship aij = fT
i fj to compute fij , where fi

is the ith column of F :
For k = 1, . . . , n:

fkk =

akk −
k−1∑
j=1

f2
jk

1/2

fkj =

(
akj −

k−1∑
`=1

f`kf`j

)/
fkk, j = k + 1, . . . , n

This algorithm requires roughly half as many operations as Gaussian elimi-
nation.

Another method for computing the Cholesky decomposition is to com-
pute

f1 =
1
√

a11
a1

where ai is the ith column of A. Then we set A(1) = A and compute

A(2) = A(1) − f1fT
1 =


0 0 · · · 0
0
... A2

0

 .

We partition the matrix A2 into columns, writing A2 =
[

a(2)
2 a(2)

3 · · · a(2)
n

]
and then compute

f2 =
1√
a

(2)
22

[
0

a(2)
2

]
.

We then compute
A3 = A(2) − f2fT

2
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and so on.
Note that

akk = f2
k1 + f2

k2 + · · ·+ f2
kk,

which implies that
|fki| ≤ |akk|.

In other words, the elements of F are bounded. We also have the relationship

det A = detF det F T = (det F )2 = f2
11f

2
22 · · · f2

nn.

4.5.2 Uniqueness of the Cholesky Factorization

Is the Cholesky decompositon unique? Employing a similar approach to the
one used to prove the uniquess of the LU decomposition, we assume that A
has two Cholesky decompositions

A = F1F
T
1 = F2F

T
2 .

Then
F−1

2 F1 = F T
2 F−T

1 ,

but since F1 and F2 are lower triangular, both matrices must be diago-
nal. Furthermore, they must have diagonal elements equal to ±1. Since we
require that the diagonal elements be positive, it follows that the decompo-
sition is unique.

In computing the Cholesky decomposition, no row interchanges are nec-
essary because A is positive definite, so the number of operations required
to compute F is approximately n3/3.

A variant of the Cholesky decomposition is known as the square-root-free
Cholesky decomposition, and has the form

A = LDLT

where L is a unit lower triangular matrix, and D is a diagonal matrix with
positive diagonal elements. This is a special case of the A = LDMT factor-
ization previously discussed. The LDLT and Cholesky decompositions are
related by

F = LD1/2.
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4.6 Banded Matrices

A banded matrix has all of its nonzero elements contained within a “band”
consisting of select diagonals. Specifically, a matrix A that has upper band-
width p and lower bandwidth q has the form

A =



a11 · · · a1,p+1

a21
. . . a2,p+1 a2,p+2

...
aq+1,1 · · · aq+1,q+1 · · · aq+1,n

. . . . . .
...


.

Matrices of this form arise frequently from discretization of partial differen-
tial equations.

The simplest banded matrix is a tridiagonal matrix, which has upper
bandwidth 1 and lower bandwidth 1. Such a matrix can be stored using
only three vectors instead of a two-dimensional array. Computing the LU
decomposition of a tridiagonal matrix without pivoting requires only O(n)
operations, and produces bidiagonal L and U . When pivoting is used, this
desirable structure is lost, and the process as a whole is more expensive in
terms of computation time and storage space.

Various applications, such as the solution of partial differential equations
in two or more space dimensions, yield symmetric block tridiagonal matrices,
which have a block Cholesky decomposition:

A1 BT
2

B2
. . . . . .
. . . . . . BT

n

Bn An

 =


F1

G2
. . .
. . . . . .

Gn Fn




F T
1 GT

2
. . . . . .

. . . GT
n

F T
n

 .

From the above matrix equation, we determine that

A1 = F1F
T
1 , B2 = G2F

T
1

from which it follows that we can compute the Cholesky decomposition of
A1 to obtain F1, and then compute G2 = B2(F T

1 )−1. Next, we use the
relationship A2 = G2G

T
2 + F2F

T
2 to obtain

F2F
T
2 = A2 −G2G

T
2 = A2 −B2(F T

1 )−1F−1
1 BT

2 = A2 −B2A
−1
1 B2.
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It is interesting to note that in the case of n = 2, the matrix A2−B2A
−1
1 B2.

is known as the Schur complement of A1.
Continuing with the block tridiagonal case with n = 2, suppose that we

wish to compute the factorization[
A B
BT 0

]
=
[

F
G

] [
F T GT

]
+
[

0 0
0 X

]
.

It is easy to see that X = −BT A−1B, but this matrix is negative definite.
Therefore, we cannot compute a block Cholesky decomposition, but we can
achieve the factorization[

A B
BT 0

]
=
[

F 0
G K

] [
F T GT

0 −KT

]
where K is the Cholesky factor of the positive definite matrix BT A−1B.

4.7 Error Analysis of Gaussian Elimination

4.7.1 Condition Numbers and Error Bounds

Suppose that we wish to solve the system Ax = b. Our computed solution
x̃ satisfies a perturbed system (A + ∆)x̃ = b. It can be shown that

‖x− x̃‖
‖x‖

≤ ‖A−1‖‖∆‖
1− ‖A−1‖‖∆‖

≤
‖A‖‖A−1‖‖∆‖‖A‖

1− ‖A‖‖A−1‖‖∆‖‖A‖

≤ κ(A)r
1− κ(A)r

where κ(A) = ‖A‖‖A−1‖ is the condition number of A and r = ‖∆‖/‖A‖.
The condition number has the following properties:

• κ(αA) = κ(A) where α is a nonzero scalar.

• κ(I) = 1

• κ(Q) = 1 when QT Q = I.
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The perturbation matrix ∆ is typically a function of the algorithm used to
solve Ax = b.

In this section, we will consider the case of Gaussian elimination and
perform a detailed error analysis, illustrating the analysis originally carried
out by J.H. Wilkinson. The process of solving Ax = b consists of three
stages:

1. Factoring A = LU , resulting in an approximate LU decomposition
A + E = L̄Ū . We assume that partial pivoting is used.

2. Solving Ly = b, or, numerically, computing y such that

(L̄ + δL̄)(y + δy) = b

3. Solving Ux = y, or, numerically, computing x such that

(Ū + δŪ)(x + δx) = y + δy.

Combining these stages, we see that

b = (L̄ + δL̄)(Ū + δŪ)(x + δx)
= (L̄Ū + δL̄Ū + L̄δŪ + δL̄δŪ)(x + δx)
= (A + E + δL̄Ū + L̄δŪ + δL̄δŪ)(x + δx)
= (A + ∆)(x + δx)

where ∆ = E + δL̄Ū + L̄δŪ + δL̄δŪ .
In this analysis, we will view the computed solution x̄ = x + δx as the

exact solution to the perturbed problem (A + ∆)x = b. This perspective is
the idea behind backward error analysis, which we will use to determine the
size of the perturbation ∆, and, eventually, arrive at a bound for the error
in the computed solution x̄.

4.7.2 Error in the LU Factorization

Let A(k) denote the matrix A after k− 1 steps of Gaussian elimination have
been performed, where a step denotes the process of making all elements
below the diagonal within a particular column equal to zero. Then, in exact
arithmetic, the elements of A(k+1) are given by

a
(k+1)
ij = a

(k)
ij −mika

(k)
kj , mik =

a
(k)
ik

a
(k)
kk

. (4.1)
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Let B(k) denote the matrix A after k− 1 steps of Gaussian elimination have
been performed using floating-point arithmetic. Then the elements of B(k+1)

are

b
(k+1)
ij = a

(k)
ij − sikb

(k)
kj + ε

(k+1)
ij , sik =

b
(k)
ik

b
(k)
kk

+ · · · (4.2)

For j ≥ i, we have

b
(2)
ij = b

(1)
ij − si1b

(1)
1j + ε

(2)
ij

b
(3)
ij = b

(2)
ij − si1b

(2)
1j + ε

(3)
ij

...
b
(i)
ij = b

(i−1)
ij − si1b

(i−1)
1j + ε

(i)
ij

Combining these equations yields

i∑
k=2

b
(k)
ij =

i−1∑
k=1

b
(k)
ij −

i−1∑
k=1

sikb
(k)
kj +

i∑
k=2

ε
(k)
ij

Cancelling terms, we obtain

b
(1)
ij = b

(i)
ij +

i−1∑
k=1

sikb
(k)
kj + eij , j ≥ i (4.3)

For i > j,

b
(2)
ij = b

(1)
ij − si1b

(1)
1j + ε

(2)
ij

...
b
(j)
ij = b

(j−1)
ij − si1b

(j−1)
j−1,j + ε

(j)
ij

where sij = b
(j)
ij /b

(j)
jj + ηij , and therefore

0 = b
(j)
ij − sijb

(j)
jj + b

(j)
jj ηij

= b
(j)
ij − sijb

(j)
jj + ε

(j+1)
ij

= b
(1)
ij −

j∑
k=1

sikb
(k)
kj + eij (4.4)
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From (4.3) and (4.4), we obtain

L̄Ū =


1

s21 1
...

. . .
sn1 · · · · · · 1




b
(1)
11 b

(1)
12 · · · b

(1)
1n

. . .
...

. . .
...

b
(n)
nn

 = A + E.

where

sik = fl(b(k)
ik /b

(k)
kk ) =

b
(k)
ik

b
(k)
kk

(1 + ηik), |ηik| ≤ u

Then,
fl(sikb

(k)
kj ) = sikb

(k)
kj (1 + θ

(k)
ij ), |θ(k)

ij | ≤ u

and so,

b
(k+1)
ij = fl(b(k)

ij − sikb
(k)
kj (1 + θ

(k)
ij ))

= (b(k)
ij − sikb

(k)
kj (1 + θ

(k)
ij ))(1 + ϕ

(k)
ij ), |ϕ(k)

ij | ≤ u.

After some manipulations, we obtain

ε
(k+1)
ij = b

(k+1)
ij

(
ϕ

(k)
ij

1 + ϕ
(k)
ij

)
− sikb

(k)
kj θ

(k)
ij .

With partial pivoting, |sik| ≤ 1, provided that |fl(a/b)| ≤ 1 whenever
|a| ≤ |b|. In most modern implementations of floating-point arithmetic, this
is in fact the case. It follows that

|ε(k+1)
ij | ≤ |b(k+1)

ij | u
1− u

+ 1 · |b(k)
ij |u.

How large can the elements of B(k) be? Returning to exact arithmetic, we
assume that |aij | ≤ a and from (4.1), we obtain

|a(2)
ij | ≤ |a(1)

ij |+ |a
(1)
kj | ≤ 2a

|a(3)
ij | ≤ 4a

...
|a(n)

ij | = |a(n)
nn | ≤ 2n−1a.
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We can show that a similar result holds in floating-point arithmetic:

|b(k)
ij | ≤ 2k−1a + O(u).

This upper bound is achievable, but in practice it rarely occurs.
For complete pivoting, Wilkinson gave a bound, denoted G, or growth

factor. Until 1990, it was conjectured that G ≤ k. It was shown to be true
for n ≤ 5, but there have been examples constructed for n > 5 where G ≥ n.
In any event, we have the following bound for the entries of E:

|E| ≤ 2uGa



0 · · · · · · · · · · · · 0
1 · · · · · · · · · · · · 1
1 2 · · · · · · · · · 2
...

... 3 · · · · · · 3
. . . · · ·

...
1 2 3 · · · n− 1 n− 1


+ O(u2).

4.7.3 Error Analysis of Forward Substitution

We now study the process of forward substitution, to solve t11 0
...

. . .
tn1 tnn


 u1

...
un

 =

 h1
...

hn

 .

Using forward substitution, we obtain

u1 = h1/t11
...

uk =
hk − tk1u1 − · · · − tk,k−1uk−1

tkk

which yields

fl(uk) =
hk(1 + εk)(1 + ηk)−

∑k−1
i=1 tkiui(1 + ξki)(1 + εk)(1 + ηk)

tkk
=

hk −
∑k−1

i=1 tkiui(1 + ξki)
tkk

(1+εk)(1+ηk)

or
k∑

i=1

uitki(1 + λki) = hk
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which can be rewritten in matrix notation as

Tu +

 λ11t11
λ12t12 λ22t22

...
...

. . .

u = h.

In other words, the computed solution u is the exact solution to the per-
turbed problem (T + δT )u = h, where

|δT | ≤ u


|t11|
|t21| 2|t22|

...
. . .

(n− 1)|tn1| · · · · · · 2|tnn|

+ O(u2).

Note that the perturbation δT actually depends on h.

4.7.4 Bounding the perturbation in A

Recall that our computed solution x + δx solves

(A + δA)x̄ = b

where δA is a perturbation that has the form

δA = E + L̄δŪ + δL̄Ū + δL̄δŪ .

For partial pivoting, |l̄ij | ≤ 1, and we have the bounds

max
i,j
|δL̄ij | ≤ nu + O(u2),

max
i,j
|δŪij | ≤ nuGa + O(u2)

were a = maxi,j |aij | and G is the growth factor for partial pivoting. Putting
our bounds together, we have

max
i,j
|δAij | ≤ max

i,j
|eij |+ max

i,j
|L̄δŪij |+ max

i,j
|ŪδL̄ij |+ max

i,j
|δL̄δŪij |

≤ 2uGan + n2Gau + n2Gau + O(u2)

from which it follows that

‖δA‖∞ ≤ 2n2(n + 1)uGa + O(u2).

We conclude that Gaussian elimination is backward stable.

23



4.7.5 Bounding the error in the solution

Let x̄ = x + δx be the computed solution. Then, from (A + δA)x̄ = b we
obtain

δAx̄ = b−Ax̄ = r

where r is called the residual vector. From our previous analysis,

‖r‖∞
‖x̄‖∞

≤ ‖δA‖∞ ≤ 2n2(n + 1)Gau.

Also, recall
‖δx‖
‖x‖

≤ κ(A)

1− κ(A)‖δA‖
‖A‖

‖δA‖
‖A‖

.

We know that ‖A‖∞ ≤ na, so

‖δA‖∞
‖A‖∞

≤ 2n(n + 1)Gu.

Note that if κ(A) is large and G is large, our solution can be very inaccurate.
The important factors in the accuracy of the computed solution are:

• The growth factor G

• The condition number κ

• The accuracy u

In particular, κ must be large with respect to the accuracy in order to
be troublesome. For example, consider the scenario where κ = 102 and
u = 10−3, as opposed to the case where κ = 102 and u = 10−50.

4.8 Improving the accuracy of solutions

4.8.1 Iterative Refinement

The process of iterative refinement proceeds as follows to find a solution to
Ax = b:

x(0) = 0

r(i) = b−Ax(i)

Aδ(i) = r(i)

x(i+1) = x(i) + δ(i)
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Numerically, this translates to

(A + δA(i))δ(i) = (I + E(i))r(i)

x(i+1) = (I + F (i))(x(i) + δ(i))

where the matrices E(i) and F (i) denote roundoff error. Let z(i) = x− x(i).
Then

x(i+1) − x = (I + F (i))(x(i) + δ(i))− x

= (I + F (i))(x(i) − x) + F (i)x + (I + F (i))δ(i)

= (I + F (i))(−z(i) + (I + A−1δA(i))−1z(i) +
(I + A−1δA(i))−1(A−1E(i)A)z(i)) + F (i)x

= (I + F (i))(I + A−1δA(i))−1(A−1δA(i)z(i) + A−1E(i)Az(i)) + F (i)x

which we rewrite as
z(i+1) = K(i)z(i) + c(i)

Taking norms yields

‖z(i+1)‖ ≤ ‖K(i)‖‖z(i)‖+ ‖c(i)‖.

Under the assumptions

‖K(i)‖ ≤ τ, ‖c(i)‖ ≤ σ‖x‖

we obtain

‖z(i+1)‖ ≤ τ‖z(i)‖+ σ‖x‖
≤ τ i+1‖z(0)‖+ σ(1 + τ + · · ·+ τ i)‖x‖

≤ τ i+1‖z(0)‖+ σ
1− τ (i+1)

1− τ
‖x‖

Assuming ‖A−1‖‖δA(i)‖ ≤ α and ‖E(i)‖ ≤ ω,

τ =
(1 + ε)(α + κ(A)ω)

1− α

where ‖F (i)‖ ≤ ε. For sufficiently large i, we have

‖z(i)‖
‖x‖

≤ ε

1− τ
+ O(ε2)
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From
1− τ =

(1− α)− (1 + ε)(α + κ(A)ω)
1− α

we obtain

1
1− τ

=
1− α

(1− α)− (1 + ε)(α + κ(A)ω)
≈ 1− α

1− 2α− κ(A)ω
.

Therefore, 1/(1− τ) ≤ 2 whenever α ≤ 1
3 −

2
3κ(A)ω, approximately.

It can be shown that if the vector r(k) is computed using double or
extended precision that x(k) converges to a solution where almost all digits
are correct when κ(A)u ≤ 1.

4.8.2 Scaling and Equilibration

As we have seen, the bounds for the error depend on κ(A) = ‖A‖‖A−1‖. Per-
haps we can re-scale the equations so that the condition number is changed.
We replace the system

Ax = b

by the equivalent system
DAx = Db

or possibly
DAEy = Db

where D and E are diagonal matrices and y = E−1x.
The answer will depend upon the norm used to compute the condition

number.
Suppose A is symmetric positive definite. We want to replace A by

DAD; i.e. aij ← didjaij . Can we choose D so that κ(DAD) is minimized?
It turns out that for a class of symmetric matrices, this is the case. A

symmetric positive definite matrix A is said to have Property A if there
exists a permutation matrix Π such that

ΠAΠT =
[

D F
F T D

]
where D is a diagonal matrix. All tridiagonal matrices that are symmetric
positive definite have Property A.

For example, suppose

A =
[

50 7
7 1

]
.
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Then λmax ≈ 51 and λmin ≈ 1/51, which means that κ(A) ≈ 2500. However,

DAD =

[
1√
50

0
0 1

] [
50 7
7 1

][ 1√
50

0
0 1

]
=

[
1 7√

50
7√
50

1

]
and

κ =
1 + 7√

50

1− 7√
50

≈ 200.

One scaling strategy is called equilibration. The idea is to set A(0) = A

and compute A(1/2) = D(1)A(0) = {d(1)
i aij}, choosing the diagonal matrix

D1 so that d
(1)
i

∑n
j=1 |a

(0)
ij | = 1. Then, we compute A(1) = A(1/2)E(1) =

{a(1/2)
ij e

(1)
j }, choosing each element of the diagonal matrix E(1) so that

e
(1)
j

∑n
i=1 |a

(1/2)
ij | = 1. We then repeat this process, which yields

A(k+1/2) = D(k+1)A(k)

A(k+1) = A(k+1/2)E(k+1)

Under very general conditions, the A(k) converge to a matrix whose row
and column sums are all equal.

4.9 Estimating the Condition Number

Consider the condition number

κ∞(A) = ‖A‖∞‖A−1‖∞.

Of course,

‖A‖∞ = max
i

n∑
j=1

|aij |,

but how do we compute ‖A−1‖∞? If A−1 = B, then ‖A−1‖∞ = maxi
∑n

j=1 |bij |.
Suppose Ay = d or y = A−1d. Then ‖y‖∞ ≤ ‖A−1‖∞‖d‖∞, and therefore

‖A−1‖∞ ≥
‖y‖∞
‖d‖∞

.

This suggests an algorithm for estimating the condition number: we can
choose d to maximize ‖y‖∞. To illustrate the process, we let

A = T =

 t11 t12 · · · t1n

. . .
...

tnn


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and examine the process of solving Ty = d. Writing out this system of
equations yields

t11y1 + t12y2 + · · ·+ t1nyn = d1

...
tnnyn = dn

Considering the last equation yn = dn/tnn, we choose dn = +1 if tnn > 0,
and −1 otherwise. Next, we have

tn−1,n−1yn−1 + tn−1,nyn = dn−1,

which yields

yn−1 =
dn−1 − tn−1,nyn

tn−1,n−1
.

If tn−1,nyn > 0, we choose dn−1 = −1, otherwise, we set dn−1 = +1. We
continue this process, consistently choosing di = ±1 depending on which
choice increases ‖y‖∞. There are other more sophisticated strategies than
this.

Appendix: the Simplex Method

In order to implement the Simplex Algorithm, it is necessary to solve three
systems of linear equations at each iteration; namely

Bx = b (4.5)
BT w = c̃ (4.6)
Bt(r) = −a(r) (4.7)

If the LU decomposition of B is known, then it is easy to solve the three
systems of equations. We have already shown how to solve systems (4.5)
and (4.7), using the LU decomposition. Since BT = UT LT , solving (4.6)
merely requires the solving of UT y = c̃ and then LT w = y.

In the Simplex Algorithm we change only one column of B at a time. If
the LU decomposition of B is known, we can determine the LU decompo-
sition of the new matrix B by simply updating the previous decomposition.
This process can be done efficiently and in a manner that insures numerical
stability.

Suppose Gaussian elimination with partial pivoting has been used on B
so that

P (m−1)Π(m−1) · · ·P (1)Π(1)B = U.
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Let
B = [b(1), b(2), . . . , b(m)] and U = [u(1), u(2), . . . , u(m)].

Because the last (m− k) components of u(k) are zero,

P (k+1)Π(k+1)u(k) = u(k)

since P (k+1)Π(k+1) linearly combines the bottom (m − k) elements of u(k).
Thus,

u(k) = P (k)Π(k)P (k−1)Π(k−1) · · ·P (1)Π(1)b(k).

If we let
B̄ = [b(1), b(2), . . . , b(s−1), g, b(s+1), . . . , b(m)],

and
T (k) = P (k)Π(k) · · ·P (1)Π(1).

Then

T (s−1) = [T (1)b(1), . . . , T (s−1)b(s−1), T (s−1)g, T (s−1)b(s+1), . . . , T (s−1)b(m)]
= [u(1), . . . , u(s−1), T (s−1)g, T (s−1)b(s+1), . . . , T (s−1)b(m)].

Therefore, to find the new LU decomposition of B̄ we need only compute
Π̄(s), P̄ (s), . . ., Π̄(m−1), P̄ (m−1) so that

P̄ (m−1)Π(m−1) · · · P̄ (s)Π̄(s)T (s−1)[g, b(s+1), . . . , b(m)] = [ū(s), ū(s+1), . . . , ū(m)],

where ū(k) is a new vector whose last (m − k) components are zero. If g
replaces b(m), then about m2/2 multiplications are required to compute the
new Ū . However, if g replaces b(1), the decomposition must be completely
recomputed.

We can update the LU decomposition in a more efficient manner which
unfortunately requires more storage. Let us write

B0 = L0U0.

Let the column s0 of B0 be replaced by the column vector g0. As long as we
revise the ordering of the unknowns accordingly we may insert g0 into the
last column position, shifting columns s0 + 1 through m of B0 one position
to the left to make room. We will call the result B1, and we can easily check
that it has the decomposition

B1 = L0H1,
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where H1 is a matrix that is upper Hessenberg in its last m−s0 +1 columns,
and upper-triangular in its first s0 − 1 columns.

The first s0 − 1 columns of H1 are identical with those of U0. The next
m−s0 are identical with the last m−s0 columns of U0, and the last column
of H1 is the vector L−1

0 g0.
H1 can be reduced to upper-triangular form by Gaussian elimination

with row interchanges. Here, however, we need only concern ourselves with
the interchanges of pairs of adjacent rows. Thus, U1 is gotten from H1 by
applying a sequence of simple transformations:

U1 = P
(m−1)
1 Π(m−1)

1 · · ·P (s0)
1 Π(s0)

1 H1 (4.8)

where each P
(k)
1 is the identity matrix with a single nonzero subdiagonal

element g
(1)
k in the (k + 1, k) position, and each Π(k) is either the identity

matrix or the identity matrix with the kth and (k + 1)st rows exchanged,
the choice being made so that |g(1)

k | ≤ 1.
The essential information in all of the transformations can be stored in

m−s0 locations plus an additional m−s0 bits (to indicate the interchanges).
If we let

L−1
1 = P

(m−1)
1 Π(m−1)

1 · · ·P (s0)
1 Π(s0)

1 L−1
0 ,

then we have achieved the decomposition

B1 = L1U1.

The transition from B1 to Bi+1, where i represents the ith time through
steps (2)-(7) of the Simplex Algorithm, is to be made exactly as the tran-
sition from B0 to B1. Any system of linear equations involving the matrix
Bi for any i is to be solved by applying the sequences of transformations
defined by (4.8) and then solving the upper triangular system of equations.

As we have already pointed out, it requires

m3/3 + O(m2)

multiplication-type operations to produce an initial LU decomposition,

B0x = v.

The solution for any system Bix = v must be found according to the LU
decomposition method by computing

y = L−1
i v, (4.9)
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followed by solving
Uix = y. (4.10)

The application of L−1
0 to v in (4.9) will require m(m−1)/2 operations. The

application of the remaining transformations in L−1
i will require at most

i(m − 1) operations. Solving (4.10) costs m(m + 1)/2 operations. Hence,
the cost of (4.9) and (4.10) together is not greater than

m2 + i(m− 1)

operations, and a reasonable expected figure would be m2 + i
2(m− 1).
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Chapter 5

Least-Squares Problems

5.1 The Full-rank Linear Least Squares Problem

Given an m× n matrix A, with m ≥ n, and an m-vector b, we consider the
overdetermined system of equations Ax = b, in the case where A has full
column rank. If b is in the range of A, then there exists a unique solution
x∗. For example, there exists a unique solution in the case of

A =

 0 1
1 0
0 0

 , b =

 1
1
0

 ,

but not if b =
[

1 1 1
]T . In such cases, when b is not in the range of

A, then we seek to minimize ‖Ax− b‖p for some p.
Different norms give different solutions. If p = 1 or p = ∞, then the

function we seek to minimize, f(x) = ‖Ax− b‖p is not differentiable, so we
cannot use standard minimization techniques. However, if p = 2, f(x) is
differentiable, and thus the problem is more tractable. We now consider two
methods.

The first approach is to take advantage of the fact that the 2-norm is
invariant under orthogonal transformations, and seek an orthogonal matrix
Q such that the transformed problem

min ‖Ax− b‖2 = min ‖QT (Ax− b)‖2

is “easy” to solve. Let

A = Q

[
R
0

]
=
[

Q1 Q2

] [ R
0

]
= Q1R.
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Then QT
1 A = R and

min ‖Ax− b‖2 = min ‖QT (Ax− b)‖2

= min ‖(QT A)x−QTb‖2

= min
∥∥∥∥[ R

0

]
x−QTb

∥∥∥∥
2

If we partition

QTb =
[

c
d

]
then

min ‖Ax− b‖2
2 = min

∥∥∥∥[ R
0

]
x−

[
c
d

]∥∥∥∥2

2

= min ‖Rx− c‖2
2 + ‖d‖2

2.

Therefore, the minimum is achieved by the vector x such that Rx = c and
therefore

min
x
‖Ax− b‖2 = ‖d‖2 ≡ ρLS .

The second method is to define φ(x) = 1
2‖Ax − b‖2

2, which is a dif-
ferentiable function of x. We can minimize φ(x) by noting that ∇φ(x) =
AT (Ax − b), which means that ∇φ(x) = 0 if and only if AT Ax = ATb.
This system of equations is called the normal equations, and they were used
by Gauss to solve the least squares problem. If m >> n then AT A is n×n,
which is a much smaller system to solve than Ax = b, and if κ(AT A) is not
too large, we can use the LU factorization to solve for x.

Which is the better method? This is not a simple question to answer.
The normal equations produce an x∗ whose relative error depends on κ(A)2,
whereas the QR factorization produces an x∗ whose relative error depends on
u(κ2(A) + ρLSκ2(A)2). The normal equations involve much less arithmetic
when m >> n and they require less storage, but the QR factorization is
often applicable if the normal equations break down.

5.2 The QR Factorization

Let A be an m × n matrix with full column rank. The QR factorization
of A is a decomposition A = QR, where Q is an m ×m orthogonal matrix
and R is an m × n upper triangular matrix. There are two common ways
to compute this decomposition:

1. Using Householder matrices, developed by Alston S. Householder;
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2. Using Givens rotations, also known as Jacobi rotations, used by W.
Givens and originally invented by Jacobi for use with in solving the
symmetric eigenvalue problem in 1846.

A third, less frequently used approach, called Gram-Schmidt orthogonaliza-
tion, will also be discussed.

5.2.1 Givens (Jacobi) rotations

We illustrate the process in the case where A is a 2× 2 matrix. In Gaussian
elimination, we compute L−1A = U where L−1 is unit lower triangular and
U is upper triangular. Specifically,[

1 0
m21 1

] [
a11 a12

a21 a22

]
=

[
a

(2)
11 a

(2)
12

0 a
(2)
22

]
, m21 = −a21

a11
.

By contrast, the QR decomposition takes the form[
γ σ
−σ γ

] [
a11 a12

a21 a22

]
=
[

r11 r12

0 r22

]
where γ2 + σ2 = 1. From the relationship −σa11 + γa21 = 0 we obtain

γa21 = σa11

γ2a2
21 = σ2a2

11 = (1− γ2)a2
11

which yields
γ = ± a11√

a2
21 + a2

11

.

It is conventional to choose the + sign. Then, we obtain

σ2 = 1− γ2 = 1− a2
11

a2
21 + a2

11

=
a2

21

a2
21 + a2

11

,

or
σ = ± a21√

a2
21 + a2

11

.

Again, we choose the + sign. As a result, we have

r11 = a11
a11√

a2
21 + a2

11

+ a21
a21√

a2
21 + a2

11

=
√

a2
21 + a2

11.
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The matrix

QT =
[

γ σ
−σ γ

]
is called a Givens rotation. It is called a rotation because it is orthogonal,
and therefore length-preserving, and also because there is an angle θ such
that sin θ = σ and cos θ = γ, and its effect is to rotate a vector through the
angle θ. In particular, [

γ σ
−σ γ

] [
α
β

]
=
[

ρ
0

]
where ρ =

√
α2 + β2, α = ρ cos θ and β = ρ sin θ. It is easy to verify that

the product of two rotations is itself a rotation. Now, in the case where A
is an n× n matrix, suppose that we have the vector

×
...
×
α
×
...
×
β
×
...
×



.

Then 

1
. . .

1
γ σ

1
. . .

1
−σ γ

1
. . .

1





×
...
×
α
×
...
×
β
×
...
×



=



×
...
×
ρ
×
...
×
0
×
...
×



.
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So, in order to transform A into an upper triangular matrix R, we can find
a product of rotations Q such that QT A = R. It is easy to see that O(n2)
rotations are required.

5.2.2 Householder reflections

It is natural to ask whether we can introduce more zeros with each orthog-
onal rotation. To that end, we examine Householder reflections. Consider a
matrix of the form P = I− τuuT , where u 6= 0 and τ is a nonzero constant.
It is clear that P is a symmetric rank-1 change of I. Can we choose τ so
that P is also orthogonal? From the desired relation P T P = I we obtain

P T P = (I − τuuT )T (I − τuuT )
= I − 2τuuT + τ2uuTuuT

= I − 2τuuT + τ2(uTu)uuT

= I − (τ2uTu− 2τ)uuT

= I + τ(τuTu− 2)uuT .

It follows that if τ = 2/uTu, then P T P = I for any nonzero u. Without
loss of generality, we can stipulate that uTu = 1, and therefore P takes the
form P = I − 2vvT , where vTv = 1.

Why is the matrix P called a reflection? This is because for any nonzero
vector x, Px is the reflection of x across the hyperplane that is normal
to v. To see this, we consider the 2 × 2 case and set v =

[
1 0

]T and

x =
[

1 2
]T . Then

P = I − 2vvT

= I − 2
[

1
0

] [
1 0

]
=

[
1 0
0 1

]
− 2

[
1 0
0 0

]
=

[
−1 0
0 1

]
Therefore

Px =
[
−1 0
0 1

] [
1
2

]
=
[
−1
2

]
.

Now, let x be any vector. We wish to construct P so that Px = α
[

1 0 · · · 0
]T =

5



αe1 for some α. From the relations

‖Px‖2 = ‖x‖2

‖αe1‖2 = |α|‖e1‖2 = |α|

we obtain α = ±‖x‖2. To determine P , we observe that

x = P−1(αe1)
= αPe1

= α(I − 2vvT )e1

= α[e1 − 2vvTe1]
= α[e1 − 2vv1]

which yields the system of equations

x =


x1

x2
...

xn

 = α


1− 2v2

1

−2v1v2
...

−2v1vn

 .

From the first equation x1 = α(1− 2v2
1) we obtain

v1 = ±
√

1
2

(
1− x1

α

)
.

It is best to choose α to have the opposite sign of x1 to avoid cancellation
in the computation of v1. Then for i = 2, . . . , n, we have

vi = − xi

2αv1
.

Note that the matrix P is never formed explicitly. For any vector b, the
product Pb can be computed as follows:

Pb = (I − 2vvT )b = b− 2(vTb)v.

This process requires only O(2n) operations. It is easy to see that we can
represent P simply by storing only v.

To complete the QR factorization, suppose that that x = a1 is the
first column of a matrix A. First we construct a Householder reflection
H1 = I − 2u1uT

1 such that Hx = αe1, so that we have

A(2) = H1A =


r11

0
... a(2)

2 · · · a(2)
n

0

 ,

6



where we denote the constant α by r11, as it is the (1, 1) element of the
updated matrix A(2). Now, we can construct H2 such that

H2a(2) =


a

(2)
12

r22

0
...
0

 , u12 = 0, H2 =


1 0
0
... hij

0

 .

Note that the first column of A(2) is unchanged by H2. Continuing this
process, we obtain

Hn−1 · · ·H1A = A(n) = R

where R is an upper triangular matrix. We have thus factored A = QR,
where Q = H1H2 · · ·Hn−1 is an orthogonal matrix. Note that

AT A = RT QT QR = RT R,

and thus R is the Cholesky factor of AT A.

Remark. Because each Jacobi rotation only modifies two rows of A, it is
possible to interchange the order of rotations that affect different rows, and
thus apply sets of rotations in parallel. This is the main reason why Jacobi
rotations can be preferable to Householder reflections. Other reasons are
that they are easy to use when the QR factorization needs to be updated
as a result of adding a row to A or deleting a column of A. They are also
more efficient when A is sparse.

5.2.3 Gram-Schmidt and Modified Gram-Schmidt orthogo-
nalization

Consider the QR factorization

A =
[

a1 · · · an

]
=
[

q1 · · · qn

]  r11 · · · r1n

. . .
...

rnn

 .

From the above matrix product we can see that a1 = r11q1, from which it
follows that

r11 = ±‖a1‖2, q1 =
1

‖a1‖2
a1.

7



Next, from a2 = r12q1 + r22q2 we obtain

r12 = qT
1 a2, r22 = ±‖a2 − r12q1‖2, q2 =

1
r22

(a2 − r12q1).

In general, we use the relation

ak =
k∑

j=1

rjkqj

to obtain

qk =
1

rkk

ak −
k−1∑
j=1

rjkqj

 , rjk = qT
j ak.

Note that qk can be rewritten as

qk =
1

rkk

ak −
k−1∑
j=1

(qT
j ak)qj

 =
1

rkk

ak −
k−1∑
j=1

qjqT
j ak

 =
1

rkk

I −
k−1∑
j=1

qjqT
j

ak.

If we define Pi = qiqT
i , then Pi is a symmetric projector that satisfies P 2

i =
Pi, and PiPj = δij . Thus we can write

qk =
1

rkk

I −
k−1∑
j=0

Pj

ak =
1

rkk

k−1∏
j=1

(I − Pj)ak.

The main deficiency of the classical Gram-Schmidt process is that it is
numerically unstable. If a1 and a2 are almost parallel, then a2 − r12q1 is
almost zero and roundoff error becomes significant. The Modified Gram-
Schmidt method alleviates this difficulty. Recall

A = QR =
[

r11q1 r12q1 + r22q2 · · ·
]

We define

A(k) =
k−1∑
i=1

qirT
i , rT

i =
[

ri1 ri2 · · · rii

]
which means

A−
k−1∑
i=1

qirT
i =

[
0 0 · · · 0 A(k)

]
.

If we write
A(k) =

[
z B

]
8



then
rkk = ‖z‖2, qk =

1
rkk

z.

We then compute [
rk,k+1 · · · rk,n

]
= qT

k B

which yields
A(k+1) = B − qk

[
r1k · · · rkk

]
This process is numerically stable. One can show that

Q̂T
1 Q̂1 = I + EMGS , ‖EMGS‖ ≈ uκ2(A),

and Q̂1 can be computed in approximately 2mn2 flops, whereas with House-
holder QR,

Q̂T
1 Q̂1 = I + En, ‖En‖ ≈ u,

with Q̂1 being computed in approximately 2mn2 − 2n2/3 flops to factor A
and an additional 2mn2 − 2n2/3 flops to obtain the n columns of Q.

Note that the error bound for modified Gram-Schmidt depends on the
condition number of A, whereas the bound for Householder doesn’t. This
can be an important consideration when dealing with ill-conditioned sys-
tems. An example of such systems is the Hilbert matrices, which are defined
by

H =

 1 1/2 1/3 · · · 1/n
1/2 1/3 · · ·
...

 , hij =
1

i + j − 1
.

It is very ill-conditioned, but H−1 is known, and its entries are all integers.

5.3 Solution using Normal Equations

We can solve the linear least squares problem using the normal equations

AT Ax = ATb

as follows: first, we solve the above system to obtain an approximate solution
x̂, and compute the residual vector r = b−Ax̂. Now, because

AT r = ATb−AT Ax̂ = 0,

we obtain the system

r + Ax̂ = b

AT r = 0

9



or, in matrix form, [
I A

AT 0

] [
r
x

]
=
[

b
0

]
.

This is a large system, but it preserves the sparsity of A. It can be used in
connection with iterative refinement, but unfortunately this procedure does
not work well because it is very sensitive to the residual.

5.4 Perturbation Theory for Least-Squares Prob-
lems

Suppose that we are solving the perturbed least squares problem

A(ε)x(ε) = b, A(ε) = A + εE.

How does the residual vector r(ε) = b−Ax(ε) and the solution x(ε) change
as a function of ε?

Before computing any bounds, let us first note that the computed solu-
tion x̂ = A+b is very sensitive to the residual. To see this, suppose that b
is replaced by b + αr, where α is a constant. Then

A+(b + αr) = x̂ + αA+r

= x̂ + αA+(I −AA+)b
= x̂ + α[A+b−A+AA+b]
= x̂

so the computed solution is unchanged, even if α is large.

To compute an actual bound, we use the fact that PA = AA+A = A,
and we differentiate with respect to ε and obtain

P
dA

dε
+

dP

dε
A =

dA

dε
.

It follows that
dP

dε
A = (I − P )

dA

dε
= P⊥

dA

dε
.

Multiplying through by A+, we obtain

dP

dε
P = P⊥

dA

dε
A+.

10



Because P is a projection,

d(P 2)
dε

= P
dP

dε
+

dP

dε
P =

dP

dε
,

so, using the relationship AT P = AT ,

dP

dε
= P⊥

dA

dε
A+ + (A+)T dAT

dε
P⊥.

Now, using a Taylor expansion around ε = 0, we obtain

r(ε) = r(0) + ε
dP⊥

dε
b + O(ε2)

= r(0)− ε
dP

dε
b + O(ε2)

= r(0)− ε[P⊥Ex̂(0) + (A+)T ET r(0)] + O(ε2)

from the relations x̂ = A+b and r = P⊥b. Taking norms, we obtain

‖r(ε)− r(0)‖2

‖x̂‖2
= |ε|‖E‖2

(
1 + ‖A+‖2

‖r(0)‖2

‖x̂(0)‖2

)
+ O(ε2).

Note that if A is scaled so that ‖A‖2 = 1, then the second term above
involves the condition number κ2(A). We also have

‖x(ε)− x(0)‖2

‖x̂‖2
= |ε|‖E‖2

(
2κ(A) + κ2(A)2

‖r(0)‖2

‖x̂(0)‖2

)
+ O(ε2).

Note that a small perturbation residual does not imply a small perturbation
in the solution.

5.5 Rank-deficient Least Squares

We seek a decomposition of the form A = QT RΠ where Π is chosen so
that the diagonal elements of R are maximized at each stage. Specifically,
suppose

H1A =


r11

0
... ∗
0

 , r11 = ‖a1‖2.

So, we choose Π1 so that ‖a1‖2 ≥ ‖aj‖2 for j ≥ 2. For Π2, look at the
lengths of the columns of the submatrix. We don’t need to recompute the

11



lengths each time, because we can update by subtracting the square of the
first component from the square of the total length. Eventually, we get

QT

[
R S
0 0

]
Π1 · · ·Πr = A

where R is upper triangular. Using this decomposition, we can solve the
linear least squares problem Ax = b by observing that

‖b−Ax‖2
2 =

∥∥∥∥b−QT

[
R S
0 0

]
Πx
∥∥∥∥2

2

=
∥∥∥∥Qb−

[
R S
0 0

] [
u
v

]∥∥∥∥2

2

=
∥∥∥∥[ c

d

]
−
[

Ru + Sv
0

]∥∥∥∥2

2

= ‖c−Ru− Sv‖2
2 + ‖d‖2

2.

Thus min ‖b−Ax‖2
2 = ‖d‖2

2 provided that Ru+Sv = c. A basic solution is
obtained by choosing v = 0. A second solution is to choose u and v so that
‖u‖2

2 + ‖v‖2
2 is minimized. This criterion is related to the pseudoinverse of

A.
Suppose

A = QT

[
R S
0 0

]
Π

where R is upper triangular. Then

AT = ΠT

[
RT 0
ST 0

]
Q

where RT is lower triangular. We apply Householder reflections so that

Hi · · ·H2H1

[
RT 0
ST 0

]
=
[

U 0
0 0

]
.

Then

AT = ZT

[
U 0
0 0

]
Q

where Z = Hi · · ·H1Π. In other words,

A = QT

[
L 0
0 0

]
Z

12



where L is a lower triangular matrix of size r × r, where r is the rank of A.
This is the complete orthogonal decomposition of A.

Recall that X is the pseudoinverse of A if

1. AXA = A

2. XAX = X

3. (XA)T = XA

4. (AX)T = AX

Given the above complete orthogonal decomposition of A, the pseudoinverse
of A, denoted A+, is given by

A+ = ZT

[
L−1 0
0 0

]
Q.

Let X = {x|‖b − Ax‖2 = min }. If x ∈ X and we desire ‖x‖2 = min , then
x = A+b. Note that in this case,

r = b−Ax = b−AA+b = (I −AA+)b

where the matrix (I − AA+) is a projection matrix P⊥. To see that P⊥ is
a projection, note that

P = AA+

= QT

[
L 0
0 0

]
ZZT

[
L−1 0
0 0

]
Q

= QT

[
Ir 0
0 0

]
Q.

5.6 Least Squares with Linear Constraints

Suppose that we wish to fit data as in the least squares problem, except that
we are using different functions to fit the data on different subintervals. A
common example is the process of fitting data using cubic splines, with a
different cubic polynomial approximating data on each subinterval.

Typically, it is desired that the functions assigned to each piece form a
function that is continuous on the entire interval within which the data lies.
This requires that constraints be imposed on the functions themselves. It is
also not uncommon to require that the function assembled from these pieces
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also has a continuous first or even second derivative, resulting in additional
constraints. The result is a least squares problem with linear constraints, as
the constraints are applied to coefficients of predetermined functions chosen
as a basis for some function space, such as the space of polynomials of a
given degree.

The general form of a least squares problem with linear constraints is as
follows: we wish to find an n-vector x that minimizes ‖Ax−b‖2, subject to
the constraint CTx = d, where C is a known n×p matrix and d is a known
p-vector.

This problem is usually solved using Lagrange multipliers. We define

f(x;λ) = ‖b−Ax‖2
2 + 2λT CTx.

Then
∇f = 2(AT Ax−ATb + Cλ).

To minimize f , we can solve the system[
AT A C
CT 0

] [
x̂
λ

]
=
[

ATb
d

]
.

From AT Ax = ATb − Cλ, we see that we can first compute x = x̂ −
(AT A)−1Cλ where x̂ is the solution to the unconstrained least squares prob-
lem. Then, from the equation CTx = d we obtain the equation CT (AT A)−1Cλ =
CT x̂− d which we can now solve for λ. The algorithm proceeds as follows:

1. Solve the unconstrained least squares problem Ax = b for x̂.

2. Compute A = QR.

3. Form W = (RT )−1C.

4. Compute W = PU , the QR factorization of W .

5. Solve UT Uλ = η = CT x̂− d for λ. Note that

UT U = (P T W )T (P T W )
= W T PP T W

= CT R−1(RT )−1C

= CT (RT R)−1C

= CT (RT QT QR)−1C

= CT (AT A)−1C

14



6. Set x = x̂− (AT A)−1Cλ.

This method is not the most practical since it has more unknowns than the
unconstrained least squares problem, which is odd because the constraints
should have the effect of eliminating unknowns, not adding them. We now
describe an alternate approach.

Suppose that we compute the QR factorization of C to obtain

QT C =
[

R
0

]
where R is a p × p upper triangular matrix. Then the constraint CTx = d
takes the form

RTu = d, QTx =
[

u
v

]
.

Then

‖b−Ax‖2 = ‖b−AQQTx‖

=
∥∥∥∥b− Ã

[
u
v

]∥∥∥∥
2

, Ã = AQ

=
∥∥∥∥b− [ Ã1 Ã2

] [ u
v

]∥∥∥∥
2

= ‖b− Ã1u− Ã2v‖2

Thus we can obtain x by the following procedure:

1. Compute the QR factorization of C

2. Compute Ã = AQ

3. Solve RTu = d

4. Solve the new least squares problem of minimizing ‖(b−Ã1u)−Ã2v‖2

5. Compute

x = Q

[
u
v

]
.

This approach has the advantage that there are fewer unknowns in each
system that needs to be solved, and also that κ(Ã2) ≤ κ(A). The drawback
is that sparsity can be destroyed.
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5.7 Least Squares with Quadratic Constraints

We wish to solve the problem

‖b−Ax‖2 = min , ‖x‖2 = α, α ≤ ‖A+b‖2.

This problem is known as least squares with quadratic constraints. To solve
this problem, we define

ϕ(x;µ) = ‖b−Ax‖2
2 + µ‖x2 − α2‖

and seek to minimize ϕ. From

∇ϕ = 2ATb− 2AT Ax + 2µx

we obtain the system
(AT A + µI)x = ATb.

If we denote the eigenvalues of AT A by

λi(AT A) = λ1, . . . , λn, λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0

then
λi(AT A + µI) = λ1 + µ, · · · , λn + µ.

If µ ≥ 0, then κ(AT A + µI) ≤ κ(AT A), because

λ1 + µ

λn + µ
≤ λ1

λn
,

so AT A + µI is better conditioned.
Solving the least squares problem with quadratic constraints arises in

many literatures, including

1. Statistics: Ridge Regression

2. Regularization: Tichonov

3. Generalized cross-validation (GCV)

To solve this problem, we see that we need to compute

x = (AT A + µI)−1ATb

where
xTx = bT A(AT A + µI)−2ATb = α2.
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If A = UΣV T is the SVD of A, then we have

α2 = bT UΣV T (V ΣT ΣV T + µI)−2V ΣT UTb

= cT Σ(ΣT Σ + µI)−2ΣTc, UTb = c

=
r∑

i=1

c2
i σ

2
i

(σ2
i + µ)2

= χ(µ)

The function χ(µ) has poles at−σ2
i for i = 1, . . . , n. Furthermore, limµ→∞ χ(µ) =

0.
We now have the following procedure for solving this problem, given A,

b, and α2:

1. Compute the SVD of A to obtain A = UΣV T .

2. Compute c = UTb.

3. Solve χ(µ∗) = α2 where µ∗ ≥ 0. Don’t use Newton’s method on this
equation directly; solving 1/χ(µ) = 1/α2 is much better.

4. Use the SVD to compute

x = (AT A + µI)−1ATb = V (ΣT Σ + µI)−1ΣT UTb.

5.8 Applications of the SVD

5.8.1 Minimum-norm least squares solution

One of the most well-known applications of the SVD is that it can be used
to obtain the solution to the problem

‖b−Ax‖2 = min , ‖x‖2 = min .

The solution is
x̂ = A+b = V Σ+UTb

where A+ is the pseudo-inverse of A.
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5.8.2 Closest Orthogonal Matrix

Let Qn be the set of all n× n orthogonal matrices. Given an n× n matrix
A, we wish to find the matrix Q that satisfies

‖A−Q‖F = min , Q ∈ Qn, σi(Q) = 1.

Given A = UΣV T , if we compute Q̂ = UIV T , then

‖A− Q̂‖2
F = ‖U(Σ− I)V T ‖2

F

= ‖Σ− I‖2
F

= (σ1 − 1)2 + · · ·+ (σn − 1)2

It can be shown that this is in fact the minimum.
A more general problem is to find Q ∈ Qn such that

‖A−BQ‖F = min

for given matrices A and B. The solution is

Q̂ = UV T , BT A = UΣV T .

5.8.3 Low-Rank Approximations

Let M(r)
m,n be the set of all m×n matrices of rank r, and let A ∈M(r)

m,n. We
wish to find B ∈M(k)

m,n, where k < r, such that ‖A−B‖F = min .
To solve this problem, let A = UΣV T be the SVD of A, and let B̂ =

UΩkV
T where

Ωk =



σ1

. . .
σk

0
. . .

0


.

Then

‖A− B̂‖2
F = ‖U(Σ− Ωk)V T ‖2

F

= ‖Σ− Ωk‖2
F

= σ2
k+1 + · · ·+ σ2

r .
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We now consider a variation of this problem. Suppose that B is a per-
turbation of A such that A = B + E, where ‖E‖2

F ≤ ε2. We wish to find B̂

such that ‖A− B̂‖2
F ≤ ε2, where the rank of B̂ is minimized. We know that

if Bk = UΩkV
T then

‖A−BK‖2
F = σ2

k+1 + · · ·+ σ2
r .

It follows that B̂ = Bk is the solution if

σk+1 + · · ·+ σ2
r ≤ ε2, σ2

k + · · ·+ σ2
r > ε2.

Note that

‖A+ − B̂+‖2
F =

(
1

σ2
k+1

+ · · ·+ 1
σ2

r

)
.

5.9 Total Least Squares

In the ordinary least squares problem, we are solving

Ax = b + r, ‖r‖2 = min .

In the total least squares problem, we wish to solve

(A + E)x = b + r, ‖E‖2
F + λ2‖r‖2

2 = min .

From Ax− b + Ex− r we obtain the system

[
A b

] [ x
−1

]
+
[

E r
] [ x

−1

]
= 0,

or
(C + F )z = 0.

We need the matrix C + F to have rank ≤ n + 1, and we want to minimize
‖F‖.

To solve this problem, we compute the SVD of C =
[

A b
]

= UΣV T .
Let Ĉ = UΩnV T . Then, if vi is the ith column of V , we have

Ĉvn+1 = UΩnV Tvn+1 = 0.

Our solution is [
x̂
−1

]
= − 1

vn+1,n+1
vn+1
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provided that vn+1,n+1 6= 0.
Now, suppose that only some of the data is contaminated, i.e. E =[

0 E1

]
where the first p columns of E are zero. Then, in solving (C +

F )z = 0, we use Householder transformations to compute QT (C +F ) where
the first p columns are zero below the diagonal. Since ‖F‖F = ‖QT F‖F , we
then have a block upper triangular system[

R11 R12 + F12

0 R22 + F22

]
z = 0, z =

[
u
v

]
.

We can find the total least squares solution of

(R22 + F22)v = 0,

and then set F12 = 0 and solve

R11u + R12v = 0.
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Chapter 6

Iterative Methods

The topic of interest of this chapter is iterative methods, which are methods
that attempt to generate a sequence of approximations x(i) that converge to
the true solution x. Such methods are most useful in solving very large, natu-
rally sparse problems that arise from applications, such as the discretization
of PDEs. They are also used in some dense problems in which the coefficient
matrix is structured.

6.1 Stationary methods

Given Ax = b, write Mx = Nx + b (where M is invertible) and construct
the iteration

Mx(k+1) = Nx(k) + b.

Subtracting these equations, we obtain

M(x− x(k+1)) = N(x− x(k)).

Therefore if we denote the error in x(k) by e(k) = x− x(k), then

e(k+1) = M−1Ne(k) ≡ Be(k).

Thus e(k) = Bke(0), which suggests the following theorem:

Theorem e(k) → 0 as k →∞ for all e(0) if and only if ρ(B) < 1.

Convergence can still occur if ρ(B) = 1, but in that case we must be
careful in how we choose x(0).

Note that from e(k) = Bke(0), it follows that

‖e(k)‖
‖e(0)‖

≤ ‖B‖k.
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6.1.1 The Jacobi Method

We now develop a simple iterative method. If we rewrite Ax = b as

n∑
j=1

aijxj = bi, i = 1, . . . , n,

then
aiixi = bi −

∑
i6=j

aijxj ,

or

xi =
1
aii

bi −∑
j 6=i

aijxj

 .

In other words,

M =

 a11

. . .
ann

 , N = −


0 a12 · · · a1n

a21
. . .

...
...

. . .
...

an1 · · · an,n−1 0

 .
Our iteration is therefore

x
(k+1)
i =

1
aii

bi −∑
j 6=i

aijx
(k)

 ,

known as the Jacobi method, with

M−1N =


0 a12

a11
· · · a1n

a11

a21
a22

. . .
...

...
. . .

...
an1
ann

· · · an,n−1

ann
0

 ≡ BJ .

So, if

‖M−1N‖∞ = max
1≤i≤n

∑
j 6=i

∣∣∣∣aij

aii

∣∣∣∣ < 1,

i.e. if BJ is strictly diagonally dominant, then the iteration converges.
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For example, suppose

A =


4 −1

−1
. . . . . .
. . . . . . −1

−1 4

 .

Then ‖BJ‖∞ = 1
2 , so the Jacobi method converges rapidly. On the other

hand, if

A =


2 −1

−1
. . . . . .
. . . . . . −1

−1 2

 ,
which arises from discretizing the Laplacian, then ‖BJ‖∞ = 1. A more
subtle analysis can be used to show convergence, but it is slow.

Note that for these two examples, x(0) ← x(1) when all elements of x(1)

have been computed. This is a waste of storage; we need only (n + 2)
elements of storage of A above. This shows that the ordering of equations
is very important. If we reorder the equations in such a way that odd-
numbered equations and even-numbered equations are grouped separately,
then we obtain, for the latter example,

A =



2 −1
2 −1 −1

. . . −1 −1
. . . . . . . . .

−1 −1 2
−1 −1 2

. . . . . . . . .
. . . . . . . . .

−1 2



.

Then, we can solve for all odd indices, then all even indicies, independently
of each other. Not only does this approach save storage space but it also
lends itself to parallelism.
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6.1.2 The Gauss-Seidel Method

In the Jacobi method, we compute x(k+1)
i using the elements of x(k), even

though x
(k+1)
1 , . . . , x

(k+1)
i−1 are already known. The Gauss-Seidel method is

designed to take advantage of the latest information available about x:

x
(k+1)
i =

1
aii

bi − i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

 .

To derive this method, we write A = L+D + U where

L =


0

a21
. . .

...
. . .

an1 · · · an,n−1 0

 , D =

 a11

. . .
ann

 , U =


0 a12 · · · a1n

. . .
...

. . . an−1,n

0

 .
Thus the Gauss-Seidel iteration can be written as

Dx(k+1) = b− Lx(k+1) − Ux(k),

or
(D + L)x(k+1) = b− Ux(k)

which yields

x(k+1) = −(D + L)−1Ux(k) + (D + L)−1b.

Thus the iteration matrix for the Gauss-Seidel method is BGS = −(D +
L)−1U , as opposed to the iteration matrix for the Jacobi method, BJ =
−D−1(L + U). In some cases, ρ(BGS) = (ρ(BJ))2, so the Gauss-Seidel
method converges twice as fast. (We defer the analysis of convergence to
section 6.3.1.) On the other hand, note that Gauss-Seidel is very sequential;
i.e. it does not lend itself to parallelism.

6.1.3 The SOR Method

The method of successive overrelaxation (SOR) is the iteration

x
(k+1)
i =

ω

aii

bi − i−1∑
j=1

aijx
(k+1)
j −

N∑
j=i+1

aijx
(k)
j

+ (1− ω)x(k)
i .
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The quantity ω is called the relaxation parameter. If ω = 1, then the SOR
method reduces to the Gauss-Seidel method.

In matrix form, the iteration can be written as

Dx(k+1) = ω(b− Lx(k+1) − Ux(k)) + (1− ω)Dx(k)

which can be rearranged to obtain

(D + ωL)x(k+1) = ωb + [(1− ω)D − ωU ]x(k)

or

x(k+1) =
(

1
ω
D + L

)−1 [( 1
ω
− 1
)
D − U

]
x(k) +

(
1
ω
D + L

)−1

b.

Define

Lω =
(

1
ω
D + L

)−1 [( 1
ω
− 1
)
D − U

]
.

Then

detLω = det
(

1
ω
D + L

)−1

det
[(

1
ω
− 1
)
D − U

]
=

1
det
(

1
ωD + L

) det
[(

1
ω
− 1
)
D − U

]
=

ωn∏n
i=1 aii

(1− ω)n
∏n

i=1 aii

ωn

= (1− ω)n.

Therefore,
∏n

i=1 λi = (1 − ω)n where λ1, . . . , λn are the eigenvalues of Lω,
with |λ1| ≥ · · · ≥ |λn|. Therefore |λ1|n ≥ (1 − ω)n. Since we must have
|λ1| < 1 for convergence, it follows that a necessary condition for convergence
of SOR is

0 < ω < 2.

6.2 Poisson’s Equation

Consider the standard problem of solving Poisson’s equation on a domain
R in two dimensions,

−∆u = f, (x, y) ∈ R, ∆u = uxx + uyy,

u = g, (x, y) ∈ ∂R.
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We take R to be the unit rectangle [0, 1]× [0, 1] and discretize the problem
using a uniform grid with spacing h = 1/(N + 1) in the x and y directions,
and gridpoints xi = ih, i = 0, . . . , N + 1, and yj = jh, j = 0, . . . , N + 1.
Then, for i, j = 1, . . . , N , we replace the differential equation by a difference
approximation

−ui−1,j + 2uij − ui+1,j

h2
+
−ui,j+1 + 2uij − ui,j+1

h2
= fij ,

where uij = u(xi, yj) and fij = f(xi, yj). From the boundary conditions, we
have

u0j = g(x0, yj), j = 1, 2, . . . , N,

and similar conditions for the other gridpoints along the boundary.
Let uj =

[
u1j · · · uNj

]T
. Then

−uj−1 + Tuj − uj+1 = f̃j

where

T =


4 −1

−1
. . . . . .
. . . . . . −1

−1 4

 , [f̃j ]i =


h2f1j + g(x0, j) i = 1
h2fij i = 2, . . . , N − 1
h2fNj + g(xN , j) i = N

Thus we can solve the problem on the entire domain by solving Au = f̃
where

A =


T −I
−I T −I

. . . . . . . . .
. . . . . . −I

−I T

 .

We say that A is a block tridiagonal matrix. A is also a band matrix, but
the band is sparse and Gaussian elimination may fill-in the whole band.
However, the equations can be re-ordered to avoid fill-in.

6.2.1 Eigenvalues of Tridiagonal Toeplitz Matrices

We will now show how we can find eigenvalues and eigenvectors of certain
tridiagonal toeplitz matrices that frequently arise in difference approxima-
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tions. Let

T̂ =


0 1

1
. . . . . .
. . . . . . 1

1 0

 , T (a, b) =


a b

b
. . . . . .
. . . . . . b

b a

 = aI + bT̂ .

Note that λj(T (a, b)) = a+ bλj(T̂ ). We first study the case where a = 0 and
b = 1; then we will consider the case a = 4, b = −1 arising from Poisson’s
equation.

Consider T̂v = λv. We can write this as a system of equations

vj−1 + vj+1 = λvj

v2 = λv1

vN−1 = λvN

Since T̂ is symmetric, it has the decomposition T̂ = V ΛV T , and therefore
we can write T (a, b) = V Λ(a, b)V T where Λ(a, b) = aI + bΛ.

We guess that
vj = A sin jθ +B cos jθ.

Substituting this representation into Tv = λv yields

λvj = λ(A sin jθ +B cos jθ)
= A sin(j − 1)θ +B cos(j − 1)θ +A sin(j + 1)θ +B cos(j + 1)θ
= A[sin(j − 1)θ + sin(j + 1)θ] +B[cos(j − 1)θ + cos(j + 1)θ]
= A(2 sin jθ cos θ) +B(2 cos θ cos jθ)
= 2 cos θvj

which yields λ = 2 cos θ.
We use the boundary conditions to find θ. Our representation of vj yields

A sin 2θ +B cos 2θ = 2 cos θ(A sin θ +B cos θ)
A sin(N − 1)θ +B cos(N − 1)θ = 2 cos θ(A sinNθ +B cosNθ)

which can be written as a system of two equations for the two unknowns A
and B,

(sin 2θ − 2 cos θ sin θ)A+ (cos 2θ − 2 cos θ sin θ)B = 0
(sin(N − 1)θ − 2 cos θ sinNθ)A+ (cos(N − 1)θ − 2 cos θ cos θ) = 0

7



or, in matrix form, [
0 −1
× ×

] [
A
B

]
=
[

0
0

]
which yields B = 0. In order for A to be nonzero, we must have

0 = sin(N1)θ − 2 cos θ sinNθ
= sinNθ cos θ − sin θ cosNθ − 2 cos θ sinNθ
= − sinNθ cos θ − sin θ cosNθ
= − sin(N + 1)θ

which yields

θk =
jπ

N + 1
, λk = 2 cos

(
kπ

N + 1

)
.

Thus the largest eigenvalue is λ1 = 2 cosπh ≈ 2 = ‖T̂‖∞. Note that the
eigenvalues are not uniformly distributed on the interval [0, 2].

The eigenvectors are given by

vkj = A sin
(

kjπ

N + 1

)
.

We want normalized eigenvectors, so we take A so that ‖vk‖22 = 1, which
yields

A =

√
2

N + 1
.

Recall that T (a, b) = aI+bT̂ , where T̂ = V ΛV T and V =
[

v1 · · · vN

]
.

Thus λk(a, b) = a+ 2b cos kπ
N+1 .

Suppose T (a, b)u = e. Then the solution u is given by

u = V Λ−1V Te = V Λ−1ê

where

êk =
N∑

i=1

√
2

N + 1
sin
(

ikπ

N + 1

)
ei = vT

k e.

This can be computed quickly using the FFT. Similarly, we can use the
inverse FFT to compute V (Λ−1ê).
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We now wish to find the eigenvalues of

A =


T −I
−I T −I

. . . . . . . . .
. . . . . . −I

−I T

 .

If we define

Q =

 V
. . .

V

 ,
then

QTAQ = Â =


Λ −I
−I Λ −I

. . . . . . . . .
. . . . . . −I

−I Λ

 .

The system Âw = µw has equations of the form

−wi,j−1 + λwij − wi,j+1 = µwij , i = 1, . . . , N.

If we reorder the unknowns by columns instead of rows, then we obtain a
block diagonal matrix where each diagonal block is a tridiagonal block of
the form Tk(λk,−1), where λk is an eigenvalue of T . The matrix Tk(λk,−1)
has eigenvalues

λj(Tk(λk,−1)) = λk − 2 cos
jπ

N + 1
, j = 1, . . . , N + 1.

Therefore the eigenvalues of A are given by

µrs = 4− 2 cos
rπ

N + 1
− 2 cos

sπ

N + 1
, r, s = 1, . . . , N + 1.

It follows that

µmin = 4− 4 cos
π

N + 1
, µmax = 4− 4 cos

Nπ

N + 1
= 4 + 4 cos

π

N + 1
.

Observe that µmax ≤ ‖A‖∞ = 8. However, as N → ∞, µmin → 0, so the
matrix becomes ill-conditioned quite rapidly as N →∞.
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6.2.2 The Helmholtz Equation

Poisson’s equation −∆u = f occurs very often in applications, as does the
Helmholtz equation

−∆u+ σ(x, y)u = f.

For this equation, we have the discretization

Au + h2Σu = f

where A is an N2 ×N2 matrix of the form

A =


T −I

−I . . . . . .
. . . . . . −I

−IT

 ,
and

Σ =

 σ11

. . .
σNN

 , σij = σ(xi, yj).

Recall from last time that A has eigenvalues

µrs = 4− 2 cos
πr

N + 1
− 2 cos

πs

N + 1
, r, s = 1, . . . N.

To solve this system, we can use the iteration

Au(k+1) = h2Σu(k) + f .

To determine whether this iteration converges, we will try to bound

‖h2A−1Σ‖ ≤ h2‖A−1‖‖Σ‖.

We assume that |σ(x, y)| ≤ σ̄ and note that

‖A−1‖2 =
1

4(1− cos pi
N+1)

=
1

4(1− cosπh)
.

Using the facts

|sinx
x
| ≤ 1, lim

x→0

sinx
x

= 1,

10



it follows that

‖h2A−1Σ‖ ≤ h2σ̄

8 sin2 πh
2

=
σ̄

8
(

sin πh
2

h

)2 ≈ σ̄/2π
2.

Note that this bound is independent of h, and the method converges if
σ̄ ≤ 20. Thus, the rate of convergence is essentially independent of the
mesh size h, which is very desirable.

6.3 Convergence Analysis

6.3.1 Convergence of Gauss-Seidel

Recall the basic iterative methods based on the splitting A = D + L + U ,
the Jacobi method

Dx(k+1) = −(L+ U)x(k) + b

and the Gauss-Seidel method

(D + L)x(k+1) = −Ux(k) + b.

These are examples of one-step stationary method, which is an iteration of
the form

Mx(k+1) = Nx(k) + b,

where A = M −N .
Let B = M−1N , and define e(k) = x − x(k). Then e(k+1) = Be(k) =

Bk+1e(0). Recall that if ρ(Bk) < 1 then e(k) → 0 for all choices of x(0).
Also, recall that for all consistent norms, ρ(B) ≤ ‖B‖.

Therefore, a sufficient condition for convergence of the Jacobi method is
‖B‖∞ < 1 where

bij =
{
−aij

aii
i 6= j

0 i = j

Note that

‖B‖∞ = max
i

∑
j 6=i

∣∣∣∣aij

aii

∣∣∣∣ < 1

if B is diagonally dominant.
Now, define

ri =
∑
i6=j

∣∣∣∣aij

aii

∣∣∣∣ , r = max
i
ri.
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Then we have the following result:

Theorem If r < 1, then ρ(BGS) < 1. In other words, the Gauss-Seidel
iteration converges if A is diagonally dominant.

Proof The proof proceeds using induction on the elements of e(k). We have

(D + L)e(k+1) = Ue(k),

which can be written as

i∑
j=1

aije
(k+1)
j = −

N∑
j=i+1

aije
(k)
j , i = 1, . . . , N.

Thus

e
(k+1)
i = −

N∑
j=i+1

aij

aii
e
(k)
j −

i−1∑
j=1

aij

aii
e
(k+1)
j , i = 1, . . . , N.

For i = 1, we have

|e(k+1)
1 | ≤

N∑
j=2

∣∣∣∣aij

aii

∣∣∣∣ |e(k)
j | ≤ ‖e

(k)‖∞r1.

Assume that for p = 1, . . . , i− 1,

|e(k+1)
p | ≤ ‖e(k)‖∞rp ≤ r‖e(k)‖∞.

Then,

|e(k+1)
i | ≤

i−1∑
j=1

∣∣∣∣aij

aii

∣∣∣∣ |e(k+1)
j |+

N∑
j=i+1

∣∣∣∣aij

aii

∣∣∣∣ |e(k)
j |

≤ r‖e(k)‖∞
i−1∑
j=1

∣∣∣∣aij

aii

∣∣∣∣+ ‖e‖∞ N∑
j=i+1

∣∣∣∣aij

aii

∣∣∣∣
≤ ‖e(k)‖∞

∑
j 6=i

∣∣∣∣aij

aii

∣∣∣∣
= ri‖e(k)‖∞
≤ r‖e(k)‖∞.

Therefore
‖e(k+1)‖∞ ≤ r‖e(k)‖∞ ≤ rk+1‖e(0)‖∞,
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from which it follows that

lim
k→∞

‖e(k)‖ = 0

since r < 1.

We see that the Jacobi method and the Gauss-Seidel method both converge
if A is diagonally dominant, but convergence can be slow in some cases. For
example, if

A =


2 −1

−1
. . . . . .
. . . . . . −1

−1 2


is of size N ×N then

−D−1(L+ U) =


0 1/2

1/2
. . . . . .
. . . . . . 1/2

1/2 0


and therefore

ρ(BJ) = cos
π

N + 1
= cosπh ≈ 1− π2h2

2
+ · · ·

which is approximately 1 for small h = 1
N+1 . We would like to develop a

method where ρ(B) ≈ 1− ch.
NOw, suppose B = BT . Then

‖e(k)‖2
‖e(0)‖2

≤ ‖B‖k2 = ρ(B)k.

We want ‖e(k)‖2/‖e(0)‖2 ≤ ε, so if we let ρk = ε, then

k =
− log ε
− log ρ

is the number of iterations necessary for convergence. The quantity − log ρ
is called the rate of convergence.
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6.3.2 Convergence of SOR on Positive-Definite Systems

To analyze the convergence of SOR, we need the following result.

Lemma Let A = M − N , where A = A∗ and M is invertible, and define
Q = M+M∗−A. If Q and A are both positive definite, then ρ(M−1N) < 1.

Proof Define B = M−1N = I −M−1A. It follows that if Bu = λu, then

Au = (1− λ)Mu,

where λ 6= 1 since A is invertible. Taking the inner product of both sides
with u yields

u∗Au = (1− λ)u∗Mu,

but since A is symmetric positive definite, we also have

u∗Au = (1− λ̄)u∗M∗u.

Adding these relaions yields

u∗(M +M∗)u =
(

1
1− λ

+
1

1− λ̄

)
u∗Au

= 2<
(

1
1− λ

)
u∗Au

which can be rewritten as

u∗(Q+A)u
u∗Au

= 1 +
u∗Qu
u∗Au

= 2<
(

1
1− λ

)
.

Since both Q and A are positive definite, we must have 2<
(

1
1−λ

)
> 1. If

we write λ = α+ iβ, then it follows that

2(1− α)
(1− α)2 + β2

> 1

which yields α2 + β2 = |λ|2 < 1.
Let A = D + L+ U be positive definite with D = I. Then the iteration

matrix for SOR is

Lω =
(

1
ω
I + L

)−1(( 1
ω
− 1
)
I − U

)
.
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Then Q = M +M∗ −A is

Q =
(

1
ω
I + L

)
+
(

1
ω
I + U

)
− (I + L+ U) =

(
2
ω
− 1
)
I.

For convergence, we wantQ to be positive definite, so we must have 2/ω−1 >
0 or 0 < ω < 2. It follows that SOR will converge for all 0 < ω < 2 when A
is positive definite.

6.4 Block Methods

Recall that in solving Poisson’s equation on a rectangle, we needed to solve
systems of the form

−vj + Tvj − vj+1 = gj .

This can be accomplished using an iteration

Tv(k+1) = gj + v(k)
j−1 + v(k)

j+1,

which is an example of a block Jacobi iteration, since it involves solving the
system Au = g by applying the Jacobi method to A, except each block of
size N × N is treated as a single element. Similarly, we can use the block
Gauss-Seidel iteration

Tv(k+1)
j = gj + v(k+1)

j−1 + v(k)
j .

6.5 Richardson’s Method

Consider the iteration

x(k+1) = (I − αA)x(k) + αb

= x(k) + α(b−Ax(k))
= x(k) + αr(k)

This is known as the Richardson method. If we define the error e(k) =
x − x(k), then e(k+1) = Bαe(k) where Bα = I − αA; we want to choose the
parameter α a priori so as to minimize ‖Bα‖.

Suppose A is symmetric positive definite, with eigenvalues

µ1 ≥ µ2 ≥ · · ·µn > 0.
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Since B = I − αA, λi = 1 − αµi. We want to choose α so that ‖Bα‖2 is
minimized; i.e.

min
α

max
1≤i≤n

|λi(α)| = min
α

max
1≤i≤n

|1− αµi|.

The optimal parameter α̂ is found by solving

1− α̂µn = −(1− α̂µ1)

which yields

α̂ =
2

µ1 + µn
.

Note that When 1 − αµn = −1 that the iteration diverges, from which it
follows that the method converges for 0 < α < 2/µn. However, this iteration
is sensitive to perturbation, and therefore bad numerically. For example, if
µ1 = 10 and µn = 10−4, then the optimal α is 2/(10+10−4, but this is close
to a value of α for which the iteration diverges, α = 2/10.

Also, note that

λ1(α̂) = 1− 2
µ1 + µn

µ1 =
µn − µ1

µ1 + µn
,

and similarly,

λn(α̂) =
µ1 − µn

µ1 + µn
=

µ1

µn
− 1

µ1

µn
+ 1

=
κ(A)− 1
κ(A) + 1

.

Therefore the convergence rate depends on κ(A). (Compare this with the
method for solving the Helmholtz equation in section 6.2.2, whose conver-
gence is independent of κ(A).)

6.6 Steepest Descent

An alternative approach is to consider the iteration

x(k+1) = x(k) + αkr(k)

where αk varies from iteration to iteration. It follows that

r(k+1) = b−Ax(k+1) = b−Ax(k) − αkAr(k) = r(k) − αkAr(k).
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We wish to choose αk so that [r(k+1)]TA−1r(k+1) is minimized. Now

[r(k+1)]TA−1r(k+1) = ([r(k)]T − αk[r(k)]TA)A−1(r(k) − αkAr(k)

= [r(k)]TA−1r(k) − 2αk[r(k)]T r(k) + α2
k[r

(k)]TAr(k).(6.1)

To find the minimium, we differentiate with respect to αk and obtain

d

dαk
([r(k)]TA−1r(k+1)) = −2[r(k)]T r(k) + 2αk[r(k)]TAr(k)

which yields

α̂k =
[r(k)]T r(k)

[r(k)]TAr(k)

which is well-defined since A is symmetric positive definite. This method is
known as the method of steepest descent.

Note that

0 < λmin (A) ≤ xTAx
xTx

≤ λmax (A)

and therefore
1

λmax (A)
≤ α̂k ≤

1
λmin (A)

.

Substituting α̂k into (6.1) yields

[r(k+1)]TA−1r(k+1) = [r(k)]TA−1r(k) − 2[r(k)]T r(k) [r(k)]T r(k)

[r(k)]TAr(k)
+

(
[r(k)]T r(k)

[r(k)]TAr(k)

)2

[r(k)]TAr(k)

= [r(k)]TA−1r(k) − ([r(k)]T r(k))2

[r(k)]TAr(k)

and therefore

‖r(k+1)‖2A−1

‖r(k)‖2
A−1

= 1− ([r(k)]T r(k))2

([r(k)]TA−1r(k))([r(k)]TAr(k))
.

The Kantorovich inequality, which comes up very often in applications
such as optimization and statistics, states that

xTAx · xTA−1x
(xTx)2

≤
(√

κ+ (
√
κ)−1

2

)2

, κ =
λmax (A)
λmin (A)

.

It follows that
‖r(k+1)‖2A−1

‖r(k)‖2
A−1

≤
(
κ− 1
κ+ 1

)2

.
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Thus,
‖r(1)‖A−1

‖r(0)‖A−1

· ‖r
(2)‖A−1

‖r(1)‖A−1

· · · · · ‖r
(k)‖A−1

‖r(k−1)‖A−1

≤
(
κ− 1
κ+ 1

)k

which yields
‖r(k)‖A−1

‖r(0)‖A−1

≤
(
κ− 1
κ+ 1

)k

.

In other words, the rate of convergence is the same as when the parameter
αk is chosen a priori to be α̂ = 2

µ1+µn
. Which method is preferable? For the

first approach, the problem is that we must know µ1 and µn. For the second
approach, we must compute αk at each step, which is worse for computation,
but in practice works better for certain problems.

Now consider the iteration

x(k+1) = (I − αkA)x(k) + αkb.

Since the exact solution x satisfies

x = (I − αkA)x + αkb,

it follows that
e(k+1) = (I − αkA)e(k).

So, we have

e(1) = (I − α0A)e(0)

...
e(k) = (I − αk−1A)(I − αk−2A) · · · (I − α0A)e(0).

In other words,
e(k) = Pk(A)e(0)

where Pk is a polynomial of degree k.
By the Cayley-Hamilton theorem,

ψ(A) =
d−1∏
i=0

(A− µiI) = 0

where d is the number of distinct eigenvalues µi of A, when A = AT . In
other words

ψ(A) =
d−1∏
i=0

(I − 1
µi
A) = 0

18



so we could choose αi = 1/µi, but this choice is nonsense because one almost
never knows the eigenvalues of A and even so, this choice is unstable because
µi can vary immensely in magnitude. However, we have

‖e(k)‖
‖e(0)‖

≤ ‖Pk(A)‖2,

so we will now use approximation theory to find a suitable Pk.
If A = QΛQT , then Pk(A) = QPk(Λ)QT , and therefore

‖e(k)‖
‖e(0)‖

≤ ‖Pk(Λ)‖2.

And since

Pk(Λ) =

 Pk(λ1)
. . .

Pk(λn)

 ,
it follows that

‖Pk(Λ)‖2 ≤ max
1≤i≤n

|Pk(λi)|.

So, because Pk(0) = I, we want to find a polynomial p̂k(λ) such that p̂k(0) =
1 and

max
1≤i≤n

|p̂k(λi)| = min
pk(0)=1

max
1≤i≤n

|pk(λi)|.

But clearly,

min
pk(0)=1

max
1≤i≤n

|pk(λi)| ≤ min
pk(0)=1

max
λn≤λ≤λ1

|pk(λ)|.

Therefore, we will try to find the polynomial p̂k that satisfies p̂(0) = 1 and
is of minimum absolute value on the interval [λn, λ1]. The solution to this
problem is given by the Chebyshev polynomials.

The Chebyshev polynomial of degree k is defined to be

Ck(x) =
{

cos[k cos−1(x)] |x| ≤ 1
cosh[k cosh−1(x)] |x| > 1

For example,

C0(x) = 1, C1(x) = x, C2(x) = 2x2 − 1.

These polynomials are designed to be bounded by 1 in absolute value on the
interval |x| ≤ 1.
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If θ = cos−1 x then, using the trigonometric identities

cos(k + 1)θ = cos kθ cos θ − sin kθ sin θ
cos(k − 1)θ = cos kθ cos θ + sin kθ sin θ

we obtain
cos(k + 1)θ = 2 cos kθ cos θ − cos(k − 1)θ

which yields the three-term recurrence relation of the Chebyshev polynomi-
als

Ck+1(x) = 2xCk(x)− Ck−1(x).

Since this relation leads to a leading coefficient of 2k−1 for Ck(x) when k ≥ 1,
it is customary to normalize, defining

Tk(x) =
Ck(x)
2k−1

, k ≥ 1.

We now claim that for k = 2, p̂2(x) is T2(x) = x2− 1
2 , scaled and translated

appropriately so as to be small on the interval [λn, λ1] and satisfy p̂2(0) = 1.
Note that on [−1, 1], T2(x) has a maximum at x = −1 and x = 1, and

a local minimum at x = 0. Now, suppose that there is another polynomial
p2(x) = x2 + bx+ c such that p2(−1) < T2(−1), p2(1) < T2(1), and p2(0) >
T2(0). Then the polynomial q1(x) = T2(x) − p2(x) has three sign changes
in the interval [−1, 1], but since T2(x) and p2(x) have the same leading
coefficient, q1(x) can have degree at most 1, so it must be identically zero.

6.7 Chebyshev Iteration

Consider the iterative method

x(k+1) = x(k) + αk+1r(k)

for solving Ax = b. If we define e(k) = x− x(k), then

e(k) = Pk(A)e(0)

where
Pk(A) = (I − αkA)(I − αk−1A) · · · (I − α1A).

Therefore

‖e(k)‖2
‖e(0)‖2

≤ ‖Pk(A)‖2

≤ max
1≤i≤N

|Pk(λi)|

≤ max
a≤λi≤b

|Pk(λ)|
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where Pk(0) = I and b = λ1 ≥ · · · ≥ λN = a are the eigenvalues of A.
Recall that a good choice for the polynomial Pk arises from the Cheby-

shev polynomials

Ck(cos θ) = cos kθ, θ = cos−1 x.

If we fix k, then we have

α
(k)
j =

(
b+ a

2
−
(
b− a

2

)
cos

(2j + 1)π
2k

)−1

, j = 0, . . . , k − 1.

Note that
α

(1)
0 =

2
b+ a

,

which is the same optimal parameter obtained using a different analysis.
Therefore, we can select k and then use the parameters α(k)

0 , . . . , α
(k)
k−1.

If ‖r(k)‖/‖r(0)‖ ≤ ε, we can stop; otherwise, we simply recycle these param-
eters. The process should not be stopped before the full cycle, because a
partial polynomial may not be small on the interval [a, b]. Also, using the
parameters in an arbitrary order may lead to numerical instabilities even
though mathematically the order does not matter. For a long time, the
determination of a suitable ordering was an open problem, but it has now
been solved. It has been shown that when solving Laplace’s equation using
128 parameters, a simple left-to-right ordering results in ‖e(128)‖ ≈ 1035,
while the optimal ordering yields ‖e(128)‖ ≈ 10−7.

In the absence of roundoff error, using Chebyshev polynomials yields

‖e(k)‖2
‖e(0)‖2

≤ 2(√
κ+1√
κ−1

)k
+
(√

κ−1√
κ+1

)k
≈
(√

κ− 1√
κ+ 1

)k

whereas, with steepest descent,

‖e(k)‖2
‖e(0)‖2

≈
(
κ− 1
κ+ 1

)k

.

6.8 Convergence Acceleration

Consider the iteration

Mx(k+1) = Nx(k) + b,

21



where A = M − N is symmetric positive definite. This iteration can be
rewritten as

x(k+1) = Bx(k) + c

where B = M−1N and c = M−1b. Therefore e(k+1) = Be(k) where e(k) =
x− x(k). In an attempt to accelerate convergence, we define

y(k) =
k∑

`=0

ak`x
(`),

k∑
`=0

ak` = 1.

Then

x− y(k) =
k∑

`=0

ak`(x− x(`)) =
k∑

`=0

ak`B
`e(0)

which yields
ê(k) = Pk(B)e(0)

where ê(k) = x− y(k) and

Pk(λ) =
k∑

`=0

ak`λ
`, Pk(1) = 1.

It follows that
‖ê(k)‖2
‖ê(0)‖2

≤ ‖Pk(B)‖2.

If B is symmetric, then we can write B = QΛQT and obtain

‖Pk(B)‖2 = ‖Pk(Λ)‖2 = max
λ=λi

|Pk(λ)| ≤ max
a≤λ≤b

|Pk(λ)|.

Recall that the Chebyshev polynomials Ck(x) satisfy the three-term re-
currence relation

Ck+1(x) = 2xCk(x)− Ck−1(x).

If we let B = I − αA where α = 2
a+b , then B is symmetric and we can use

the iteration

y(`+1) = ω`+1(By(`) + c− y(`−1)) + y(`−1)

with initial vectors

y(0) = x(0), y(1) = By(0) + c.
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The parameters ω`+1 are defined by

ω`+1 =
(

1− ρ2ω`

4

)−1

, ` ≥ 1, ρ =
b− a
b+ a

.

It follows that
ω2 ≥ ω3 ≥ · · · ≥ ω∗ > 1

where
ω∗ = lim

`→∞
ω`.

What is the limit ω∗? This limit satisfies

ω∗ =
(

1− ρ2ω∗

4

)−1

which is a quadratic equation with solutions

ω∗ =
1±

√
1− ρ2

ρ2/2
.

Choosing the plus sign, we have

1 < ω∗ =
2

1 +
√

1− ρ2
< 2.

Recall that for solving Poisson’s equation, ρ = 1−ch2+O(h4) for the Jacobi
method, while ρ = 1− c′h+O(h2) for the Chebyshev method.

6.9 Two-Cyclic Systems

Let A be symmetric positive definite. Then we can use diagonal scaling
to obtain a matrix D−1/2AD−1/2 with all diagonal elements equal to 1 by
setting

D =

 a11

. . .
ann

 .
Then we can check whether the new matrix is two-cyclic. A matrix A is said
to be two-cyclic (or to have Property A) if there is a permutation matrix Π
such that

ΠTAΠ =
[
Ip F
F T Iq

]
. (6.2)
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For example, suppose

A =


1 a1

a1
. . . . . .
. . . . . . an−1

an−1 1

 .
Then by choosing Π so that odd-numbered rows and columns are grouped
together, followed by even-numbered rows and columns, we obtain

ΠTAΠ =



1 a1

. . . a2
. . .

. . . . . . . . .

1
. . . . . .

a1 a2 1
. . . . . . . . .

. . . . . . . . .
. . . . . .


.

This matrix has all kinds of nice properties. In particular, it allows decou-
pling of equations.

It should be noted that a matrix arising from the discretization of a PDE
in two dimensions using a 5-point stencil has Property A, but a matrix based
on a 9-point stencil does not. However, the latter matrix does have block
Property A. For example, if

A =


A1 B1

BT
1

. . . . . .

. . . . . . Bn−1

BT
n−1 An


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then we can choose Π so that

ΠTAΠ =



A1 BT
1

A3 BT
2 BT

3
. . . . . . . . .

1
. . . . . .

B1 B2 A2

B3
. . . A4

. . . . . . . . .
. . . . . .


.

We now show that for a matrix of the form (6.2), we can choose an
optimal parameter ω for the SOR method. Let F be a p × q matrix with
p ≥ q, and let F = UΣV T be the SVD of F . Then

A =
[

UUT UΣV T

V ΣTUT V V T

]
=

[
U 0
0 V

] [
I Σ

ΣT I

] [
UT 0
0 V T

]
.

Since the left and right matrices above denote a similarity transformation,
it follows that

λ(A) = λ(Ã), Ã =
[

I Σ
ΣT I

]
.

Reordering the rows and columns of (̃A), we obtain a block diagonal matrix,
where each diagonal block is a 2× 2 matrix of the form[

1 σi

σi 1

]
, i = 1, . . . , q.

The eigenvalues of Ã are the eigenvalues of all of these diagonal blocks,
which are λ = 1±σi. These eigenvalues must be positive since A is positive
definite, so it follows that

0 < σi < 1, i = 1, . . . , q.

Now, consider the SOR operator

Lω =
(

1
ω
I + L

)−1(( 1
ω
− 1
)
I − U

)
=

[
1
ω I 0
F T 1

ω I

]−1 [ ( 1
ω − 1

)
I −F

0
(

1
ω − 1

)
I

]
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where

L =
[

0 0
F T 0

]
, U =

[
0 F
0 0

]
.

We can explicitly invert the first matrix to obtain

Lω =
[

ωI 0
−ω2F T ωI

] [ (
1
ω − 1

)
I −F

0
(

1
ω − 1

)
I

]
=

[
(1− ω) I −ωF

(ω2 − ω)F T (1− ω) I + ω2F TF

]
.

Using the SVD of F again, we obtain

Lω =
[

(1− ω)UUT −ωUΣV T

(ω2 − ω)V ΣTUT (1− ω)V V T + ω2V ΣT ΣV T

]
=

[
U 0
0 V

] [
(1− ω) I −ωΣ

(ω2 − ω)ΣT (1− ω) I + ω2ΣT Σ

] [
UT 0
0 V T

]
.

Define

Γ(ω) =
[

(1− ω) I −ωΣ
(ω2 − ω)ΣT (1− ω) I + ω2ΣT Σ

]
.

Then λ(Lω) = λ(Γ(ω)) and ‖Lω‖2 = ‖Γ(ω)‖2. Recall that

ek = Lk
ωe(0).

Ideally, we want to choose ω so that ‖Lk
ω‖ is minimized, but this is an

open problem. However, Young showed how to compute ω so that ρ(Lω) is
minimized. Since each block of Γ(ω) is a diagonal matrix, we can use the
same reordering trick as before to obtain a block diagonal matrix, where
each diagonal block is a 2× 2 matrix of the form

Γi =
[

(1− ω) −ωσi

(ω2 − ω)σi (1− ω) + ω2σ2
i

]
, i = 1, . . . , q.

The eigenvalues µ of Γi satisfy the characteristic equation

(1− ω − µ)2 − µσ2
i ω

2 = 0.

Note that when ω = 0, then |µ| = 1, indicating divergence. If ω = 1,
corresponding to the Gauss-Seidel method, then µ = 0 or µ = σ2

i . If ω = 2,
then the eigenvalues are complex conjugates with |µ| = 1. Therefore there
exists an ω where µ becomes complex:

ω̂ =
2

1 +
√

1− σ2
i

.
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Thus, |µ(ω1)| > |µ(ω2)| for ω1 > ω2 > ω̂.
Note that the eigenvalues of the Gauss-Seidel matrix are 0 or σ2

i , while
the eigenvalues of the Jacobi matrix are ±σi. Therefore we can expect
Gauss-Seidel to converge twice as fast as Jacobi for matrices with Property
A.

6.10 Conjugate Gradient Method

Many iterative methods for solving Ax = b have the form

x(k+1) = x(k−1) + ωk+1(αkz(k) − x(k) − x(k−1)) (6.3)

where
Mz(k) = r(k) = b−Ax(k) (6.4)

for some M . In particular, if ωk ≡ 1 and αk ≡ 1 then this reduces to

x(k+1) = M−1(b−Ax(k))− x(k)

or
Mx(k+1) = b− (A−M)x(k) = Nx(k) + b

where A = M − N . Our goal is to choose the parameters αk and ωk

so that ‖Pk(M−1A)e(0)‖ is minimized, where e(k) = x − x(k) and e(k) =
Pk(M−1A)e(0).

Suppose that we can impose the condition that

(z(k),Mz(k)) = δjk

where bothM and A are n×n and required to be symmetric positive definite.
If this is possible, then it follows that z(n+1) = 0, and therefore r(n+1) = 0,
implying convergence in n iterations.

It follows from (6.3) that

b−Ax(k+1) = b−Ax(k−1) − ωk+1(αkAz(k) +Ax(k) − b + b−Ay(k−1))

which simplifies to

r(k+1) = r(k−1) − ωk+1(αkAz(k) − r(k) + r(k−1)).

From (6.4), we obtain

Mz(k+1) = Mz(k−1) − ωk+1(αkAz(k) −Mz(k) +Mz(k−1)).
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We use the induction hypothesis

(z(p),Mz(q)) = 0, p 6= q, p = 1, 2, . . . , k.

Then

(z(k),Mz(k+1)) = (z(k),Mz(k−1))−ωk+1[(αkz(k), Az(k))−(z(k),Mz(k))+(z(k),Mz(k−1))]

which yields

αk =
(z(k),Mz(k))
(z(k), Az(k))

.

Similarly,

(z(k−1),Mz(k+1)) = (z(k−1),Mz(k−1))−ωk+1[(αkz(k−1), Az(k))−(z(k−1),Mz(k))+(z(k−1),Mz(k−1))]

which yields

ωk+1 =
(z(k−1),Mz(k−1))

αk(z(k−1), Az(k)) + (z(k−1),Mz(k−1))
.

We can simplify this expression for ωk+1 by noting that by symmetry,

(z(k−1), Az(k)) = (z(k), Az(k−1))

and therefore

(z(k),Mz(k)) = (z(k),Mz(k−2)) + ωk(αk−1(z(k), Az(k−1))− (z(k),Mz(k−1)) + (z(k),Mz(k−2)))
= ωk(αk−1(z(k), Az(k−1)))

which yields

ωk+1 =
(z(k−1),Mz(k−1))

− αk
αk+1

1
ωk

(z(k),Mz(k)) + (z(k−1),Mz(k−1))

or

ωk+1 =

(
1− αk

αk−1

1
ωk

(z(k),Mz(k))
(z(k−1),Mz(k−1))

)−1

.

We have shown that

(z(k),Mz(k+1)) = (z(k−1),Mz(k+1)) = 0.

It can easily be shown that

(z(`),Mz(k+1)) = 0, ` < k − 1.

We now state the classical conjugate gradient algorithm:
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x(0) given
Solve Mz(0) = r(0)

p(0) = z(0)

for k = 0, . . .

αk = (z(k),Mz(k))

(p(k),Ap(k))

x(k+1) = x(k) + αkp(k)

r(k+1) = r(k) − αkAp(k)

Test for convergence
Solve Mz(k+1) = r(k+1)

βk+1 = (z(k+1),Mz(k+1))

(z(k),Mz(k))

p(k+1) = z(k+1) + βk+1p(k)

end

It can be shown that

x(k+1) = x(0) + Pk(K)z(0)

where K = M−1A. Furthermore, amongst all methods which generate a
polynomial for a given x(0), the conjugate gradient method minimizes the
quantity

εk+1 = [e(k+1)]TAe(k+1).

Most notable of all is that if A has p distinct eigenvalues, then the conjugate
gradient method converges in p steps. This is particularly useful in domain
decomposition, where the interface between two subdomains consists of only
a small number of points.
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