CME 302: NUMERICAL LINEAR ALGEBRA
 FALL 2005/06
 LECTURE 19

GENE H. GOLUB

1. Conjugate Gradient Method

Many iterative methods for solving $A \mathbf{x}=\mathbf{b}$ have the form

$$
\begin{equation*}
\mathbf{x}^{(k+1)}=\mathbf{x}^{(k-1)}+\omega_{k+1}\left(\alpha_{k} \mathbf{z}^{(k)}-\mathbf{x}^{(k)}-\mathbf{x}^{(k-1)}\right) \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
M \mathbf{z}^{(k)}=\mathbf{r}^{(k)}=\mathbf{b}-A \mathbf{x}^{(k)} \tag{1.2}
\end{equation*}
$$

for some M. In particular, if $\omega_{k} \equiv 1$ and $\alpha_{k} \equiv 1$ then this reduces to

$$
\mathbf{x}^{(k+1)}=M^{-1}\left(\mathbf{b}-A \mathbf{x}^{(k)}\right)-\mathbf{x}^{(k)}
$$

or

$$
M \mathbf{x}^{(k+1)}=\mathbf{b}-(A-M) \mathbf{x}^{(k)}=N \mathbf{x}^{(k)}+\mathbf{b}
$$

where $A=M-N$. Our goal is to choose the parameters α_{k} and ω_{k} so that $\left\|P_{k}\left(M^{-1} A\right) \mathbf{e}^{(0)}\right\|$ is minimized, where $\mathbf{e}^{(k)}=\mathbf{x}-\mathbf{x}^{(k)}$ and $\mathbf{e}^{(k)}=P_{k}\left(M^{-1} A\right) \mathbf{e}^{(0)}$.

Suppose that we can impose the condition that

$$
\left(\mathbf{z}^{(k)}, M \mathbf{z}^{(k)}\right)=\delta_{j k}
$$

where both M and A are $n \times n$ and required to be symmetric positive definite. If this is possible, then it follows that $\mathbf{z}^{(n+1)}=\mathbf{0}$, and therefore $\mathbf{r}^{(n+1)}=\mathbf{0}$, implying convergence in n iterations.

It follows from (1.1) that

$$
\mathbf{b}-A \mathbf{x}^{(k+1)}=\mathbf{b}-A \mathbf{x}^{(k-1)}-\omega_{k+1}\left(\alpha_{k} A \mathbf{z}^{(k)}+A \mathbf{x}^{(k)}-\mathbf{b}+\mathbf{b}-A \mathbf{y}^{(k-1)}\right)
$$

which simplifies to

$$
\mathbf{r}^{(k+1)}=\mathbf{r}^{(k-1)}-\omega_{k+1}\left(\alpha_{k} A \mathbf{z}^{(k)}-\mathbf{r}^{(k)}+\mathbf{r}^{(k-1)}\right) .
$$

From (1.2), we obtain

$$
M \mathbf{z}^{(k+1)}=M \mathbf{z}^{(k-1)}-\omega_{k+1}\left(\alpha_{k} A \mathbf{z}^{(k)}-M \mathbf{z}^{(k)}+M \mathbf{z}^{(k-1)}\right) .
$$

We use the induction hypothesis

$$
\left(\mathbf{z}^{(p)}, M \mathbf{z}^{(q)}\right)=0, \quad p \neq q, \quad p=1,2, \ldots, k .
$$

Then

$$
\left(\mathbf{z}^{(k)}, M \mathbf{z}^{(k+1)}\right)=\left(\mathbf{z}^{(k)}, M \mathbf{z}^{(k-1)}\right)-\omega_{k+1}\left[\left(\alpha_{k} \mathbf{z}^{(k)}, A \mathbf{z}^{(k)}\right)-\left(\mathbf{z}^{(k)}, M \mathbf{z}^{(k)}\right)+\left(\mathbf{z}^{(k)}, M \mathbf{z}^{(k-1)}\right)\right]
$$

which yields

$$
\alpha_{k}=\frac{\left(\mathbf{z}^{(k)}, M \mathbf{z}^{(k)}\right)}{\left(\mathbf{z}^{(k)}, A \mathbf{z}^{(k)}\right)} .
$$

Similarly,
$\left(\mathbf{z}^{(k-1)}, M \mathbf{z}^{(k+1)}\right)=\left(\mathbf{z}^{(k-1)}, M \mathbf{z}^{(k-1)}\right)-\omega_{k+1}\left[\left(\alpha_{k} \mathbf{z}^{(k-1)}, A \mathbf{z}^{(k)}\right)-\left(\mathbf{z}^{(k-1)}, M \mathbf{z}^{(k)}\right)+\left(\mathbf{z}^{(k-1)}, M \mathbf{z}^{(k-1)}\right)\right]$
Date: December 7, 2005, version 1.0.
Notes originally due to James Lambers. Minor editing by Lek-Heng Lim.
which yields

$$
\omega_{k+1}=\frac{\left(\mathbf{z}^{(k-1)}, M \mathbf{z}^{(k-1)}\right)}{\alpha_{k}\left(\mathbf{z}^{(k-1)}, A \mathbf{z}^{(k)}\right)+\left(\mathbf{z}^{(k-1)}, M \mathbf{z}^{(k-1)}\right)} .
$$

We can simplify this expression for ω_{k+1} by noting that by symmetry,

$$
\left(\mathbf{z}^{(k-1)}, A \mathbf{z}^{(k)}\right)=\left(\mathbf{z}^{(k)}, A \mathbf{z}^{(k-1)}\right)
$$

and therefore

$$
\begin{aligned}
\left(\mathbf{z}^{(k)}, M \mathbf{z}^{(k)}\right) & =\left(\mathbf{z}^{(k)}, M \mathbf{z}^{(k-2)}\right)+\omega_{k}\left(\alpha_{k-1}\left(\mathbf{z}^{(k)}, A \mathbf{z}^{(k-1)}\right)-\left(\mathbf{z}^{(k)}, M \mathbf{z}^{(k-1)}\right)+\left(\mathbf{z}^{(k)}, M \mathbf{z}^{(k-2)}\right)\right) \\
& =\omega_{k}\left(\alpha_{k-1}\left(\mathbf{z}^{(k)}, A \mathbf{z}^{(k-1)}\right)\right)
\end{aligned}
$$

which yields

$$
\omega_{k+1}=\frac{\left(\mathbf{z}^{(k-1)}, M \mathbf{z}^{(k-1)}\right)}{-\frac{\alpha_{k}}{\alpha_{k+1}} \frac{1}{\omega_{k}}\left(\mathbf{z}^{(k)}, M \mathbf{z}^{(k)}\right)+\left(\mathbf{z}^{(k-1)}, M \mathbf{z}^{(k-1)}\right)}
$$

or

$$
\omega_{k+1}=\left[1-\frac{\alpha_{k}}{\alpha_{k-1}} \frac{1}{\omega_{k}} \frac{\left(\mathbf{z}^{(k)}, M \mathbf{z}^{(k)}\right)}{\left(\mathbf{z}^{(k-1)}, M \mathbf{z}^{(k-1)}\right)}\right]^{-1} .
$$

We have shown that

$$
\left(\mathbf{z}^{(k)}, M \mathbf{z}^{(k+1)}\right)=\left(\mathbf{z}^{(k-1)}, M \mathbf{z}^{(k+1)}\right)=0 .
$$

It can easily be shown that

$$
\left(\mathbf{z}^{(\ell)}, M \mathbf{z}^{(k+1)}\right)=0, \quad \ell<k-1 .
$$

We now state the classical conjugate gradient algorithm:
$\mathrm{x}^{(0)}$ given
Solve $M \mathbf{z}^{(0)}=\mathbf{r}^{(0)}$
$\mathbf{p}^{(0)}=\mathbf{z}^{(0)}$
for $k=0, \ldots$

$$
\begin{aligned}
& \alpha_{k}=\frac{\left(\mathbf{z}^{(k)}, M \mathbf{z}^{(k)}\right)}{\left(\mathbf{p}^{(k)}, A \mathbf{p}^{(k)}\right)} \\
& \mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+\alpha_{k} \mathbf{p}^{(k)} \\
& \mathbf{r}^{(k+1)}=\mathbf{r}^{(k)}+\alpha_{k} A \mathbf{p}^{(k)}
\end{aligned}
$$

Test for convergence
Solve $M \mathbf{z}^{(k+1)}=\mathbf{r}^{(k+1)}$
$\beta_{k+1}=\frac{\left(\mathbf{z}^{(k+1)}, M \mathbf{z}^{(k+1)}\right)}{\left(\mathbf{z}^{(k)}, M \mathbf{z}^{(k)}\right)}$
$\mathbf{p}^{(k+1)}=\mathbf{z}^{(k+1)}+\beta_{k+1} \mathbf{p}^{(k)}$
end
It can be shown that

$$
\mathbf{x}^{(k+1)}=\mathbf{x}^{(0)}+P_{k}(K) \mathbf{z}^{(0)}
$$

where $K=M^{-1} A$. Furthermore, amongst all methods which generate a polynomial for a given $\mathbf{x}^{(0)}$, the conjugate gradient method minimizes the quantity

$$
\epsilon^{k+1}=\mathbf{e}^{(k+1) \top} A \mathbf{e}^{(k+1)} .
$$

Most notable of all is that if A has p distinct eigenvalues, then the conjugate gradient method converges in p steps. This is particularly useful in domain decomposition, where the interface between two subdomains consists of only a small number of points.

Department of Computer Science, Gates Building 2B, Room 280, Stanford, CA 94305-9025
E-mail address: golub@stanford.edu

