CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 18

GENE H. GOLUB

1. Property A

Let A be symmetric positive definite. Then we can use diagonal scaling to obtain a matrix $D^{-1/2}AD^{-1/2}$ with all diagonal elements equal to 1 by setting

$$D = \begin{bmatrix} a_{11} & & \\ & \ddots & \\ & & a_{nn} \end{bmatrix}.$$

Then we can check whether the new matrix has Property A. A matrix A has Property A if there is a permutation matrix Π such that

$$\Pi^{\top} A \Pi = \begin{bmatrix} I_p & F \\ F^{\top} & I_q \end{bmatrix}.$$
(1.1)

For example, suppose

$$A = \begin{bmatrix} 1 & a_1 & & \\ a_1 & \ddots & \ddots & \\ & \ddots & \ddots & & \\ & & \ddots & \ddots & a_{n-1} \\ & & & a_{n-1} & 1 \end{bmatrix}.$$

Then by choosing Π so that odd-numbered rows and columns are grouped together, followed by even-numbered rows and columns, we obtain

This matrix has all kinds of nice properties. In particular, it allows decoupling of equations.

It should be noted that a matrix arising from the discretization of a PDE in two dimensions using a 5-point stencil has Property A, but a matrix based on a 9-point stencil does not. However,

Date: December 7, 2005, version 1.0.

Notes originally due to James Lambers. Minor editing by Lek-Heng Lim.

the latter matrix does have *block* Property A. For example, if

$$A = \begin{bmatrix} A_1 & B_1 & & \\ B_1^\top & \ddots & \ddots & \\ & \ddots & \ddots & B_{n-1} \\ & & B_{n-1}^\top & A_n \end{bmatrix}$$

then we can choose Π so that

We now show that for a matrix of the form (1.1), we can choose an optimal parameter ω for the SOR method. Let F be a $p \times q$ matrix with $p \ge q$, and let $F = U\Sigma V^{\top}$ be the SVD of F. Then

$$A = \begin{bmatrix} UU^{\top} & U\Sigma V^{\top} \\ V\Sigma^{\top}U^{\top} & VV^{\top} \end{bmatrix}$$
$$= \begin{bmatrix} U & 0 \\ 0 & V \end{bmatrix} \begin{bmatrix} I & \Sigma \\ \Sigma^{\top} & I \end{bmatrix} \begin{bmatrix} U^{\top} & 0 \\ 0 & V^{\top} \end{bmatrix}.$$

Since the left and right matrices above denote a similarity transformation, it follows that

$$\lambda(A) = \lambda(\tilde{A}), \quad \tilde{A} = \begin{bmatrix} [c]ccI & \Sigma \\ \Sigma^\top & I \end{bmatrix}.$$

Reordering the rows and columns of (A), we obtain a block diagonal matrix, where each diagonal block is a 2×2 matrix of the form

$$\begin{bmatrix} 1 & \sigma_i \\ \sigma_i & 1 \end{bmatrix}, \quad i = 1, \dots, q.$$

The eigenvalues of \tilde{A} are the eigenvalues of all of these diagonal blocks, which are $\lambda = 1 \pm \sigma_i$. These eigenvalues must be positive since A is positive definite, so it follows that

$$0 < \sigma_i < 1, \quad i = 1, \dots, q.$$

2. Optimal parameter for SOR

Now, consider the SOR operator

$$\mathcal{L}_{\omega} = \left(\frac{1}{\omega}I + L\right)^{-1} \left(\left(\frac{1}{\omega} - 1\right)I - U \right)$$
$$= \begin{bmatrix} \frac{1}{\omega}I & 0\\ F^{\top} & \frac{1}{\omega}I \end{bmatrix}^{-1} \begin{bmatrix} \left(\frac{1}{\omega} - 1\right)I & -F\\ 0 & \left(\frac{1}{\omega} - 1\right)I \end{bmatrix}$$

where

$$L = \begin{bmatrix} 0 & 0 \\ F^{\top} & 0 \end{bmatrix}, \quad U = \begin{bmatrix} 0 & F \\ 0 & 0 \end{bmatrix}.$$

We can explicitly invert the first matrix to obtain

$$\mathcal{L}_{\omega} = \begin{bmatrix} \omega I & 0 \\ -\omega^2 F^{\top} & \omega I \end{bmatrix} \begin{bmatrix} \left(\frac{1}{\omega} - 1\right) I & -F \\ 0 & \left(\frac{1}{\omega} - 1\right) I \end{bmatrix} \\ = \begin{bmatrix} (1 - \omega) I & -\omega F \\ (\omega^2 - \omega) F^{\top} & (1 - \omega) I + \omega^2 F^{\top} F \end{bmatrix}.$$

Using the SVD of F again, we obtain

$$\mathcal{L}_{\omega} = \begin{bmatrix} (1-\omega) UU^{\top} & -\omega U\Sigma V^{\top} \\ (\omega^{2}-\omega) V\Sigma^{\top} U^{\top} & (1-\omega) VV^{\top} + \omega^{2} V\Sigma^{\top} \Sigma V^{\top} \end{bmatrix}$$
$$= \begin{bmatrix} U & 0 \\ 0 & V \end{bmatrix} \begin{bmatrix} (1-\omega) I & -\omega \Sigma \\ (\omega^{2}-\omega) \Sigma^{\top} & (1-\omega) I + \omega^{2} \Sigma^{\top} \Sigma \end{bmatrix} \begin{bmatrix} U^{\top} & 0 \\ 0 & V^{\top} \end{bmatrix}.$$

Define

$$\Gamma(\omega) = \begin{bmatrix} (1-\omega) I & -\omega\Sigma\\ (\omega^2 - \omega)\Sigma^\top & (1-\omega) I + \omega^2\Sigma^\top\Sigma \end{bmatrix}.$$

Then $\lambda(\mathcal{L}_{\omega}) = \lambda(\Gamma(\omega))$ and $\|\mathcal{L}_{\omega}\|_{2} = \|\Gamma(\omega)\|_{2}$. Recall that $\mathbf{e}^{k} = \mathcal{L}_{\omega}^{k} \mathbf{e}^{(0)}$.

Ideally, we want to choose ω so that $\|\mathcal{L}_{\omega}^{k}\|$ is minimized, but this is an open problem. However, Young showed how to compute ω so that $\rho(\mathcal{L}_{\omega})$ is minimized. Since each block of $\Gamma(\omega)$ is a diagonal matrix, we can use the same reordering trick as before to obtain a block diagonal matrix, where each diagonal block is a 2 × 2 matrix of the form

$$\Gamma_i = \begin{bmatrix} (1-\omega) & -\omega\sigma_i \\ (\omega^2 - \omega)\sigma_i & (1-\omega) + \omega^2\sigma_i^2 \end{bmatrix}, \quad i = 1, \dots, q.$$

The eigenvalues μ of Γ_i satisfy the characteristic equation

$$(1 - \omega - \mu)^2 - \mu \sigma_i^2 \omega^2 = 0.$$

Note that when $\omega = 0$, then $|\mu| = 1$, indicating divergence. If $\omega = 1$, corresponding to the Gauss-Seidel method, then $\mu = 0$ or $\mu = \sigma_i^2$. If $\omega = 2$, then the eigenvalues are complex conjugates with $|\mu| = 1$. Therefore there exists an ω where μ becomes complex:

$$\hat{\omega} = \frac{2}{1 + \sqrt{1 - \sigma_i^2}}.$$

Thus, $|\mu(\omega_1)| > |\mu(\omega_2)|$ for $\omega_1 > \omega_2 > \hat{\omega}$.

Note that the eigenvalues of the Gauss-Seidel matrix are 0 or σ_i^2 , while the eigenvalues of the Jacobi matrix are $\pm \sigma_i$. Therefore we can expect Gauss-Seidel to converge twice as fast as Jacobi for matrices with Property A.

DEPARTMENT OF COMPUTER SCIENCE, GATES BUILDING 2B, ROOM 280, STANFORD, CA 94305-9025 *E-mail address*: golub@stanford.edu