CME 302: NUMERICAL LINEAR ALGEBRA
 FALL 2005/06
 LECTURE 18

GENE H. GOLUB

1. Property A

Let A be symmetric positive definite. Then we can use diagonal scaling to obtain a matrix $D^{-1 / 2} A D^{-1 / 2}$ with all diagonal elements equal to 1 by setting

$$
D=\left[\begin{array}{lll}
a_{11} & & \\
& \ddots & \\
& & a_{n n}
\end{array}\right]
$$

Then we can check whether the new matrix has Property A. A matrix A has Property A if there is a permutation matrix Π such that

$$
\Pi^{\top} A \Pi=\left[\begin{array}{cc}
I_{p} & F \tag{1.1}\\
F^{\top} & I_{q}
\end{array}\right] .
$$

For example, suppose

$$
A=\left[\begin{array}{cccc}
1 & a_{1} & & \\
a_{1} & \ddots & \ddots & \\
& \ddots & \ddots & a_{n-1} \\
& & a_{n-1} & 1
\end{array}\right]
$$

Then by choosing Π so that odd-numbered rows and columns are grouped together, followed by even-numbered rows and columns, we obtain

$$
\Pi^{\top} A \Pi=\left[\begin{array}{cccccccc}
1 & & & & a_{1} & & & \\
& \ddots & & & a_{2} & \ddots & & \\
& & \ddots & & & \ddots & \ddots & \\
& & & 1 & & & \ddots & \ddots \\
a_{1} & a_{2} & & & 1 & & & \\
& \ddots & \ddots & & & \ddots & & \\
& & \ddots & \ddots & & & \ddots & \\
& & & \ddots & & & & \ddots
\end{array}\right]
$$

This matrix has all kinds of nice properties. In particular, it allows decoupling of equations.
It should be noted that a matrix arising from the discretization of a PDE in two dimensions using a 5 -point stencil has Property A, but a matrix based on a 9 -point stencil does not. However,

Notes originally due to James Lambers. Minor editing by Lek-Heng Lim.
the latter matrix does have block Property A. For example, if

$$
A=\left[\begin{array}{cccc}
A_{1} & B_{1} & & \\
B_{1}^{\top} & \ddots & \ddots & \\
& \ddots & \ddots & B_{n-1} \\
& & B_{n-1}^{\top} & A_{n}
\end{array}\right]
$$

then we can choose Π so that

$$
\Pi^{\top} A \Pi=\left[\begin{array}{cccccccc}
A_{1} & & & & B_{1}^{\top} & & & \\
& A_{3} & & & B_{2}^{\top} & B_{3}^{\top} & & \\
& & \ddots & & & \ddots & \ddots & \\
& & & 1 & & & \ddots & \ddots \\
B_{1} & B_{2} & & & A_{2} & & & \\
& B_{3} & \ddots & & & A_{4} & & \\
& & \ddots & \ddots & & & \ddots & \\
& & & \ddots & & & & \ddots
\end{array}\right] .
$$

We now show that for a matrix of the form (1.1), we can choose an optimal parameter ω for the SOR method. Let F be a $p \times q$ matrix with $p \geq q$, and let $F=U \Sigma V^{\top}$ be the SVD of F. Then

$$
\begin{aligned}
A & =\left[\begin{array}{cc}
U U^{\top} & U \Sigma V^{\top} \\
V \Sigma^{\top} U^{\top} & V V^{\top}
\end{array}\right] \\
& =\left[\begin{array}{cc}
U & 0 \\
0 & V
\end{array}\right]\left[\begin{array}{cc}
I & \Sigma \\
\Sigma^{\top} & I
\end{array}\right]\left[\begin{array}{cc}
U^{\top} & 0 \\
0 & V^{\top}
\end{array}\right] .
\end{aligned}
$$

Since the left and right matrices above denote a similarity transformation, it follows that

$$
\lambda(A)=\lambda(\tilde{A}), \quad \tilde{A}=\left[\begin{array}{cc}
{[c] c c I} & \Sigma \\
\Sigma^{\top} & I
\end{array}\right] .
$$

Reordering the rows and columns of $\tilde{(} A)$, we obtain a block diagonal matrix, where each diagonal block is a 2×2 matrix of the form

$$
\left[\begin{array}{cc}
1 & \sigma_{i} \\
\sigma_{i} & 1
\end{array}\right], \quad i=1, \ldots, q .
$$

The eigenvalues of \tilde{A} are the eigenvalues of all of these diagonal blocks, which are $\lambda=1 \pm \sigma_{i}$. These eigenvalues must be positive since A is positive definite, so it follows that

$$
0<\sigma_{i}<1, \quad i=1, \ldots, q .
$$

2. Optimal parameter for SOR

Now, consider the SOR operator

$$
\begin{aligned}
\mathcal{L}_{\omega} & =\left(\frac{1}{\omega} I+L\right)^{-1}\left(\left(\frac{1}{\omega}-1\right) I-U\right) \\
& =\left[\begin{array}{cc}
\frac{1}{\omega} I & 0 \\
F^{\top} & \frac{1}{\omega} I
\end{array}\right]^{-1}\left[\begin{array}{cc}
\left(\frac{1}{\omega}-1\right) I & -F \\
0 & \left(\frac{1}{\omega}-1\right) I
\end{array}\right]
\end{aligned}
$$

where

$$
L=\left[\begin{array}{cc}
0 & 0 \\
F^{\top} & 0
\end{array}\right], \quad U=\left[\begin{array}{cc}
0 & F \\
0 & 0
\end{array}\right] .
$$

We can explicitly invert the first matrix to obtain

$$
\begin{aligned}
\mathcal{L}_{\omega} & =\left[\begin{array}{cc}
\omega I & 0 \\
-\omega^{2} F^{\top} & \omega I
\end{array}\right]\left[\begin{array}{cc}
\left(\frac{1}{\omega}-1\right) I & -F \\
0 & \left(\frac{1}{\omega}-1\right) I
\end{array}\right] \\
& =\left[\begin{array}{cc}
(1-\omega) I & -\omega F \\
\left(\omega^{2}-\omega\right) F^{\top} & (1-\omega) I+\omega^{2} F^{\top} F
\end{array}\right] .
\end{aligned}
$$

Using the SVD of F again, we obtain

$$
\begin{aligned}
\mathcal{L}_{\omega} & =\left[\begin{array}{cc}
(1-\omega) U U^{\top} & -\omega U \Sigma V^{\top} \\
\left(\omega^{2}-\omega\right) V \Sigma^{\top} U^{\top} & (1-\omega) V V^{\top}+\omega^{2} V \Sigma^{\top} \Sigma V^{\top}
\end{array}\right] \\
& =\left[\begin{array}{cc}
U & 0 \\
0 & V
\end{array}\right]\left[\begin{array}{cc}
(1-\omega) I & -\omega \Sigma \\
\left(\omega^{2}-\omega\right) \Sigma^{\top} & (1-\omega) I+\omega^{2} \Sigma^{\top} \Sigma
\end{array}\right]\left[\begin{array}{cc}
U^{\top} & 0 \\
0 & V^{\top}
\end{array}\right] .
\end{aligned}
$$

Define

$$
\Gamma(\omega)=\left[\begin{array}{cc}
(1-\omega) I & -\omega \Sigma \\
\left(\omega^{2}-\omega\right) \Sigma^{\top} & (1-\omega) I+\omega^{2} \Sigma^{\top} \Sigma
\end{array}\right] .
$$

Then $\lambda\left(\mathcal{L}_{\omega}\right)=\lambda(\Gamma(\omega))$ and $\left\|\mathcal{L}_{\omega}\right\|_{2}=\|\Gamma(\omega)\|_{2}$. Recall that

$$
\mathbf{e}^{k}=\mathcal{L}_{\omega}^{k} \mathbf{e}^{(0)}
$$

Ideally, we want to choose ω so that $\left\|\mathcal{L}_{\omega}^{k}\right\|$ is minimized, but this is an open problem. However, Young showed how to compute ω so that $\rho\left(\mathcal{L}_{\omega}\right)$ is minimized. Since each block of $\Gamma(\omega)$ is a diagonal matrix, we can use the same reordering trick as before to obtain a block diagonal matrix, where each diagonal block is a 2×2 matrix of the form

$$
\Gamma_{i}=\left[\begin{array}{cc}
(1-\omega) & -\omega \sigma_{i} \\
\left(\omega^{2}-\omega\right) \sigma_{i} & (1-\omega)+\omega^{2} \sigma_{i}^{2}
\end{array}\right], \quad i=1, \ldots, q .
$$

The eigenvalues μ of Γ_{i} satisfy the characteristic equation

$$
(1-\omega-\mu)^{2}-\mu \sigma_{i}^{2} \omega^{2}=0 .
$$

Note that when $\omega=0$, then $|\mu|=1$, indicating divergence. If $\omega=1$, corresponding to the GaussSeidel method, then $\mu=0$ or $\mu=\sigma_{i}^{2}$. If $\omega=2$, then the eigenvalues are complex conjugates with $|\mu|=1$. Therefore there exists an ω where μ becomes complex:

$$
\hat{\omega}=\frac{2}{1+\sqrt{1-\sigma_{i}^{2}}} .
$$

Thus, $\left|\mu\left(\omega_{1}\right)\right|>\left|\mu\left(\omega_{2}\right)\right|$ for $\omega_{1}>\omega_{2}>\hat{\omega}$.
Note that the eigenvalues of the Gauss-Seidel matrix are 0 or σ_{i}^{2}, while the eigenvalues of the Jacobi matrix are $\pm \sigma_{i}$. Therefore we can expect Gauss-Seidel to converge twice as fast as Jacobi for matrices with Property A.

Department of Computer Science, Gates Building 2B, Room 280, Stanford, CA 94305-9025
E-mail address: golub@stanford.edu

