CME 302: NUMERICAL LINEAR ALGEBRA
 FALL 2005/06
 LECTURE 17

GENE H. GOLUB

1. Chebyshev Iteration

Consider the iterative method

$$
\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+\alpha_{k+1} \mathbf{r}^{(k)}
$$

for solving $A \mathbf{x}=\mathbf{b}$. If we define $\mathbf{e}^{(k)}=\mathbf{x}-\mathbf{x}^{(k)}$, then

$$
\mathbf{e}^{(k)}=P_{k}(A) \mathbf{e}^{(0)}
$$

where

$$
P_{k}(A)=\left(I-\alpha_{k} A\right)\left(I-\alpha_{k-1} A\right) \cdots\left(I-\alpha_{1} A\right) .
$$

Therefore

$$
\frac{\left\|\mathbf{e}^{(k)}\right\|_{2}}{\left\|\mathbf{e}^{(0)}\right\|_{2}} \leq\left\|P_{k}(A)\right\|_{2} \leq \max _{1 \leq i \leq N}\left|P_{k}\left(\lambda_{i}\right)\right| \leq \max _{a \leq \lambda_{i} \leq b}\left|P_{k}(\lambda)\right|
$$

where $P_{k}(0)=I$ and $b=\lambda_{1} \geq \cdots \geq \lambda_{N}=a$ are the eigenvalues of A.
Recall that a good choice for the polynomial P_{k} arises from the Chebyshev polynomials

$$
C_{k}(\cos \theta)=\cos k \theta, \quad \theta=\cos ^{-1} x .
$$

If we fix k, then we have

$$
\alpha_{j}^{(k)}=\left[\frac{b+a}{2}-\left(\frac{b-a}{2}\right) \cos \frac{(2 j+1) \pi}{2 k}\right]^{-1}, \quad j=0, \ldots, k-1 .
$$

Note that

$$
\alpha_{0}^{(1)}=\frac{2}{b+a},
$$

which is the same optimal parameter obtained using a different analysis.
Therefore, we can select k and then use the parameters $\alpha_{0}^{(k)}, \ldots, \alpha_{k-1}^{(k)}$. If $\left\|\mathbf{r}^{(k)}\right\| /\left\|\mathbf{r}^{(0)}\right\| \leq \epsilon$, we can stop; otherwise, we simply recycle these parameters. The process should not be stopped before the full cycle, because a partial polynomial may not be small on the interval $[a, b]$. Also, using the parameters in an arbitrary order may lead to numerical instabilities even though mathematically the order does not matter. For a long time, the determination of a suitable ordering was an open problem, but it has now been solved. It has been shown that when solving Laplace's equation using 128 parameters, a simple left-to-right ordering results in $\left\|\mathbf{e}^{(128)}\right\| \approx 10^{35}$, while the optimal ordering yields $\left\|\mathbf{e}^{(128)}\right\| \approx 10^{-7}$.

In the absence of roundoff error, using Chebyshev polynomials yields

$$
\frac{\left\|\mathbf{e}^{(k)}\right\|_{2}}{\left\|\mathbf{e}^{(0)}\right\|_{2}} \leq \frac{2}{\left(\frac{\sqrt{\kappa}+1}{\sqrt{\kappa}-1}\right)^{k}+\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{k}} \approx\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{k}
$$

Date: November 30, 2005, version 1.0.
Notes originally due to James Lambers. Minor editing by Lek-Heng Lim.
whereas, with steepest descent,

$$
\frac{\left\|\mathbf{e}^{(k)}\right\|_{2}}{\left\|\mathbf{e}^{(0)}\right\|_{2}} \approx\left(\frac{\kappa-1}{\kappa+1}\right)^{k} .
$$

2. Convergence Acceleration

Consider the iteration

$$
M \mathbf{x}^{(k+1)}=N \mathbf{x}^{(k)}+\mathbf{b},
$$

where $A=M-N$ is symmetric positive definite. This iteration can be rewritten as

$$
\mathbf{x}^{(k+1)}=B \mathbf{x}^{(k)}+\mathbf{c}
$$

where $B=M^{-1} N$ and $\mathbf{c}=M^{-1} \mathbf{b}$. Therefore $\mathbf{e}^{(k+1)}=B \mathbf{e}^{(k)}$ where $\mathbf{e}^{(k)}=\mathbf{x}-\mathbf{x}^{(k)}$. In an attempt to accelerate convergence, we define

$$
\mathbf{y}^{(k)}=\sum_{\ell=0}^{k} a_{k \ell} x^{(\ell)}, \quad \sum_{\ell=0}^{k} a_{k \ell}=1 .
$$

Then

$$
\mathbf{x}-\mathbf{y}^{(k)}=\sum_{\ell=0}^{k} a_{k \ell}\left(\mathbf{x}-\mathbf{x}^{(\ell)}\right)=\sum_{\ell=0}^{k} a_{k \ell} B^{\ell} \mathbf{e}^{(0)}
$$

which yields

$$
\hat{\mathbf{e}}^{(k)}=P_{k}(B) \mathbf{e}^{(0)}
$$

where $\hat{\mathbf{e}}^{(k)}=\mathbf{x}-\mathbf{y}^{(k)}$ and

$$
P_{k}(\lambda)=\sum_{\ell=0}^{k} a_{k \ell} \lambda^{\ell}, \quad P_{k}(1)=1 .
$$

It follows that

$$
\frac{\left\|\hat{\mathbf{e}}^{(k)}\right\|_{2}}{\left\|\hat{\mathbf{e}}^{(0)}\right\|_{2}} \leq\left\|P_{k}(B)\right\|_{2}
$$

If B is symmetric, then we can write $B=Q \Lambda Q^{T}$ and obtain

$$
\left\|P_{k}(B)\right\|_{2}=\left\|P_{k}(\Lambda)\right\|_{2}=\max _{\lambda=\lambda_{i}}\left|P_{k}(\lambda)\right| \leq \max _{a \leq \lambda \leq b}\left|P_{k}(\lambda)\right| .
$$

Recall that the Chebyshev polynomials $C_{k}(x)$ satisfy the three-term recurrence relation

$$
C_{k+1}(x)=2 x C_{k}(x)-C_{k-1}(x) .
$$

If we let $B=I-\alpha A$ where $\alpha=2 /(a+b)$, then B is symmetric and we can use the iteration

$$
\mathbf{y}^{(\ell+1)}=\omega_{\ell+1}\left(B \mathbf{y}^{(\ell)}+\mathbf{c}-\mathbf{y}^{(\ell-1)}\right)+\mathbf{y}^{(\ell-1)}
$$

with initial vectors

$$
\mathbf{y}^{(0)}=\mathbf{x}^{(0)}, \quad \mathbf{y}^{(1)}=B \mathbf{y}^{(0)}+\mathbf{c} .
$$

The parameters $\omega_{\ell+1}$ are defined by

$$
\omega_{\ell+1}=\left(1-\frac{\rho^{2} \omega_{\ell}}{4}\right)^{-1}, \quad \ell \geq 1, \quad \rho=\frac{b-a}{b+a} .
$$

It follows that

$$
\omega_{2} \geq \omega_{3} \geq \cdots \geq \omega^{*}>1
$$

where

$$
\omega_{*}=\lim _{\ell \rightarrow \infty} \omega_{\ell} .
$$

What is the limit ω^{*} ? This limit satisfies

$$
\omega^{*}=\left(1-\frac{\rho^{2} \omega^{*}}{4}\right)^{-1}
$$

which is a quadratic equation with solutions

$$
\omega^{*}=\frac{1 \pm \sqrt{1-\rho^{2}}}{\rho^{2} / 2}
$$

Choosing the plus sign, we have

$$
1<\omega_{*}=\frac{2}{1+\sqrt{1-\rho^{2}}}<2 .
$$

Recall that for solving Poisson's equation, $\rho=1-c h^{2}+O\left(h^{4}\right)$ for the Jacobi method, while $\rho=1-c^{\prime} h+O\left(h^{2}\right)$ for the Chebyshev method.

3. Convergence for Positive Definite Systems

Let $A=M-N$, where $A=A^{*}$ and M is invertible, and define $Q=M+M^{*}-A$. If Q and A are both positive definite, then $\rho\left(M^{-1} N\right)<1$. To prove this, we define $B=M^{-1} N=I-M^{-1} A$. It follows that if $B \mathbf{u}=\lambda \mathbf{u}$, then

$$
A \mathbf{u}=(1-\lambda) M \mathbf{u}
$$

where $\lambda \neq 1$ since A is invertible. Taking the inner product of both sides with \mathbf{u} yields

$$
\mathbf{u}^{*} A \mathbf{u}=(1-\lambda) \mathbf{u}^{*} M \mathbf{u}
$$

but since A is symmetric positive definite, we also have

$$
\mathbf{u}^{*} A \mathbf{u}=(1-\bar{\lambda}) \mathbf{u}^{*} M^{*} \mathbf{u} .
$$

Adding these relaions yields

$$
\begin{aligned}
\mathbf{u}^{*}\left(M+M^{*}\right) \mathbf{u} & =\left(\frac{1}{1-\lambda}+\frac{1}{1-\bar{\lambda}}\right) \mathbf{u}^{*} A \mathbf{u} \\
& =2 \operatorname{Re}\left(\frac{1}{1-\lambda}\right) \mathbf{u}^{*} A \mathbf{u}
\end{aligned}
$$

which can be rewritten as

$$
\frac{\mathbf{u}^{*}(Q+A) \mathbf{u}}{\mathbf{u}^{*} A \mathbf{u}}=1+\frac{\mathbf{u}^{*} Q \mathbf{u}}{\mathbf{u}^{*} A \mathbf{u}}=2 \operatorname{Re}\left(\frac{1}{1-\lambda}\right) .
$$

Since both Q and A are positive definite, we must have

$$
2 \operatorname{Re}\left(\frac{1}{1-\lambda}\right)>1
$$

If we write $\lambda=\alpha+i \beta$, then it follows that

$$
\frac{2(1-\alpha)}{(1-\alpha)^{2}+\beta^{2}}>1
$$

which yields $\alpha^{2}+\beta^{2}=|\lambda|^{2}<1$.

4. Successive Overrelaxation with Positive Definite Systems

Let $A=D+L+U$ be positive definite with $D=I$. Then the iteration matrix for SOR is

$$
\mathcal{L}_{\omega}=\left(\frac{1}{\omega} I+L\right)^{-1}\left(\left(\frac{1}{\omega}-1\right) I-U\right) .
$$

Then $Q=M+M^{*}-A$ is

$$
Q=\left(\frac{1}{\omega} I+L\right)+\left(\frac{1}{\omega} I+U\right)-(I+L+U)=\left(\frac{2}{\omega}-1\right) I .
$$

For convergence, we want Q to be positive definite, so we must have $2 / \omega-1>0$ or $0<\omega<2$. It follows that SOR will converge for all $0<\omega<2$ when A is positive definite.

Department of Computer Science, Gates Building 2B, Room 280, Stanford, CA 94305-9025
E-mail address: golub@stanford.edu

