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1. Method of Steepest Descent

An alternative approach is to consider the iteration

x(k+1) = x(k) + αkr(k)

where αk varies from iteration to iteration. It follows that

r(k+1) = b−Ax(k+1) = b−Ax(k) − αkAr(k) = r(k) − αkAr(k).

We wish to choose αk so that r(k+1)>A−1r(k+1) is minimized. Now

r(k+1)>A−1r(k+1) = (r(k)> − αkr(k)>A)A−1(r(k) − αkAr(k)

= r(k)>A−1r(k) − 2αkr(k)>r(k) + α2
kr

(k)>Ar(k). (1.1)

To find the minimium, we differentiate with respect to αk and obtain

d

dαk
r(k)>A−1r(k+1) = −2r(k)>r(k) + 2αkr(k)>Ar(k)

which yields

α̂k =
r(k)>r(k)

r(k)>Ar(k)

which is well-defined since A is symmetric positive definite. This method is known as the method
of steepest descent.

Note that

0 < λmin (A) ≤ x>Ax
x>x

≤ λmax (A)

and therefore
1

λmax (A)
≤ α̂k ≤

1
λmin (A)

.

Substituting α̂k into (1.1) yields

r(k+1)>A−1r(k+1) = r(k)>A−1r(k) − 2r(k)>r(k) r(k)>r(k)

r(k)>Ar(k)
+

(
r(k)>r(k)

r(k)>Ar(k)

)2

r(k)>Ar(k)

= r(k)>A−1r(k) − (r(k)>r(k))2

r(k)>Ar(k)

and therefore
‖r(k+1)‖2

A−1

‖r(k)‖2
A−1

= 1− (r(k)>r(k))2

(r(k)>A−1r(k))(r(k)>Ar(k))
.
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The Kantorovich inequality, which comes up very often in applications such as optimization and
statistics, states that

x>Ax · x>A−1x
(x>x)2

≤
(√

κ+
√
κ
−1

2

)2

, κ =
λmax (A)
λmin (A)

.

It follows that
‖r(k+1)‖2

A−1

‖r(k)‖2
A−1

≤
(
κ− 1
κ+ 1

)2

.

Thus,
‖r(1)‖A−1

‖r(0)‖A−1

· ‖r
(2)‖A−1

‖r(1)‖A−1

· · · · · ‖r(k)‖A−1

‖r(k−1)‖A−1

≤
(
κ− 1
κ+ 1

)k

which yields
‖r(k)‖A−1

‖r(0)‖A−1

≤
(
κ− 1
κ+ 1

)k

.

In other words, the rate of convergence is the same as when the parameter αk is chosen a priori to
be

α̂ =
2

µ1 + µn
.

Which method is preferable? For the first approach, the problem is that we must know µ1 and µn.
For the second approach, we must compute αk at each step, which is worse for computation, but
in practice works better for certain problems.

Now consider the iteration
x(k+1) = (I − αkA)x(k) + αkb.

Since the exact solution x satisfies

x = (I − αkA)x + αkb,

it follows that
e(k+1) = (I − αkA)e(k).

So, we have

e(1) = (I − α0A)e(0)

...

e(k) = (I − αk−1A)(I − αk−2A) · · · (I − α0A)e(0).

In other words,
e(k) = Pk(A)e(0)

where Pk is a polynomial of degree k.
By the Cayley-Hamilton theorem,

ψ(A) =
d−1∏
i=0

(A− µiI) = 0

where d is the number of distinct eigenvalues µi of A, when A = A>. In other words

ψ(A) =
d−1∏
i=0

(
I − 1

µi
A

)
= 0

so we could choose αi = 1/µi, but this choice is nonsense because one almost never knows the
eigenvalues of A and even so, this choice is unstable because µi can vary immensely in magnitude.
However, we have

‖e(k)‖
‖e(0)‖

≤ ‖Pk(A)‖2,
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so we will now use approximation theory to find a suitable Pk.
If A = QΛQ>, then Pk(A) = QPk(Λ)Q>, and therefore

‖e(k)‖
‖e(0)‖

≤ ‖Pk(Λ)‖2.

And since

Pk(Λ) =

Pk(λ1)
. . .

Pk(λn)

 ,
it follows that

‖Pk(Λ)‖2 ≤ max
1≤i≤n

|Pk(λi)|.

So, because Pk(0) = I, we want to find a polynomial p̂k(λ) such that p̂k(0) = 1 and

max
1≤i≤n

|p̂k(λi)| = min
pk(0)=1

max
1≤i≤n

|pk(λi)|.

But clearly,
min

pk(0)=1
max
1≤i≤n

|pk(λi)| ≤ min
pk(0)=1

max
λn≤λ≤λ1

|pk(λ)|.

Therefore, we will try to find the polynomial p̂k that satisfies p̂(0) = 1 and is of minimum absolute
value on the interval [λn, λ1]. The solution to this problem is given by the Chebyshev polynomials.

The Chebyshev polynomial of degree k is defined to be

Ck(x) =

{
cos(k cos−1(x)) if |x| ≤ 1,
cosh(k cosh−1(x)) if |x| > 1.

For example,
C0(x) = 1, C1(x) = x, C2(x) = 2x2 − 1.

These polynomials are designed to be bounded by 1 in absolute value on the interval |x| ≤ 1.
If θ = cos−1 x then, using the trigonometric identities

cos(k + 1)θ = cos kθ cos θ − sin kθ sin θ

cos(k − 1)θ = cos kθ cos θ + sin kθ sin θ

we obtain
cos(k + 1)θ = 2 cos kθ cos θ − cos(k − 1)θ

which yields the three-term recurrence relation of the Chebyshev polynomials

Ck+1(x) = 2xCk(x)− Ck−1(x).

Since this relation leads to a leading coefficient of 2k−1 for Ck(x) when k ≥ 1, it is customary to
normalize, defining

Tk(x) =
Ck(x)
2k−1

, k ≥ 1.

We now claim that for k = 2, p̂2(x) is

T2(x) = x2 − 1
2
,

scaled and translated appropriately so as to be small on the interval [λn, λ1] and satisfy p̂2(0) = 1.
Note that on [−1, 1], T2(x) has a maximum at x = −1 and x = 1, and a local minimum at x = 0.

Now, suppose that there is another polynomial p2(x) = x2 + bx + c such that p2(−1) < T2(−1),
p2(1) < T2(1), and p2(0) > T2(0). Then the polynomial q1(x) = T2(x) − p2(x) has three sign
changes in the interval [−1, 1], but since T2(x) and p2(x) have the same leading coefficient, q1(x)
can have degree at most 1, so it must be identically zero.
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