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1. CONVERGENCE OF ITERATIVE METHODS
Recall the basic iterative methods based on the splitting A = D + L 4+ U, the Jacobi method
DxY) = (L 4+ U)x® +b
and the Gauss-Seidel method
(D + L)x**+) = —yx® 4 b,
These are examples of one-step stationary method, which is an iteration of the form
MxFHD = Nx®) 4 b,

where A =M — N.
Let B = M~!N, and define e®) = x — x*). Then e(*t1) = Belk) = Bkt1e0) Recall that
if p(B¥) < 1 then e — 0 for all choices of x(?). Also, recall that for all consistent norms,

p(B) < | B.
Therefore, a sufficient condition for convergence of the Jacobi method is ||Bl|oc < 1 where
aii
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bij = 27
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Note that
Qi
Bl = — <1
e -2
J#i
if B is diagonally dominant.
Now, define
i
r; = Z CLZ , T =maxr.

Then we have the following result:

Theorem If r < 1, then p(Bgs) < 1. In other words, the Gauss-Seidel iteration converges if A is
diagonally dominant.

Proof The proof proceeds using induction on the elements of e*). We have
(D + L)e* D) = e,

which can be written as
i
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Thus
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For i = 1, we have
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Assume that forp=1,...,¢—1,
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Then,
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from which it follows that
Jim e =0

since r < 1. O

We see that the Jacobi method and the Gauss-Seidel method both converge if A is diagonally
dominant, but convergence can be slow in some cases. For example, if
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is of size N x N then
0 1/2
1/2
1/2 0
and therefore _—
T m=h
Bj) = = ~1—
p(By) COS T cosh 5 +

which is approximately 1 for small h = ﬁ We would like to develop a method where p(B) =
1—ch.
Now, suppose B = B'. Then

He(k)HQ k k




We want [[e®)||o/][e@||s < €, so if we let p* = ¢, then
_ —loge
~ —logp

is the number of iterations necessary for convergence. The quantity —logp is called the rate of
convergence.

k

2. THE SOR METHOD

The method of successive overrelazation (SOR) is the iteration

i—1 N
(k1) _ W |, (kD) (k) (k)
x; = o [bl - Zlawwj — 'ZH Qx5 } + (1 —w)x,”.
j= j=i

The quantity w is called the relaxation parameter. If w = 1, then the SOR method reduces to the
Gauss-Seidel method.
In matrix form, the iteration can be written as

Dx*+D — (b — Lx**+D — x®)) 4 (1 — w)Dx®
which can be rearranged to obtain

(D 4 wL)x* ) = wb + [(1 — w)D — wU]x®)

> 1 “1r/1 1 -1
x (1) = (D + L) [( — 1) D— U] x4 <D + L> b.
w w w
Define
1 “r/1
L,=|-D+L ~-1)|D-U|.
w w
Then

—1
det L, = det <1D—|—L> det Kl —1> D—U}
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det (1D + L) w
W' (1 -w)" [, a

[T ai wn

=(1-w)"

Therefore, [ A\i = (1 —w)™ where A1,..., A\, are the eigenvalues of L, with [A1] > --- > |\,
Therefore |A;|" > (1 —w)™. Since we must have |\1| < 1 for convergence, it follows that a necessary
condition for convergence of SOR is

0<w<2.

3. BLoCK METHODS
Recall that in solving Poisson’s equation on a rectangle, we needed to solve systems of the form
Vi +TVj = Vi1 = 8j-
This can be accomplished using an iteration

k k
Tyt — g+ V§-_)1 + VJ(~+)1,



which is an example of a block Jacobi iteration, since it involves solving the system Au = g by
applying the Jacobi method to A, except each block of size N x N is treated as a single element.

Similarly, we can use the block Gauss-Seidel iteration
k+1 k+1 k
ij(. 1) :gj—l—vj(ji )—i—v; ).

4. RICHARDSON METHOD

Consider the iteration
xF) = (I — aA)x® 4+ ab
= x®) 4 a(b — Ax®)

— x®) 4 e

This is known as the Richardson method. If we define the error e®) = x—x*) then e*t1) = B, ek
where B, = I — aA; we want to choose the parameter v a priori so as to minimize || By||.
Suppose A is symmetric positive definite, with eigenvalues

H1 = fi2 > e iy > 0.
Since B =1 — aA, \; =1 — au,;. We want to choose « so that ||Byl|2 is minimized; i.e.

min max Ai(@)| = min max 1 — apyl.

The optimal parameter & is found by solving
1~ gy = —(1 — Gyun)
which yields
2
M1+ tn '
Note that When 1 — au, = —1 that the iteration diverges, from which it follows that the method
converges for 0 < o < 2/p,. However, this iteration is sensitive to perturbation, and therefore bad
numerically. For example, if 3 = 10 and u,, = 107%, then the optimal « is 2/(10 + 107%, but this

is close to a value of a for which the iteration diverges, o = 2/10.
Also, note that
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and similarly,
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Therefore the convergence rate depends on x(A).
For example, consider the Helmholtz equation on a rectangle R,

—Au*Y) Loz, )u® =f, (z,y) e R

u=g, (z,y)€0R

Using a finite difference approximation for A gives

T -I

e —I
T
-1 T
and thus the iteration has the form

Au*t) 4 p2yu® = f



where

r= . 0y = o(xs,y5).
Onn

We wish to determine the rate of convergence. We define the error operator by
e(k’-i-l) — (hQA_lZ])e(k).

Therefore
le® Dl < B2 A7 2| l2/le™ |-
But
12l = masx o
and
Amin = 4 — 4 cosmh
= 4(1 — cosmh)
) wh
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Therefore
otk < STl o, o 0o

272

Ty <Sinh3;g/2> 2

and thus the size of the problem mesh has disappeared, and the method converges if max; j |o;;| <
20. The rate of convergence is essentially independent of h, which is very desirable.
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