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1. Iterative Methods

Very large problems (naturally sparse, from applications): iterative methods. Structured matri-
ces (even sometimes dense, but use iterative techniques).

Given Ax = b, write Mx = Nx + b and construct the iteration

Mx(k+1) = Nx(k) + b.

Subtracting these equations, we obtain

M(x− x(k+1)) = N(x− x(k)).

Therefore if we denote the error in x(k) by e(k) = x− x(k), then

e(k+1) = M−1Ne(k) ≡ Be(k).

Thus e(k) = Bke(0), which suggests the following theorem:

Theorem e(k) → 0 as k →∞ for all e(0) if and only if ρ(B) < 1.

Convergence can still occur if ρ(B) = 1, but in that case we must be careful in how we choose
x(0).

Note that from e(k) = Bke(0), it follows that

‖e(k)‖
‖e(0)‖

≤ ‖B‖k.

2. The Jacobi Method

We now develop a simple iterative method. If we rewrite Ax = b as
n∑

j=1

aijxj = bi, i = 1, . . . , n,

then

aiixi = bi −
∑
i6=j

aijxj ,

or

xi =
1
aii

[
bi −

∑
j 6=i

aijxj

]
.
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In other words,

M =


a11

. . .
. . .

ann

 , N = −


0 a12 · · · a1n

a21
. . .

...
...

. . .
...

an1 · · · an,n−1 0

 .

Our iteration is therefore

x
(k+1)
i =

1
aii

[
bi −

∑
j 6=i

aijx
(k)

]
,

known as the Jacobi method, with

M−1N =


0 a12

a11
· · · a1n

a11

a21
a22

. . .
...

...
. . .

...
an1
ann

· · · an,n−1

ann
0

 ≡ BJ .

So, if

‖M−1N‖∞ = max
1≤i≤n

∑
j 6=i

∣∣∣∣aij

aii

∣∣∣∣ < 1,

i.e. if BJ is strictly diagonally dominant, then the iteration converges.
For example, suppose

A =


4 −1

−1
. . . . . .
. . . . . . −1

−1 4

 .

Then ‖BJ‖∞ = 1
2 , so the Jacobi method converges rapidly. On the other hand, if

A =


2 −1

−1
. . . . . .
. . . . . . −1

−1 2

 ,

which arises from discretizing the Laplacian, then ‖BJ‖∞ = 1. A more subtle analysis can be used
to show convergence, but it is slow.

Note that for these two examples, x(0) ← x(1) when all elements of x(1) have been computed.
This is a waste of storage; we need only n + 2 elements of storage of A above. This shows that
the ordering of equations is very important. If we reorder the equations in such a way that odd-
numbered equations and even-numbered equations are grouped separately, then we obtain, for the
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latter example,

A =



2 −1
2 −1 −1

. . . −1 −1
. . . . . . . . .

−1 −1 2
−1 −1 2

. . . . . . . . .
. . . . . . . . .

−1 2



.

Then, we can solve for all odd indices, then all even indicies, independently of each other. Not only
does this approach save storage space but it also lends itself to parallelism.

3. The Gauss-Seidel Method

In the Jacobi method, we compute x
(k+1)
i using the elements of x(k), even though x

(k+1)
1 , . . . , x

(k+1)
i−1

are already known. The Gauss-Seidel method is designed to take advantage of the latest informa-
tion available about x:

x
(k+1)
i =

1
aii

[
bi −

i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

]
.

To derive this method, we write A = L + D + U where

L =


0

a21
. . .

...
. . .

an1 · · · an,n−1 0

 , D =


a11

. . .
. . .

ann

 , U =


0 a12 · · · a1n

. . .
...

. . . an−1,n

0

 .

Thus the Gauss-Seidel iteration can be written as

Dx(k+1) = b− Lx(k+1) − Ux(k),

or
(D + L)x(k+1) = b− Ux(k)

which yields
x(k+1) = −(D + L)−1Ux(k) + (D + L)−1b.

Thus the iteration matrix for the Gauss-Seidel method is BGS = −(D + L)−1U , as opposed to the
iteration matrix for the Jacobi method, BJ = −D−1(L + U). In some cases, ρ(BGS) = (ρ(BJ))2,
so the Gauss-Seidel method converges twice as fast. On the other hand, note that Gauss-Seidel is
very sequential; i.e. it does not lend itself to parallelism.

4. Poisson’s Equation

Consider the standard problem of solving Poisson’s equation on a domain R in two dimensions,

−∆u = f, (x, y) ∈ R, ∆u = uxx + uyy,

u = g, (x, y) ∈ ∂R.

We take R to be the unit rectangle [0, 1] × [0, 1] and discretize the problem using a uniform grid
with spacing h = 1/(N + 1) in the x and y directions, and gridpoints xi = ih, i = 0, . . . , N + 1,
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and yj = jh, j = 0, . . . , N + 1. Then, for i, j = 1, . . . , N , we replace the differential equation by a
difference approximation

−ui−1,j + 2uij − ui+1,j

h2
+
−ui,j+1 + 2uij − ui,j+1

h2
= fij ,

where uij = u(xi, yj) and fij = f(xi, yj). From the boundary conditions, we have

u0j = g(x0, yj), j = 1, 2, . . . , N,

and similar conditions for the other gridpoints along the boundary.
Let uj = [u1j , . . . , uNj ]>. Then

−uj−1 + Tuj − uj+1 = f̃j
where

T =


4 −1

−1
. . . . . .
. . . . . . −1

−14

 , [f̃j ]i =


h2f1j + g(x0, j) i = 1
h2fij i = 2, . . . , N − 1
h2fNj + g(xN , j) i = N

Thus we can solve the problem on the entire domain by solving Au = f̃ where

A =


T −I
−I T −I

. . . . . . . . .
. . . . . . −I

−I T

 .

We say that A is a block tridiagonal matrix. A is also a band matrix, but the band is sparse and
Gaussian elimination may fill-in the whole band. However, the equations can be re-ordered to avoid
fill-in.
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