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1. Least Squares with Linear Constraints

Suppose that we wish to fit data as in the least squares problem, except that we are using different
functions to fit the data on different subintervals. A common example is the process of fitting data
using cubic splines, with a different cubic polynomial approximating data on each subinterval.

Typically, it is desired that the functions assigned to each piece form a function that is continuous
on the entire interval within which the data lies. This requires that constraints be imposed on the
functions themselves. It is also not uncommon to require that the function assembled from these
pieces also has a continuous first or even second derivative, resulting in additional constraints.
The result is a least squares problem with linear constraints, as the constraints are applied to
coefficients of predetermined functions chosen as a basis for some function space, such as the space
of polynomials of a given degree.

The general form of a least squares problem with linear constraints is as follows: we wish to find
an n-vector x that minimizes ‖Ax− b‖2, subject to the constraint C>x = d, where C is a known
n× p matrix and d is a known p-vector.

This problem is usually solved using Lagrange multipliers. We define

f(x;λ) = ‖b−Ax‖22 + 2λ>C>x.

Then

∇f = 2(A>Ax−A>b + Cλ).

To minimize f , we can solve the system[
A>A C
C> 0

] [
x̂
λ

]
=
[
A>b
d

]
.

From A>Ax = A>b − Cλ, we see that we can first compute x = x̂ − (A>A)−1Cλ where x̂ is the
solution to the unconstrained least squares problem. Then, from the equation C>x = d we obtain
the equation C>(A>A)−1Cλ = C>x̂ − d which we can now solve for λ. The algorithm proceeds
as follows:

(1) Solve the unconstrained least squares problem Ax = b for x̂.
(2) Compute A = QR.
(3) Form W = (R>)−1C.
(4) Compute W = PU , the QR factorization of W .
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(5) Solve U>Uλ = η = C>x̂− d for λ. Note that

U>U = (P>W )>(P>W )

= W>PP>W

= C>R−1(R>)−1C

= C>(R>R)−1C

= C>(R>Q>QR)−1C

= C>(A>A)−1C

(6) Set x = x̂− (A>A)−1Cλ.
This method is not the most practical since it has more unknowns than the unconstrained

least squares problem, which is odd because the constraints should have the effect of eliminating
unknowns, not adding them. We now describe an alternate approach.

Suppose that we compute the QR factorization of C to obtain

Q>C =
[
R
0

]
where R is a p× p upper triangular matrix. Then the constraint C>x = d takes the form

R>u = d, Q>x =
[
u
v

]
.

Then

‖b−Ax‖2 = ‖b−AQQ>x‖

=
∥∥∥∥b− Ã

[
u
v

]∥∥∥∥
2

, Ã = AQ

=
∥∥∥∥b− [Ã1 Ã2

] [u
v

]∥∥∥∥
2

= ‖b− Ã1u− Ã2v‖2
Thus we can obtain x by the following procedure:

(1) Compute the QR factorization of C

(2) Compute Ã = AQ
(3) Solve R>u = d
(4) Solve the new least squares problem of minimizing ‖(b− Ã1u)− Ã2v‖2
(5) Compute

x = Q

[
u
v

]
.

This approach has the advantage that there are fewer unknowns in each system that needs to be
solved, and also that κ(Ã2) ≤ κ(A). The drawback is that sparsity can be destroyed.

2. Least Squares with Quadratic Constraints

We wish to solve the problem

‖b−Ax‖2 = min , ‖x‖2 = α, α ≤ ‖A+b‖2.
This problem is known as least squares with quadratic constraints. To solve this problem, we define

ϕ(x;µ) = ‖b−Ax‖22 + µ(‖x‖2 − α2)

and seek to minimize ϕ. From

∇ϕ = 2A>b− 2A>Ax + 2µx
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we obtain the system
(A>A + µI)x = A>b.

If we denote the eigenvalues of A>A by

λi(A>A) = λ1, . . . , λn, λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0

then
λi(A>A + µI) = λ1 + µ, · · · , λn + µ.

If µ ≥ 0, then κ(A>A + µI) ≤ κ(A>A), because

λ1 + µ

λn + µ
≤ λ1

λn
,

so A>A + µI is better conditioned.
Solving the least squares problem with quadratic constraints arises in many literatures, including
(1) Statistics: Ridge Regression
(2) Regularization: Tichonov
(3) Generalized cross-validation (GCV)

To solve this problem, we see that we need to compute

x = (A>A + µI)−1A>b

where
x>x = b>A(A>A + µI)−2A>b = α2.

If A = UΣV > is the SVD of A, then we have

α2 = b>UΣV >(V Σ>ΣV > + µI)−2V Σ>U>b

= c>Σ(Σ>Σ + µI)−2Σ>c, U>b = c

=
r∑

i=1

c2
i σ

2
i

(σ2
i + µ)2

= χ(µ)

The function χ(µ) has poles at −σ2
i for i = 1, . . . , n. Furthermore, limµ→∞ χ(µ) = 0.

We now have the following procedure for solving this problem, given A, b, and α2:
(1) Compute the SVD of A to obtain A = UΣV >.
(2) Compute c = U>b.
(3) Solve χ(µ∗) = α2 where µ∗ ≥ 0. Don’t use Newton’s method on this equation directly;

solving 1/χ(µ) = 1/α2 is much better.
(4) Use the SVD to compute

x = (A>A + µI)−1A>b = V (Σ>Σ + µI)−1Σ>U>b.

3. Applications of the SVD

3.1. Minimum-norm least squares solution. One of the most well-known applications of the
SVD is that it can be used to obtain the solution to the problem

‖b−Ax‖2 = min , ‖x‖2 = min .

The solution is
x̂ = A+b = V Σ+U>b

where A+ is the pseudo-inverse of A.
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3.2. Closest Orthogonal Matrix. Let Qn be the set of all n× n orthogonal matrices. Given an
n× n matrix A, we wish to find the matrix Q that satisfies

‖A−Q‖F = min , Q ∈ Qn, σi(Q) = 1.

Given A = UΣV >, if we compute Q̂ = UIV >, then

‖A− Q̂‖2F = ‖U(Σ− I)V >‖2F
= ‖Σ− I‖2F
= (σ1 − 1)2 + · · ·+ (σn − 1)2

It can be shown that this is in fact the minimum.
A more general problem is to find Q ∈ Qn such that

‖A−BQ‖F = min

for given matrices A and B. The solution is

Q̂ = UV >, B>A = UΣV >.

3.3. Low-Rank Approximations. Let M(r)
m,n be the set of all m× n matrices of rank r, and let

A ∈M(r)
m,n. We wish to find B ∈M(k)

m,n, where k < r, such that ‖A−B‖F = min .

To solve this problem, let A = UΣV > be the SVD of A, and let B̂ = UΩkV
> where

Ωk =



σ1

. . .
σk

0
. . .

0


.

Then

‖A− B̂‖2F = ‖U(Σ− Ωk)V >‖2F
= ‖Σ− Ωk‖2F
= σ2

k+1 + · · ·+ σ2
r .

We now consider a variation of this problem. Suppose that B is a perturbation of A such that
A = B + E, where ‖E‖2F ≤ ε2. We wish to find B̂ such that ‖A− B̂‖2F ≤ ε2, where the rank of B̂

is minimized. We know that if Bk = UΩkV
> then

‖A−BK‖2F = σ2
k+1 + · · ·+ σ2

r .

It follows that B̂ = Bk is the solution if

σk+1 + · · ·+ σ2
r ≤ ε2, σ2

k + · · ·+ σ2
r > ε2.

Note that

‖A+ − B̂+‖2F =

(
1

σ2
k+1

+ · · ·+ 1
σ2

r

)
.
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4. Total Least Squares

In the ordinary least squares problem, we are solving

Ax = b + r, ‖r‖2 = min .

In the total least squares problem, we wish to solve

(A + E)x = b + r, ‖E‖2F + λ2‖r‖22 = min .

From Ax− b + Ex− r we obtain the system[
A b

] [ x
−1

]
+
[
E r

] [ x
−1

]
= 0,

or
(C + F )z = 0.

We need the matrix C + F to have rank ≤ n + 1, and we want to minimize ‖F‖.
To solve this problem, we compute the SVD of C =

[
A b

]
= UΣV >. Let Ĉ = UΩnV >. Then,

if vi is the ith column of V , we have

Ĉvn+1 = UΩnV >vn+1 = 0.

Our solution is [
x̂
−1

]
= − 1

vn+1,n+1
vn+1

provided that vn+1,n+1 6= 0.
Now, suppose that only some of the data is contaminated, i.e. E =

[
0 E1

]
where the first p

columns of E are zero. Then, in solving (C + F )z = 0, we use Householder transformations to
compute Q>(C+F ) where the first p columns are zero below the diagonal. Since ‖F‖F = ‖Q>F‖F ,
we then have a block upper triangular system[

R11 R12 + F12

0 R22 + F22

]
z = 0, z =

[
u
v

]
.

We can find the total least squares solution of

(R22 + F22)v = 0,

and then set F12 = 0 and solve
R11u + R12v = 0.
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