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1. Using the Normal Equations

We can solve the linear least squares problem using the normal equations

A>Ax = A>b

as follows: first, we solve the above system to obtain an approximate solution x̂, and compute the
residual vector r = b−Ax̂. Now, because

A>r = A>b−A>Ax̂ = 0,

we obtain the system

r + Ax̂ = b

A>r = 0

or, in matrix form, [
I A

A> 0

] [
r
x

]
=

[
b
0

]
.

This is a large system, but it preserves the sparsity of A. It can be used in connection with iterative
refinement, but unfortunately this procedure does not work well because it is very sensitive to the
residual.

2. Hilbert Matrices

A Hilbert matrix has the form

H =


1 1/2 1/3 · · · 1/n

1/2 1/3 · · · 1/(n + 1)

1/3 · · ·
...

...
...

1/n · · · · · · · · · 1/(2n− 1)

 , hij =
1

i + j − 1
.

It is very ill-conditioned, but H−1 is known, and its entries are all integers.

3. Complete Orthogonal Decomposition

We seek a decomposition of the form A = Q>RΠ where Π is chosen so that the diagonal elements
of R are maximized at each stage. Specifically, suppose

H1A =


r11

0
... ∗
0

 , r11 = ‖a1‖2.
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So, we choose Π1 so that ‖a1‖2 ≥ ‖aj‖2 for j ≥ 2. For Π2, look at the lengths of the columns
of the submatrix. We don’t need to recompute the lengths each time, because we can update by
subtracting the square of the first component from the square of the total length. Eventually, we
get

Q>
[
R S
0 0

]
Π1 · · ·Πr = A

where R is upper triangular. Using this decomposition, we can solve the linear least squares problem
Ax = b by observing that

‖b−Ax‖2
2 =

∥∥∥∥b−Q>
[
R S
0 0

]
Πx

∥∥∥∥2

2

=
∥∥∥∥Qb−

[
R S
0 0

] [
u
v

]∥∥∥∥2

2

=
∥∥∥∥[

c
d

]
−

[
Ru + Sv

0

]∥∥∥∥2

2

= ‖c−Ru− Sv‖2
2 + ‖d‖2

2.

Thus min ‖b−Ax‖2
2 = ‖d‖2

2 provided that Ru + Sv = c. A basic solution is obtained by choosing
v = 0. A second solution is to choose u and v so that ‖u‖2

2 + ‖v‖2
2 is minimized. This criterion is

related to the pseudoinverse of A.
Suppose

A = Q>
[
R S
0 0

]
Π

where R is upper triangular. Then

A> = Π>
[
R> 0
S> 0

]
Q

where R> is lower triangular. We apply Householder reflections so that

Hi · · ·H2H1

[
R> 0
S> 0

]
=

[
U 0
0 0

]
.

Then

A> = Z>
[
U 0
0 0

]
Q

where Z = Hi · · ·H1Π. In other words,

A = Q>
[
L 0
0 0

]
Z

where L is a lower triangular matrix of size r × r, where r is the rank of A. This is the complete
orthogonal decomposition of A.

Recall that X is the pseudoinverse of A if
(1) AXA = A
(2) XAX = X
(3) (XA)> = XA
(4) (AX)> = AX

Given the above complete orthogonal decomposition of A, the pseudoinverse of A, denoted A+,
is given by

A+ = Z>
[
L−1 0
0 0

]
Q.
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Let X = {x | ‖b − Ax‖2 = min }. If x ∈ X and we desire ‖x‖2 = min , then x = A+b. Note that
in this case,

r = b−Ax = b−AA+b = (I −AA+)b

where the matrix (I −AA+) is a projection matrix P⊥. To see that P⊥ is a projection, note that

P = AA+

= Q>
[
L 0
0 0

]
ZZ>

[
L−1 0
0 0

]
Q

= Q>
[
Ir 0
0 0

]
Q.

Suppose that we perturb the data, so that we are solving (A + εE)x(ε) = A>b. Then what is
‖x− x(ε)‖2 or ‖r− r(ε)‖2? Using the fact that PA = AA+A = A, we differentiate with respect to
ε and obtain

P
dA

dε
+

dP

dε
A =

dA

dε
.

It follows that
dP

dε
A = (I − P )

dA

dε
= P⊥

dA

dε
.

Multiplying through by A+, we obtain

dP

dε
P = P⊥

dA

dε
A+.

Because P is a projection,
d(P 2)

dε
= P

dP

dε
+

dP

dε
P =

dP

dε
,

so, using the relationship A>P = A>,

dP

dε
= P⊥

dA

dε
A+ + (A+)>

dA>

dε
P⊥.

4. More Perturbation Theory

Suppose that we are solving the perturbed least squares problem

A(ε)x(ε) = b, A(ε) = A + εE.

How does the residual vector r(ε) = b−Ax(ε) and the solution x(ε) change as a function of ε?
From last time, recall that the computed solution x̂ = A+b is very sensitive to the residual. To

see this, suppose that b is replaced by b + αr, where α is a constant. Then

A+(b + αr) = x̂ + αA+r

= x̂ + αA+(I −AA+)b

= x̂ + α[A+b−A+AA+b]
= x̂

so the computed solution is unchanged, even if α is large.
Recall that P = AA+ is a projection, with orthogonal complement P⊥ = I−AA+. Furthermore,

recall that
dP

dε
= P⊥

dA

dε
A+ + (A+)>

dAT

dε
P⊥.
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Now, using a Taylor expansion around ε = 0, we obtain

r(ε) = r(0) + ε
dP⊥

dε
b + O(ε2)

= r(0)− ε
dP

dε
b + O(ε2)

= r(0)− ε[P⊥Ex̂(0) + (A+)T ET r(0)] + O(ε2)

from the relations x̂ = A+b and r = P⊥b. Taking norms, we obtain

‖r(ε)− r(0)‖2

‖x̂‖2
= |ε|‖E‖2

(
1 + ‖A+‖2

‖r(0)‖2

‖x̂(0)‖2

)
+ O(ε2).

Note that if A is scaled so that ‖A‖2 = 1, then the second term above involves the condition number
κ2(A). We also have

‖x(ε)− x(0)‖2

‖x̂‖2
= |ε|‖E‖2

(
2κ(A) + κ2(A)2

‖r(0)‖2

‖x̂(0)‖2

)
+ O(ε2).

Note that a small perturbation residual does not imply a small perturbation in the solution.

5. Gram-Schmidt Orthogonalization

Consider the QR factorization

A =
[
a1 · · · an

]
=

[
q1 · · · qn

] r11 · · · r1n

. . .
...

rnn

 .

From the above matrix product we can see that a1 = r11q1, from which it follows that

r11 = ±‖a1‖2, q1 =
1

‖a1‖2
a1.

Next, from a2 = r12q1 + r22q2 we obtain

r12 = q>1 a2, r22 = ±‖a2 − r12q1‖2, q2 =
1

r22
(a2 − r12q1).

In general, we use the relation

ak =
k∑

j=1

rjkqj

to obtain

qk =
1

rkk

ak −
k−1∑
j=1

rjkqj

 , rjk = q>j ak.

Note that qk can be rewritten as

qk =
1

rkk

ak −
k−1∑
j=1

(q>j ak)qj

 =
1

rkk

ak −
k−1∑
j=1

qjq>j ak

 =
1

rkk

I −
k−1∑
j=1

qjq>j

ak.

If we define Pi = qiq>i , then Pi is a symmetric projector that satisfies P 2
i = Pi, and PiPj = δij .

Thus we can write

qk =
1

rkk

I −
k−1∑
j=0

Pj

ak =
1

rkk

k−1∏
j=1

(I − Pj)ak.

Why doesn’t Gram-Schmidt work? If a1 and a2 are almost parallel, then a2 − r12q1 is almost zero
and roundoff error becomes significant.
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6. Modified Gram-Schmidt

Although the classical Gram-Schmidt process is numerically unstable, the Modified Gram-Schmidt
method alleviates this difficulty. Recall

A = QR =
[
r11q1 r12q1 + r22q2 · · ·

]
We define

A(k) =
k−1∑
i=1

qir>i , r>i =
[
ri1 ri2 · · · rii

]
which means

A−
k−1∑
i=1

qir>i =
[
0 0 · · · 0 A(k)

]
.

If we write
A(k) =

[
z B

]
then

rkk = ‖z‖2, qk =
1

rkk
z.

We then compute [
rk,k+1 · · · rk,n

]
= q>k B

which yields
A(k+1) = B − qk

[
r1k · · · rkk

]
This process is numerically stable.

We can show
Q̂>1 Q̂1 = I + EMGS , ‖EMGS‖ ≈ uκ2(A),

and Q̂1 can be computed in approximately 2mn2 flops, whereas with Householder QR,

Q̂>1 Q̂1 = I + En, ‖En‖ ≈ u,

with Q̂1 being computed in approximately 2mn−2n2/3 flops to factor A and an additional 2mn2−
2n2/3 flops to obtain the n columns of Q.
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