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1. Estimating the Condition Number

Consider the condition number

κ∞(A) = ‖A‖∞‖A−1‖∞.

Of course,

‖A‖∞ = max
i

n∑
j=1

|aij |,

but how do we compute ‖A−1‖∞? If A−1 = B, then ‖A−1‖∞ = maxi
∑n

j=1 |bij |. Suppose Ay = d
or y = A−1d. Then ‖y‖∞ ≤ ‖A−1‖∞‖d‖∞, and therefore

‖A−1‖∞ ≥
‖y‖∞
‖d‖∞

.

This suggests an algorithm for estimating the condition number: we can choose d to maximize
‖y‖∞. To illustrate the process, we let

A = T =


t11 t12 · · · t1n

. . .
...

. . .
...

tnn


and examine the process of solving Ty = d. Writing out this system of equations yields

t11y1 + t12y2 + · · ·+ t1nyn = d1

...
tnnyn = dn

Considering the last equation yn = dn/tnn, we choose dn = +1 if tnn > 0, and −1 otherwise. Next,
we have

tn−1,n−1yn−1 + tn−1,nyn = dn−1,

which yields

yn−1 =
dn−1 − tn−1,nyn

tn−1,n−1
.

If tn−1,nyn > 0, we choose dn−1 = −1, otherwise, we set dn−1 = +1. We continue this process,
consistently choosing di = ±1 depending on which choice increases ‖y‖∞. There are other more
sophisticated strategies than this.
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2. Scaling and Equilibration

As we have seen, the bounds for the error depend on κ(A) = ‖A‖‖A−1‖. Perhaps we can re-scale
the equations so that the condition number is changed. We replace the system

Ax = b

by the equivalent system
DAx = Db

or possibly
DAEy = Db

where D and E are diagonal matrices and y = E−1x.
The answer will depend upon the norm used to compute the condition number.
Suppose A is symmetric positive definite. We want to replace A by DAD; i.e. aij ← didjaij .

Can we choose D so that κ(DAD) is minimized?
It turns out that for a class of symmetric matrices, this is the case. A symmetric positive definite

matrix A is said to have Property A if there exists a permutation matrix Π such that

ΠAΠ> =
[

D F
F> D

]
where D is a diagonal matrix. All tridiagonal matrices that are symmetric positive definite have
Property A.

For example, suppose

A =
[
50 7
7 1

]
.

Then λmax ≈ 51 and λmin ≈ 1/51, which means that κ(A) ≈ 2500. However,

DAD =
[ 1√

50
0

0 1

] [
50 7
7 1

] [ 1√
50

0
0 1

][
1 7√

50
7√
50

1

]
and

κ =
1 + 7/

√
50

1− 7/
√

50
≈ 200.

One scaling strategy is called equilibration. The idea is to set A(0) = A and compute A(1/2) =
D(1)A(0) = {d(1)

i aij}, choosing the diagonal matrix D1 so that d
(1)
i

∑n
j=1 |a

(0)
ij | = 1. Then, we

compute A(1) = A(1/2)E(1) = {a(1/2)
ij e

(1)
j }, choosing each element of the diagonal matrix E(1) so

that e
(1)
j

∑n
i=1 |a

(1/2)
ij | = 1. We then repeat this process, which yields

A(k+1/2) = D(k+1)A(k)

A(k+1) = A(k+1/2)E(k+1)

Under very general conditions, the A(k) converge to a matrix whose row and column sums are all
equal.

3. The Full-rank Linear Least Squares Problem

Given an m × n matrix A, with m ≥ n, and an m-vector b, we consider the overdetermined
system of equations Ax = b, in the case where A has full column rank. If b is in the range of A,
then there exists a unique solution x∗. For example, there exists a unique solution in the case of

A =

0 1
1 0
0 0

 , b =

1
1
0

 ,
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but not if b =
[
1 1 1

]>. In such cases, when b is not in the range of A, then we seek to minimize
‖Ax− b‖p for some p.

Different norms give different solutions. If p = 1 or p = ∞, then the function we seek to mini-
mize, f(x) = ‖Ax− b‖p is not differentiable, so we cannot use standard minimization techniques.
However, if p = 2, f(x) is differentiable, and thus the problem is more tractable. We now consider
two methods.

The first approach is to take advantage of the fact that the 2-norm is invariant under orthogonal
transformations, and seek an orthogonal matrix Q such that the transformed problem

min ‖Ax− b‖2 = min ‖Q>(Ax− b)‖2
is “easy” to solve. Let

A = Q

[
R
0

]
=

[
Q1 Q2

] [
R
0

]
= Q1R.

Then Q>1 A = R and

min ‖Ax− b‖2 = min ‖Q>(Ax− b)‖2
= ‖min ‖(Q>A)x−Q>b‖2

= min
∥∥∥∥[

R
0

]
x−Q>b

∥∥∥∥
2

If we partition

Q>b =
[
c
d

]
then

min ‖Ax− b‖22 = min
∥∥∥∥[

R
0

]
x−

[
c
d

]∥∥∥∥2

2

= min ‖Rx− c‖22 + ‖d‖22.

Therefore, the minimum is achieved by the vector x such that Rx = c and therefore

min
x
‖Ax− b‖2 = ‖d‖2 ≡ ρLS .

The second method is to define φ(x) = 1
2‖Ax− b‖22, which is a differentiable function of x. We

can minimize φ(x) by noting that ∇φ(x) = A>(Ax− b), which means that ∇φ(x) = 0 if and only
if A>Ax = A>b. This system of equations is called the normal equations, and were used by Gauss
to solve the least squares problem. If m >> n then A>A is n× n, which is a much smaller system
to solve than Ax = b, and if κ(A>A) is not too large, we can use the LU factorization to solve for
x.

Which is the better method? This is not a simple question to answer. The normal equations
produce an x∗ whose relative error depends on κ(A)2, whereas the QR factorization produces an
x∗ whose relative error depends on u(κ2(A) + ρLSκ2(A)2). The normal equations involve much less
arithmetic when m >> n and they require less storage, but the QR factorization is often applicable
if the normal equations break down.

4. The QR Factorization

Let A be an m×n matrix with full column rank. The QR factorization of A is a decomposition
A = QR, where Q is an m × m orthogonal matrix and R is an m × n upper triangular matrix.
There are two ways to compute this decomposition:

(1) Using Householder matrices, developed by Alston S. Householder
(2) Using Givens rotations, also known as Jacobi rotations, used by W. Givens and originally

invented by Jacobi for use with in solving the symmetric eigenvalue problem in 1846.
(3) A third, less frequently used approach, is the Gram-Schmidt orthogonalization.
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5. Orthogonalization using Givens Rotations

We illustrate the process in the case where A is a 2 × 2 matrix. In Gaussian elimination, we
compute L−1A = U where L−1 is unit lower triangular and U is upper triangular. Specifically,

[
1 0

m21 1

] [
a11 a12

a21 a22

]
=

[
a

(2)
11 a

(2)
12

0 a
(2)
22

]
, m21 = −a21

a11
.

By contrast, the QR decomposition takes the form[
γ σ
−σ γ

] [
a11 a12

a21 a22

]
=

[
r11 r12

0 r22

]
where γ2 + σ2 = 1. From the relationship −σa11 + γa21 = 0 we obtain

γa21 = σa11

γ2a2
21 = σ2a2

11 = (1− γ2)a2
11

which yields

γ = ± a11√
a2

21 + a2
11

.

It is conventional to choose the + sign. Then, we obtain

σ2 = 1− γ2 = 1− a2
11

a2
21 + a2

11

=
a2

21

a2
21 + a2

11

,

or

σ = ± a21√
a2

21 + a2
11

.

Again, we choose the + sign. As a result, we have

r11 = a11
a11√

a2
21 + a2

11

+ a21
a21√

a2
21 + a2

11

=
√

a2
21 + a2

11.

The matrix

Q> =
[

γ σ
−σ γ

]
is called a Givens rotation. It is called a rotation because it is orthogonal, and therefore length-
preserving, and also because there is an angle θ such that sin θ = σ and cos θ = γ, and its effect is
to rotate a vector through the angle θ. In particular,[

γ σ
−σ γ

] [
α
β

]
=

[
ρ
0

]

where ρ =
√

α2 + β2, α = ρ cos θ and β = ρ sin θ. It is easy to verify that the product of two
rotations is itself a rotation. Now, in the case where A is an n × n matrix, suppose that we have
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the vector
[
× · · · × α × · · · × β × · · · ×

]>. Then

1
. . .

1
γ σ

1
. . .

1
−σ γ

1
. . .

1





×
...
×
α
×
...
×
β
×
...
×



=



×
...
×
ρ
×
...
×
0
×
...
×



.

So, in order to transform A into an upper triangular matrix R, we can find a product of rotations
Q such that Q>A = R. It is easy to see that O(n2) rotations are required.

6. Orthogonalization using Householder Reflections

It is natural to ask whether we can introduce more zeros with each orthogonal rotation. To that
end, we examine Householder reflections. Consider a matrix of the form P = I − τuu>, where
u 6= 0 and τ is a nonzero constant. It is clear that P is a symmetric rank-1 change of I. Can we
choose τ so that P is also orthogonal? From the desired relation P>P = I we obtain

P>P = (I − τuu>)>(I − τuu>)

= I − 2τuu> + τ2uu>uu>

= I − 2τuu> + τ2(u>u)uu>

= I − (τ2u>u− 2τ)uu>

= I + τ(τu>u− 2)uu>.

It follows that if τ = 2/u>u, then P>P = I for any nonzero u. Without loss of generality, we can
stipulate that u>u = 1, and therefore P takes the form P = I − 2vv>, where v>v = 1.

Why is the matrix P called a reflection? This is because for any nonzero vector x, Px is the
reflection of x across the hyperplane that is normal to v. To see this, we consider the 2 × 2 case
and set v =

[
1 0

]> and x =
[
1 2

]>. Then

P = I − 2vv> = I − 2
[
1
0

] [
1 0

]
=

[
1 0
0 1

]
− 2

[
1 0
0 0

]
=

[
−1 0
0 1

]
Therefore

Px =
[
−1 0
0 1

] [
1
2

]
=

[
−1
2

]
.

Now, let x be any vector. We wish to construct P so that Px = α
[
1 0 · · · 0

]> = αe1 for some
α. From the relations

‖Px‖2 = ‖x‖2, ‖αe1‖2 = |α|‖e1‖2 = |α|,

we obtain α = ±‖x‖2. To determine P, we observe that

x = P−1(αe1) = αPe1 = α(I − 2vv>)e1 = α[e1 − 2vv>e1] = α[e1 − 2vv1]
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which yields the system of equations

x =


x1

x2
...

xn

 = α


1− 2v2

1

−2v1v2
...

−2v1vn

 .

From the first equation x1 = α(1− 2v2
1) we obtain

v1 = ±
√

1
2

(
1− x1

α

)
.

For i = 2, . . . , n, we have

vi = − xi

2αv1
.

It is best to choose α to have the opposite sign of x1 to avoid cancellation in v1. It is conventional
to choose the + sign for α.

Note that the matrix P is never formed explicitly. For any vector b, the product Pb can be
computed as follows:

Pb = (I − 2vv>)b = b− 2(v>b)v.

This process requires only O(2n) operations. It is easy to see that we can represent P simply by
storing only v.

We showed how a Householder reflection of the form P = I−2uu> could be constructed so that
given a vector x, Px = αe1. Now, suppose that that x = a1 is the first column of a matrix A.
Then we construct a Householder reflection H1 = I − 2u1u>1 such that Hx = αe1, and we have

A(2) = H1A =


r11

0
... a(2)

2 · · · a(2)
n

0

 .

where we denote the constant α by r11, as it is the (1, 1) element of the updated matrix A(2). Now,
we can construct H2 such that

H2a(2) =


a

(2)
12

r22

0
...
0

 , u12 = 0, H2 =


1 0
0
... hij

0

 .

Note that the first column of A(2) is unchanged by H2. Continuing this process, we obtain

Hn−1 · · ·H1A = A(n) = R

where R is an upper triangular matrix. We have thus factored A = QR, where Q = H1H2 · · ·Hn−1

is an orthogonal matrix. Note that

A>A = R>Q>QR = R>R,

and thus R is the Cholesky factor of A>A.
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7. Givens Rotations versus Household Reflections

We showed how to construct Givens rotations in order to rotate two elements of a column vector
so that one element would be zero, and that approximately n2/2 such rotations could be used to
transform A into an upper triangular matrix R. Because each rotation only modifies two rows of
A, it is possible to interchange the order of rotations that affect different rows, and thus apply
sets of rotations in parallel. This is the main reason why Givens rotations can be preferable to
Householder reflections. Other reasons are that they are easy to use when the QR factorization
needs to be updated as a result of adding a row to A or deleting a column of A. They are also
more efficient when A is sparse.
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