CME 302: NUMERICAL LINEAR ALGEBRA
 FALL 2005/06
 TAKE-HOME FINAL

GENE H. GOLUB

1. Let

$$
T=\left[\begin{array}{cccc}
a_{1} & b_{1} & & \\
c_{2} & \ddots & \ddots & \\
& \ddots & \ddots & b_{n-1} \\
& & c_{n} & a_{n}
\end{array}\right]
$$

(a) Show that if

$$
b_{i} c_{i+1}>0
$$

for all i, there exists a diagonal matrix D such that

$$
B=D T D^{-1}
$$

is a symmetric matrix. Give an algorithm for computing D.
(b) Consider the difference equation

$$
-u_{i-1}+2 u_{i}-u_{i+1}+\frac{\sigma h}{2}\left(u_{i+1}-u_{i-1}\right)=f_{i}
$$

with $u_{0}=\alpha$ and $u_{N+1}=\beta$. Develop the corresponding matrix as a tri-diagonal matrix.
(c) Give conditions under which this tri-diagonal matrix may be made symmetric.
(d) From the scaled matrix $B=D T D^{-1}$ compute the eigenvalues of the Jacobi matrix analytically and show that Jacobi converges.
(e) Suppose we wish to solve

$$
A \mathbf{x}=\mathbf{b} .
$$

Show that if there exists a diagonal matrix D such that

$$
B=D A D^{-1}
$$

is symmetric and positive definite, then the SOR method converges for the original problem. (Note: This implies that if such a D exists, it is not necessary to construct it).
2. Consider the 2-dimensional Laplace's equation on the domain $0<x<1,0<y<1$, with the following boundary conditions:

$$
u(0, y)=0, \quad u(1, y)=y, \quad u(x, 0)=0, \quad u(x, 1)=x^{2}
$$

(a) Apply SOR to solve this problem on an $(N+1) \times(N+1)$ grid with $N=23$. Choose a starting vector \mathbf{b} with random entries $b_{i} \in(0,1)$, and iterate until the relative error is less than 10^{-5}. Solve the problem for five values of ω and find an approximate 'optimal' value $\hat{\omega}$. (Hint: You may want to fit a polynomial to the obtained number of iterations as function of ω and find its minimum). Give the optimal value of ω analytically.
(b) Now apply CG method to these equations and plot convergence behavior.

[^0]3. Consider Laplace's equation as described in Problem 2. We are interested in applying the block Jacobi to this problem.
(a) By examining the eigenvalues of $B_{B J}$, show that the method converges.
(b) Apply block SOR to this problem, using the optimal SOR parameter. The optimal parameter is given by
$$
\omega=\frac{2}{1+\sqrt{1-\left\|B_{B J}\right\|^{2}}}
$$
4. Let A be an $n \times n$ symmetric matrix that is singular. Consider the iteration
$$
M \mathbf{x}^{(k+1)}=N \mathbf{x}^{(k)}+\mathbf{b}
$$
(a) Show that at least one eigenvalue of $B=M^{-1} N$ equals 1 .
(b) Describe how you could modify a convergent algorithm to obtain a solution to a singular problem.
(c) Using Gauss-Seidel, compute a solution to the problem
$$
A \mathbf{x}=\mathbf{b}
$$
where A is an $n \times n$ matrix of the form
\[

A=\left[$$
\begin{array}{cccccc}
1 & -1 & 0 & \cdots & 0 & 0 \\
-1 & 2 & -1 & 0 & \cdots & 0 \\
0 & -1 & 2 & -1 & 0 & \cdots \\
& & \ddots & \ddots & \ddots & \\
0 & \cdots & 0 & -1 & 2 & -1 \\
0 & 0 & \cdots & 0 & -1 & 1
\end{array}
$$\right]
\]

and \mathbf{b} is any pre-specified vector. Show how to modify \mathbf{b} so that it is in the range of A. Describe your modification to obtain a solution.
(d) Re-order A using the red-black ordering. Show that $n / 2$ eigenvalues are zero for the GaussSeidel operator.
5. Suppose we want to solve the linear least squares problem

$$
\begin{equation*}
\min \|\mathbf{b}-A \mathbf{x}\|^{2} \tag{5.1}
\end{equation*}
$$

where A is $m \times n(m>n), \mathbf{b}$ is $m \times 1$ and $\operatorname{rank}(A)=r \leq n$. Consider the iteration scheme

$$
\begin{equation*}
\left(A^{\top} A+\lambda W\right) \mathbf{x}_{i+1}=\lambda W \mathbf{x}_{i}+A^{\top} \mathbf{b} \tag{5.2}
\end{equation*}
$$

where $\lambda>0$ and W is an $n \times n$ symmetric positive definite matrix.
(a) Let $M=A^{\top} A+\lambda W$ and $N=\lambda W$. Construct the iteration matrix $B=M^{-1} N$. Show that B is diagonalizable, $\rho(B)<1$ if $A^{\top} A$ is non-singular.
(b) Assume $\mathbf{x}_{0}=\mathbf{0}$. Show that the sequence $\left\{\mathbf{x}_{i}\right\}_{i=1}^{\infty}$ converges to the minimum W-norm solution to the least squares problem (5.1), even when $r<n$. Recall that for a symmetric positive definite W, the W-norm of a vector \mathbf{x} is defined by

$$
\|\mathbf{x}\|_{W}:=\left(\mathbf{x}^{\top} W \mathbf{x}\right)^{1 / 2} .
$$

(Hint: First consider the case when $W=I$, and show that if $\mathbf{x}_{0}=\mathbf{0}$, then $\mathbf{x}_{i} \rightarrow A^{+} \mathbf{b}$.)
(c) Show that when $A^{\top} A$ is non-singular,

$$
\left\|\mathbf{e}_{i+1}\right\|_{W} \leq\left\|\mathbf{e}_{i}\right\|_{W}
$$

where $\mathbf{e}_{i}=\mathbf{x}-\mathbf{x}_{i}$.
(d) Give the rate of convergence for this method.
(e) Consider the iteration

$$
\begin{aligned}
\mathbf{r}_{i} & =A^{\top} \mathbf{b}-A^{\top} A \mathbf{x}_{i} \\
\left(A^{\top} A+\lambda W\right) \mathbf{z}_{i} & =\mathbf{r}_{i} \\
\mathbf{x}_{i+1} & =\mathbf{x}_{i}+\mathbf{z}_{i}
\end{aligned}
$$

Show that this is equivalent to (5.2).
(f) Going back to (5.2), show how to implement this algorithm using the $Q R$ decomposition of

$$
\left[\begin{array}{c}
A \\
\sqrt{\lambda} F
\end{array}\right]
$$

where $W=F^{\top} F$ is a factorization of W.

[^0]: Date: December 9, 2005, version 1.0.
 Please submit your solution to Lek-Heng in Gates 286 before 12 Noon, Thursday, December 15, 2005. You may not collaborate nor seek help from anyone other than the professor.

