
In performing calculations, it is best
to keep #'s on the same side

e.g.

In statistics, we often need to
compute
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which is often rewritten as

This formula is no good-- if the xi's are all large, then 

we're adding a bunch of large #'s, then subtracting a 

large # -- of course, the advantage for this is that it is a 
"one-pass" algorithm, whereas the first one was a "two-

pass" algorithm
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Suppose we have A, A-1, want to 

compute (A+ uvT)-1

(A + uvT)1/2

without re-computing the entire inverse; or
maybe we want (A + uvT)1/2 or in general f(A + uvT)

aside: we can't do this for eigenvalues

we'd like to know how changing
only one element changes things:

This is the same as

Sherman-Morrison Formula Monday, October 17, 2005
11:15 AM
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In perturbation theory we had A + εE

Here we have (A+uvT)y = b; original problem was 

Ax = b

(I + A-1uvT)y = A-1b = x; let w = A-1u

So our problem is
y = (I + wvT)-1x

Want a matrix X satisfying (I + wvT)X = I
(I + wvT)-1 = ?

Observe that the eigenvalues of a
rank one matrix are easy to compute:
wvT ? = λ? λ = vTw,0,…,0

vTwvT ? = λvT ?

Matrix inversion Corresponds to reciprocating
eigenvalues, so

multiplying out gives

need these to sum

X = (I + σwvT)

(I + wvT)(I + σwvT) ?= I
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need these to sum
to 0

The three terms above can be expressed as
(σ + 1 + σvTw)wvT

So σ(1 + vTw) = -1

This gives our algorithm

1) Solve Ax = b

2) Solve Aw = u

3) y = (I + wvT)-1x

= (I + σwvT)x

= x + σ(vTx)w, 
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The idea: first solve the problem without
perturbation, then Compute with the perturbation
then compute σ from that, and done

Unfortunately this is extremely prone to
numerical inaccuracies, so use with caution

   10.17 Page 6    



Over the years, people have applied
separation of variables to solve Poisson
equation on rectangular domains -- how

about a pair of linear domains?

So, this matrix is really like

Domain Decomposition Monday, October 17, 2005
11:32 AM
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Called "domain decomposition". -the idea is
to break the problem into subdomains,
solve on them, then make corrections
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Wart to solve the system; one idea is to
factor A

PQx =b

1) Solve Py = b

2) Solve Qx = y

Different kinds of P, Q:

or orthogonal:

The one we focus on most is when
P is lower triangular:

Ax = b, A: n × n, full rank

p11x1 = b1
p21x1 + p22x2 = b2
pn1x1 + … + pnnxn = bn

Solving linear Equations Monday, October 17, 2005
11:45 AM
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This is called "back substitution" and
requires O(n2) operations

The object is to get these Equations into
simple form
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It turns out that Gaussian Elimination
amounts to factorization into LU,
lower and upper triangular
a11x1 + a12x2 + … + a1nxn = b1
a21x1 + a22x2 + … + a2nxn = b2
an1x1 + an2x2 + … + annxn = bn

Provided  can multiply equation

(1) by and subtract from 2:

where

WC can do the same thing with
the first entry of every equation:

Gaussian Elimination Monday, October 17, 2005
11:52 AM
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how many operations? There are (n-1) rows
and n columns so n2 - n

We can continue the whole procedure to
knock out all entries below the diagonal

Provided

It takes a total of operations to

get the matrix to this form, and

backsubstitution takes
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Consider a new matrix

(we already computed )

In general
Ak+1 = MkAk = MkMk-1Ak-1
An = Mn-1Mn-2 …M2M1A =: U,
U upper triangular

Continued Monday, October 17, 2005
12:03 PM
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Recall that

Claim that

how about
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Theorem: if then A = LU

det A = det(LU) = det L det U = u11u22…unn
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Note if we partition

A = LU

then A11 = L1U1

ie this factorization is a factorization of 

submatrices

so providing

So, factorization always exists if

nonzero

But this would break down

Monday, October 17, 2005
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Key to remember is that Gaussian
elimination is factorization
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