Random Correctors. Lectures 1-3

Guillaume Bal

Department of Applied Physics \& Applied Mathematics Columbia University

http://www.columbia.edu/~gb2030
gb2030@columbia.edu

PDEs with random potential

We follow the presentation in $[B-08]$. Consider an equation of the form:

$$
\begin{array}{ll}
P(\mathbf{x}, \mathbf{D}) u_{\varepsilon}+q_{\varepsilon} u_{\varepsilon}=f, & \mathbf{x} \in D \tag{1}\\
u_{\varepsilon}=0 & \mathbf{x} \in \partial D,
\end{array}
$$

where $P(\mathrm{x}, \mathbf{D})$ is a (deterministic) self-adjoint, elliptic, pseudo-differential operator and D an open bounded domain in \mathbb{R}^{d}. We assume that $P(\mathrm{x}, \mathbf{D})$ is invertible with symmetric and "more than square integrable" Green's function. More precisely, we assume that the equation

$$
\begin{array}{ll}
P(\mathrm{x}, \mathbf{D}) u=f, & \mathrm{x} \in D \\
u=0 & \mathrm{x} \in \partial D \tag{2}
\end{array}
$$

admits a unique solution

$$
\begin{equation*}
u(\mathrm{x})=\mathcal{G} f(\mathrm{x}):=\int_{D} G(\mathrm{x}, \mathrm{y}) f(\mathrm{y}) d \mathbf{y} \tag{3}
\end{equation*}
$$

and that the real-valued and non-negative (to simplify notation) symmetric kernel $G(\mathbf{x}, \mathrm{y})=G(\mathbf{y}, \mathrm{x})$ has more than square integrable singularities
so that

$$
\begin{equation*}
\mathbf{x} \mapsto\left(\int_{D}|G|^{2+\eta}(\mathbf{x}, \mathbf{y}) d \mathbf{y}\right)^{\frac{1}{2+\eta}} \quad \text { is bounded on } D \text { for some } \eta>0 \tag{4}
\end{equation*}
$$

The assumption is satisfied by operators of the form $P(\mathbf{x}, \mathbf{D})=-\nabla$. $a(\mathrm{x}) \nabla+\sigma(\mathrm{x})$ for $a(\mathrm{x})$ uniformly bounded and coercive, $\sigma(\mathrm{x}) \geq 0$, and in dimension $d \leq 3$, with $\eta=+\infty$ when $d=1$ (i.e., the Green's function is bounded), $\eta<\infty$ for $d=2$, and $\eta<1$ for $d=3$.

The assumption is not satisfied for such operators in dimension $d \geq 4$, where deterministic and random correctors are in competition.

Assumptions on potential

Let $q_{\varepsilon}(\mathbf{x}, \omega)=q\left(\frac{\mathrm{X}}{\varepsilon}, \omega\right)$ be a mean zero, (strictly) stationary, process defined on an abstract probability space $(\Omega, \mathcal{F}, \mathbb{P})$. We assume that $q(\mathrm{x}, \omega)$ has an integrable correlation function:

$$
\begin{equation*}
R(\mathbf{x})=\mathbb{E}\{q(\mathbf{y}, \omega) q(\mathbf{y}+\mathbf{x}, \omega)\}, \tag{5}
\end{equation*}
$$

where \mathbb{E} is mathematical expectation associated to \mathbb{P}. We assume to simplify that $q_{\varepsilon}(\mathrm{x}, \omega)$ is sufficiently small so that (1) is well defined. The above expression is independent of \mathbf{y} by stationarity of the process $q(\mathbf{x}, \omega)$.

We also assume that $q(\mathbf{x}, \omega)$ is strongly mixing in the following sense. For two Borel sets $A, B \subset \mathbb{R}^{d}$, we denote by \mathcal{F}_{A} and \mathcal{F}_{B} the sub- σ algebras of \mathcal{F} generated by the field $q(\mathrm{x}, \omega)$. Then we assume the existence of a
($\rho-$) mixing coefficient $\varphi(r)$ such that

$$
\begin{equation*}
\left|\frac{\mathbb{E}\{(\eta-\mathbb{E}\{\eta\})(\xi-\mathbb{E}\{\xi\})\}}{\left(\mathbb{E}\left\{\eta^{2}\right\} \mathbb{E}\left\{\xi^{2}\right\}\right)^{\frac{1}{2}}}\right| \leq \varphi(2 d(A, B)) \tag{6}
\end{equation*}
$$

for all (real-valued) random variables η on $\left(\Omega, \mathcal{F}_{A}, \mathbb{P}\right)$ and ξ on $\left(\Omega, \mathcal{F}_{B}, \mathbb{P}\right)$. Here, $d(A, B)$ is the Euclidean distance between the Borel sets A and B.

The multiplicative factor 2 in (6) is here only for convenience. Moreover, we assume that $\varphi(r)$ is bounded and decreasing.

Random integral

We formally recast (1) as

$$
\begin{equation*}
u_{\varepsilon}=\mathcal{G}\left(f-q_{\varepsilon} u_{\varepsilon}\right), \tag{7}
\end{equation*}
$$

where $\mathcal{G}=P(\mathrm{x}, D)^{-1}$, and after one more iteration as

$$
\begin{equation*}
u_{\varepsilon}=\mathcal{G} f-\mathcal{G} q_{\varepsilon} \mathcal{G} f+\mathcal{G} q_{\varepsilon} \mathcal{G} q_{\varepsilon} u_{\varepsilon} \tag{8}
\end{equation*}
$$

This is the integral equation we aim to analyze:
$\mathcal{G} f$ is the unperturbed solution
$\mathcal{G} q_{\mathcal{E}} \mathcal{G} f$ is the random fluctuation
$\mathcal{G} q_{\varepsilon} \mathcal{G} q_{\varepsilon} u_{\varepsilon}$ is a lower-order correction

Mixing Lemma

We choose q_{ε} small so that $\left(I-\mathcal{G} q_{\varepsilon} \mathcal{G} q_{\varepsilon}\right)$ is invertible \mathbb{P}-a.s. (this can be significantly relaxed). We then need a few lemmas.

Lemma 1 Let $q(x, \omega)$ be strongly mixing so that (6) holds and such that $\mathbb{E}\left\{q^{6}\right\}<\infty$. Then, we have:

$$
\begin{align*}
& \left|\mathbb{E}\left\{q\left(\mathbf{x}_{1}\right) q\left(\mathbf{x}_{2}\right) q\left(\mathbf{x}_{3}\right) q\left(\mathbf{x}_{4}\right)\right\}\right| \\
\lesssim & \sup _{\left\{\mathbf{y}_{k}\right\}_{1 \leq k \leq 4}=\left\{\mathbf{x}_{k}\right\}_{1 \leq k \leq 4}} \varphi^{\frac{1}{2}}\left(\left|\mathbf{y}_{1}-\mathbf{y}_{3}\right|\right) \varphi^{\frac{1}{2}}\left(\left|\mathbf{y}_{2}-\mathbf{y}_{4}\right|\right) \mathbb{E}\left\{q^{6}\right\}^{\frac{2}{3}} . \tag{9}
\end{align*}
$$

Here, we use the notation $a \lesssim b$ when there is a positive constant C such that $a \leq C b$.

proof of mixing lemma

Let \mathbf{y}_{1} and \mathbf{y}_{2} be two points in $\left\{\mathbf{x}_{k}\right\}_{1 \leq k \leq 4}$ such that $d\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right) \geq d\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$ for all $1 \leq i, j \leq 4$ and such that $d\left(\mathbf{y}_{1},\left\{\mathbf{z}_{3}, \mathbf{z}_{4}\right\}\right) \leq d\left(\mathbf{y}_{2},\left\{\mathbf{z}_{3}, \mathbf{z}_{4}\right\}\right)$, where $\left\{\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{z}_{3}, \mathbf{z}_{4}\right\}=\left\{\mathbf{x}_{k}\right\}_{1 \leq k \leq 4}$.

Let us call y_{3} a point in $\left\{\mathrm{z}_{3}, \mathrm{z}_{4}\right\}$ closest to y_{1}. We call y_{4} the remaining point in $\left\{\mathbf{x}_{k}\right\}_{1 \leq k \leq 4}$. We have, using (6) and $\mathbb{E}\{q\}=0$, that:

$$
\left|\mathbb{E}\left\{q\left(\mathbf{x}_{1}\right) q\left(\mathbf{x}_{2}\right) q\left(\mathrm{x}_{3}\right) q\left(\mathrm{x}_{4}\right)\right\}\right| \lesssim \varphi\left(2\left|\mathbf{y}_{1}-\mathrm{y}_{3}\right|\right)\left(\mathbb{E}\left\{q^{2}\right\}\right)^{\frac{1}{2}}\left(\mathbb{E}\left\{\left(q\left(\mathrm{y}_{2}\right) q\left(\mathrm{y}_{3}\right) q\left(\mathrm{y}_{4}\right)\right)^{2}\right\}\right)^{\frac{1}{2}} .
$$

The last two terms are bounded by $\mathbb{E}\left\{q^{6}\right\}^{\frac{1}{6}}$ and $\mathbb{E}\left\{q^{6}\right\}^{\frac{1}{2}}$, respectively, using Hölder's inequality. Because $\varphi(r)$ is assumed to be decreasing, we deduce that

$$
\begin{equation*}
\left|\mathbb{E}\left\{q\left(\mathrm{x}_{1}\right) q\left(\mathrm{x}_{2}\right) q\left(\mathrm{x}_{3}\right) q\left(\mathrm{x}_{4}\right)\right\}\right| \lesssim \varphi\left(\left|\mathbf{y}_{1}-\mathrm{y}_{3}\right|\right) \mathbb{E}\left\{q^{6}\right\}^{\frac{2}{3}} \tag{10}
\end{equation*}
$$

proof of mixing lemma II

If \mathbf{y}_{4} is (one of) the closest point(s) to \mathbf{y}_{2}, then the same arguments show that

$$
\begin{equation*}
\left|\mathbb{E}\left\{q\left(\mathbf{x}_{1}\right) q\left(\mathbf{x}_{2}\right) q\left(\mathbf{x}_{3}\right) q\left(\mathbf{x}_{4}\right)\right\}\right| \lesssim \varphi\left(\left|\mathbf{y}_{2}-\mathbf{y}_{4}\right|\right) \mathbb{E}\left\{q^{6}\right\}^{\frac{2}{3}} \tag{11}
\end{equation*}
$$

Otherwise, \mathbf{y}_{3} is the closest point to \mathbf{y}_{2}, and we find that

$$
\left|\mathbb{E}\left\{q\left(\mathbf{x}_{1}\right) q\left(\mathbf{x}_{2}\right) q\left(\mathbf{x}_{3}\right) q\left(\mathbf{x}_{4}\right)\right\}\right| \lesssim \varphi\left(2\left|\mathbf{y}_{2}-\mathbf{y}_{3}\right|\right) \mathbb{E}\left\{q^{6}\right\}^{\frac{2}{3}}
$$

However, by construction, $\left|\mathbf{y}_{2}-\mathbf{y}_{4}\right| \leq\left|\mathbf{y}_{1}-\mathbf{y}_{2}\right| \leq\left|\mathbf{y}_{1}-\mathbf{y}_{3}\right|+\left|\mathbf{y}_{3}-\mathbf{y}_{2}\right| \leq$ $2\left|y_{2}-y_{3}\right|$, so (11) is still valid (this is the only place where the factor 2 in (6) is used).

Combining (10) and (11), the result follows from $a \wedge b \leq(a b)^{\frac{1}{2}}$ for $a, b \geq 0$, where $a \wedge b=\min (a, b)$.

Estimates

Lemma 2 Let q_{ε} be a stationary process $q_{\varepsilon}(\mathrm{x}, \omega)=q\left(\frac{\mathrm{x}}{\varepsilon}, \omega\right)$ with integrable correlation function in (5). Let f be a deterministic square integrable function on D. Then we have:

$$
\begin{equation*}
\mathbb{E}\left\{\left\|\mathcal{G} q_{\varepsilon} \mathcal{G} f\right\|_{L^{2}(D)}^{2}\right\} \lesssim \varepsilon^{d}\|f\|_{L^{2}(D)}^{2} . \tag{12}
\end{equation*}
$$

Let q_{ε} satisfy one of the following additional hypotheses:
[H 1$] ~ q(\mathrm{x}, \omega)$ is uniformly bounded \mathbb{P}-a.s.
$[\mathrm{H} 2] \mathbb{E}\left\{q^{6}\right\}<\infty$ and $q(\mathrm{x}, \omega)$ is strongly mixing with mixing coefficient in (6) such that $\varphi^{\frac{1}{2}}(r)$ is bounded and $r^{d-1} \varphi^{\frac{1}{2}}(r)$ is integrable on \mathbb{R}^{+}.

Then we find that

$$
\begin{equation*}
\mathbb{E}\left\{\left\|\mathcal{G} q_{\varepsilon} \mathcal{G} q_{\varepsilon}\right\|_{\mathcal{L}\left(L^{2}(D)\right)}^{2}\right\} \lesssim \varepsilon^{d} . \tag{13}
\end{equation*}
$$

Proof

We denote $\|\cdot\|=\|\cdot\|_{L^{2}(D)}$ and calculate

$$
\mathcal{G} q_{\varepsilon} \mathcal{G} f(\mathbf{x})=\int_{D}\left(\int_{D} G(\mathbf{x}, \mathbf{y}) q_{\varepsilon}(\mathbf{y}) G(\mathbf{y}, \mathbf{z}) d \mathbf{y}\right) f(\mathbf{z}) d \mathbf{z}
$$

so that by the Cauchy-Schwarz inequality, we have

$$
\left|\mathcal{G} q_{\varepsilon} \mathcal{G} f(\mathrm{x})\right|^{2} \leq\|f\|^{2} \int_{D}\left(\int_{D} G(\mathbf{x}, \mathbf{y}) q_{\varepsilon}(\mathrm{y}) G(\mathbf{y}, \mathbf{z}) d \mathbf{y}\right)^{2} d \mathbf{z}
$$

By definition of the correlation function, we thus find that

$$
\begin{equation*}
\mathbb{E}\left\{\left\|\mathcal{G} q_{\varepsilon} \mathcal{G} f\right\|^{2}\right\} \lesssim\|f\|^{2} \int_{D^{4}} G(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \boldsymbol{\zeta}) R\left(\frac{\mathbf{y}-\boldsymbol{\zeta}}{\varepsilon}\right) G(\mathbf{y}, \mathbf{z}) G(\boldsymbol{\zeta}, \mathbf{z}) d \mathbf{x} d \mathbf{y} d \boldsymbol{\zeta} d \mathbf{z} \tag{14}
\end{equation*}
$$

Extending $G(\mathbf{x}, \mathbf{y})$ by 0 outside $D \times D$, we find in the Fourier domain that

$$
\mathbb{E}\left\{\left\|\mathcal{G} q_{\varepsilon} \mathcal{G} f\right\|^{2}\right\} \lesssim\|f\|^{2} \int_{D^{2}} \int_{\mathbb{R}^{d}}|G(\mathbf{x}, \cdot) G(\mathbf{z}, \cdot)|^{2}(\mathbf{p}) \varepsilon^{d} \widehat{R}(\varepsilon \mathbf{p}) d \mathbf{p} d \mathbf{x} d \mathbf{z}
$$

Here $\widehat{f}(\boldsymbol{\xi})=\int_{\mathbb{R}^{d}} e^{-i \boldsymbol{\xi} \cdot \mathbf{x}} f(\mathbf{x}) d \mathbf{x}$ is the Fourier transform of $f(\mathrm{x})$. Since $R(\mathrm{x})$ is integrable, then $\hat{R}(\varepsilon \mathbf{p})$ (which is always non-negative by e.g. Bochner's theorem) is bounded by a constant we call R_{0} so that

$$
\mathbb{E}\left\{\left\|\mathcal{G} q_{\varepsilon} \mathcal{G} f\right\|^{2}\right\} \lesssim\|f\|^{2} \varepsilon^{d} R_{0} \int_{D^{3}} G^{2}(\mathbf{x}, \mathbf{y}) G^{2}(\mathbf{z}, \mathbf{y}) d \mathbf{x} d \mathbf{y} d \mathbf{z} \lesssim\|f\|^{2} \varepsilon^{d} R_{0}
$$

by the square-integrability assumption on $G(\mathbf{x}, \mathrm{y})$. This yields (12). Let us now consider (13). We denote by $\left\|\mathcal{G} q_{\varepsilon} \mathcal{G} q_{\varepsilon}\right\|$ the norm $\left\|\mathcal{G} q_{\varepsilon} \mathcal{G} q_{\varepsilon}\right\|_{\mathcal{L}\left(L^{2}(D)\right)}$ and calculate that

$$
\mathcal{G} q_{\varepsilon} \mathcal{G} q_{\varepsilon} \phi(\mathbf{x})=\int_{D}\left(\int_{D} G(\mathbf{x}, \mathbf{y}) q_{\varepsilon}(\mathbf{y}) G(\mathbf{y}, \mathbf{z}) d \mathbf{y}\right) q_{\varepsilon}(\mathbf{z}) \phi(\mathbf{z}) d \mathbf{z} .
$$

Therefore,

$$
\left(\mathcal{G} q_{\varepsilon} \mathcal{G} q_{\varepsilon} \phi(\mathbf{x})\right)^{2} \leq \int_{D}\left(\int_{D} G(\mathbf{x}, \mathbf{y}) q_{\varepsilon}(\mathbf{y}) G(\mathbf{y}, \mathbf{z}) q_{\varepsilon}(\mathbf{z}) d \mathbf{y}\right)^{2} d \mathbf{z} \int_{D} \phi^{2}(\mathbf{z}) d \mathbf{z}
$$

by Cauchy Schwarz. This shows that

$$
\left\|\mathcal{G} q_{\varepsilon} \mathcal{G} q_{\varepsilon}\right\|^{2}(\omega) \leq \int_{D^{2}}\left(\int_{D} G(\mathbf{x}, \mathbf{y}) q_{\varepsilon}(\mathbf{y}) G(\mathbf{y}, \mathbf{z}) d \mathbf{y}\right)^{2} q_{\varepsilon}^{2}(\mathbf{z}) d \mathbf{z} d \mathbf{x}
$$

When $q_{\varepsilon}(\mathbf{z}, \omega)$ is bounded \mathbb{P}-a.s., the proof above leading to (12) applies and we obtain (13) under hypothesis [H1].

The hypothesis that q_{ε} is small or even bounded can be relaxed as the following calculation shows. Using Lemma 1, we obtain that

$$
\mathbb{E}\left\{q_{\varepsilon}(\mathbf{y}) q_{\varepsilon}(\boldsymbol{\zeta}) q_{\varepsilon}^{2}(\mathbf{z})\right\} \lesssim \varphi^{\frac{1}{2}}\left(\frac{|\mathbf{y}-\boldsymbol{\zeta}|}{\varepsilon}\right) \varphi^{\frac{1}{2}}(0)+\varphi^{\frac{1}{2}}\left(\frac{|\mathbf{y}-\mathbf{z}|}{\varepsilon}\right) \varphi^{\frac{1}{2}}\left(\frac{|\mathbf{z}-\boldsymbol{\zeta}|}{\varepsilon}\right)
$$

Under hypothesis [H2], we thus obtain that

$$
\begin{aligned}
\mathbb{E}\left\{\left\|\mathcal{G} q_{\varepsilon} \mathcal{G} q_{\varepsilon}\right\|^{2}\right\} \lesssim & \int_{D^{4}} G(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \boldsymbol{\zeta}) \varphi^{\frac{1}{2}}\left(\frac{|\mathbf{y}-\boldsymbol{\zeta}|}{\varepsilon}\right) G(\mathbf{y}, \mathbf{z}) G(\boldsymbol{\zeta}, \mathbf{z}) d \mathbf{y} d \boldsymbol{\zeta} d \mathbf{x} d \mathbf{z} \\
& +\int_{D^{2}}\left(\int_{D} G(\mathbf{x}, \mathbf{y}) \varphi^{\frac{1}{2}}\left(\frac{|\mathbf{y}-\mathbf{z}|}{\varepsilon}\right) G(\mathbf{y}, \mathbf{z}) d \mathbf{y}\right)^{2} d \mathbf{x} d \mathbf{z}
\end{aligned}
$$

Because $r^{d-1} \varphi^{\frac{1}{2}}(r)$ is integrable, then $\mathbf{x} \mapsto \varphi^{\frac{1}{2}}(|\mathbf{x}|)$ is integrable as well and the bound of the first term above under hypothesis [H 2] is done as in (14) by replacing $R(\mathrm{x})$ by $\varphi^{\frac{1}{2}}(|\mathrm{x}|)$. As for the second term, it is bounded,
using the Cauchy Schwarz inequality, by

$$
\int_{D}\left(\int_{D}\left(\int_{D} G^{2}(\mathbf{x}, \mathbf{y}) d \mathbf{x}\right) G^{2}(\mathbf{y}, \mathbf{z}) d \mathbf{y}\right)\left(\int_{D} \varphi\left(\frac{|\mathbf{y}-\mathbf{z}|}{\varepsilon}\right) d \mathbf{y}\right) d \mathbf{z} \lesssim \varepsilon^{d}
$$

since $\mathrm{x} \mapsto \varphi(|\mathrm{x}|)$ is integrable, D is bounded, and (4) holds.

The above lemma may be used to handle cases with q_{ε} not necessarily bounded. We simply assume here that q_{ε} is sufficiently small so that the operator $\mathcal{G} q_{\varepsilon} \mathcal{G} q_{\varepsilon}$ is of norm $\rho<1$ in $\mathcal{L}\left(L^{2}(D)\right)$.

Bound on random correctors

Now we can address the behavior of the correctors. We define

$$
\begin{equation*}
u_{0}=\mathcal{G} f \tag{15}
\end{equation*}
$$

the solution of the unperturbed problem. We find that

$$
\begin{equation*}
\left(I-\mathcal{G} q_{\varepsilon} \mathcal{G} q_{\varepsilon}\right)\left(u_{\varepsilon}-u_{0}\right)=-\mathcal{G} q_{\varepsilon} \mathcal{G} f+\mathcal{G} q_{\varepsilon} \mathcal{G} q_{\varepsilon} \mathcal{G} f \tag{16}
\end{equation*}
$$

Using the results of Lemma 2, we obtain that

Lemma 3 Let u_{ε} be the solution to the heterogeneous problem (1) and u_{0} the solution to the corresponding homogenized problem. Then we have that

$$
\begin{equation*}
\left(\mathbb{E}\left\{\left\|u_{\varepsilon}-u_{0}\right\|^{2}\right\}\right)^{\frac{1}{2}} \lesssim \varepsilon^{\frac{d}{2}}\|f\| \tag{17}
\end{equation*}
$$

Bound on "multiple scattering"

$\mathcal{G} q_{\varepsilon} \mathcal{G} q_{\varepsilon}\left(u_{\varepsilon}-u_{0}\right)$ is bounded by ε^{d} in $L^{1}\left(\Omega ; L^{2}(D)\right)$ by Cauchy-Schwarz:

$$
\mathbb{E}\left\{\left\|\mathcal{G} q_{\varepsilon} \mathcal{G} q_{\varepsilon}\left(u_{\varepsilon}-u_{0}\right)\right\|\right\} \leq\left(\mathbb{E}\left\{\left\|\mathcal{G} q_{\varepsilon} \mathcal{G} q_{\varepsilon}\right\|^{2}\right\}\right)^{\frac{1}{2}}\left(\mathbb{E}\left\{\left\|u_{\varepsilon}-u_{0}\right\|^{2}\right\}\right)^{\frac{1}{2}} \lesssim \varepsilon^{d} \ll \varepsilon^{\frac{d}{2}}
$$

This controls the errors coming from multiple scattering. The remaining contributions in $u_{\varepsilon}-u_{0}$ are

$$
-\mathcal{G} q_{\varepsilon} \mathcal{G} f+\mathcal{G} q_{\varepsilon} \mathcal{G} q_{\varepsilon} \mathcal{G} f
$$

Estimate for deterministic corrector

We need the following estimate:

Lemma 4 Under hypothesis [H2] of Lemma 2, we find that

$$
\begin{equation*}
\mathbb{E}\left\{\left\|\mathcal{G} q_{\varepsilon} \mathcal{G} q_{\varepsilon} \mathcal{G} f\right\|^{2}\right\} \lesssim \varepsilon^{2 d \frac{1+\eta}{2+\eta}\|f\|^{2} \ll \varepsilon^{d}\|f\|^{2}, ~} \tag{18}
\end{equation*}
$$

where η is such that $\mathbf{y} \mapsto\left(\int_{D}|G|^{2+\eta}(\mathbf{x}, \mathbf{y}) d \mathbf{x}\right)^{\frac{1}{2+\eta}}$ is uniformly bounded on D.

This is where we need that the Green's function be more than square integrable. Otherwise, a deterministic corrector may appear. The estimate in (18) is optimal in powers of ε.

Proof

By Cauchy Schwarz,

$$
\left|\mathcal{G} q_{\varepsilon} \mathcal{G} q_{\varepsilon} \mathcal{G} f(\mathbf{x})\right|^{2} \leq\|f\|^{2} \int_{D}\left(\int_{D^{2}} G(\mathbf{x}, \mathbf{y}) q_{\varepsilon}(\mathbf{y}) G(\mathbf{y}, \mathbf{z}) q_{\varepsilon}(\mathbf{z}) G(\mathbf{z}, \mathbf{t}) d \mathbf{y} d \mathbf{z}\right)^{2} d \mathbf{t}
$$

So we want to estimate

$$
A=\mathbb{E}\left\{\int_{D^{\delta}} G(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \boldsymbol{\zeta}) q_{\varepsilon}(\mathbf{y}) q_{\varepsilon}(\zeta) G(\mathbf{y}, \mathbf{z}) G(\zeta, \boldsymbol{\xi}) q_{\varepsilon}(\mathbf{z}) q_{\varepsilon}(\boldsymbol{\xi}) G(\mathbf{z}, \mathbf{t}) G(\boldsymbol{\xi}, \mathbf{t}) d[\boldsymbol{\xi} \zeta \mathbf{y z x t}]\right\} .
$$

We now use mixing (9) to obtain that $A \lesssim A_{1}+A_{2}+A_{3}$, where

$$
\begin{aligned}
& A_{1}=\int_{D^{5}} G(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \boldsymbol{\zeta}) \varphi^{\frac{1}{2}}\left(\frac{|\mathbf{y}-\boldsymbol{\zeta}|}{\varepsilon}\right) G(\mathbf{y}, \mathbf{z}) G(\zeta, \boldsymbol{\xi}) \varphi^{\frac{1}{2}}\left(\frac{|\mathbf{z}-\boldsymbol{\xi}|}{\varepsilon}\right) G(\mathbf{z}, \mathbf{t}) G(\boldsymbol{\xi}, \mathbf{t}) d[\boldsymbol{\xi} \zeta \mathbf{y z x t}], \\
& A_{2}=\int_{D^{2}}\left(\int_{D^{2}} G(\mathbf{x}, \mathbf{y}) G(\mathbf{y}, \mathbf{z}) \varphi^{\frac{1}{2}}\left(\frac{|\mathbf{y}-\mathbf{z}|}{\varepsilon}\right) G(\mathbf{z}, \mathbf{t}) d \mathbf{y} d \mathbf{z}\right)^{2} d \mathbf{t d x}, \\
& A_{3}=\int_{D^{6}} G(\mathbf{x}, \mathbf{y}) G(\boldsymbol{\xi}, \mathbf{t}) G(\mathbf{x}, \boldsymbol{\zeta}) G(\mathbf{z}, \mathbf{t}) \varphi^{\frac{1}{2}}\left(\frac{|\mathbf{y}-\boldsymbol{\xi}|}{\varepsilon}\right) G(\mathbf{y}, \mathbf{z}) G(\zeta, \boldsymbol{\xi}) \varphi^{\frac{1}{2}}\left(\frac{|\boldsymbol{\zeta}-\mathbf{z}|}{\varepsilon}\right) d[\boldsymbol{\xi} \zeta \mathbf{y z x t}] .
\end{aligned}
$$

Denote $F_{\mathbf{x}, \mathbf{t}}(\mathbf{y}, \mathbf{z})=G(\mathbf{x}, \mathbf{y}) G(\mathbf{y}, \mathbf{z}) G(\mathbf{z}, \mathbf{t})$. Then in the Fourier domain,
we find that

$$
A_{1} \lesssim \int_{D^{2}} \int_{\mathbb{R}^{2 d}} \varepsilon^{2 d \widehat{\varphi^{\frac{1}{2}}}}(\varepsilon \mathbf{p}) \widehat{\varphi^{\frac{1}{2}}}(\varepsilon \mathbf{q})\left|\widehat{F}_{\mathbf{x}, \mathbf{t}}(\mathbf{p}, \mathbf{q})\right|^{2} d \mathbf{p} d \mathbf{q} d \mathbf{x} d \mathbf{t}
$$

Here $\widehat{\varphi^{\frac{1}{2}}}(\mathbf{p})$ is the Fourier transform of $\mathbf{x} \mapsto \varphi^{\frac{1}{2}}(|\mathbf{x}|)$. Since $\widehat{\varphi^{\frac{1}{2}}}(\varepsilon \mathbf{p})$ is bounded because $r^{d-1} \varphi^{\frac{1}{2}}(r)$ is integrable on \mathbb{R}^{+}, we deduce that

$$
A_{1} \lesssim \varepsilon^{2 d} \int_{D^{4}} G^{2}(\mathbf{x}, \mathbf{y}) G^{2}(\mathbf{y}, \mathbf{z}) G^{2}(\mathbf{z}, \mathbf{t}) d \mathbf{x} d \mathbf{y} d \mathbf{z} d \mathbf{t} \lesssim \varepsilon^{2 d}
$$

using the integrability condition imposed on $G(\mathbf{x}, \mathbf{y})$.

Using $2 a b \leq a^{2}+b^{2}$ for $(a, b)=(G(\mathbf{x}, \mathbf{y}), G(\mathbf{x}, \boldsymbol{\zeta}))$ and $(a, b)=(G(\boldsymbol{\xi}, \mathbf{t}), G(\mathbf{z}, \mathbf{t}))$ successively, and integrating in t and x, we find that

$$
A_{3} \lesssim \int_{D^{4}} G(\mathbf{y}, \mathbf{z}) G(\boldsymbol{\zeta}, \boldsymbol{\xi}) \varphi^{\frac{1}{2}}\left(\frac{|\mathbf{y}-\boldsymbol{\xi}|}{\varepsilon}\right) \varphi^{\frac{1}{2}}\left(\frac{|\boldsymbol{\zeta}-\mathbf{z}|}{\varepsilon}\right) d[\mathbf{y} \boldsymbol{\zeta} \mathbf{z} \boldsymbol{\xi}]
$$

thanks to the square integrability (4). Now with $(a, b)=(G(\mathbf{y}, \mathbf{z}), G(\boldsymbol{\zeta}, \boldsymbol{\xi}))$,
we find that

$$
A_{3} \lesssim \int_{D^{4}} G^{2}(\mathbf{y}, \mathbf{z}) \varphi^{\frac{1}{2}}\left(\frac{|\mathbf{y}-\boldsymbol{\xi}|}{\varepsilon}\right) \varphi^{\frac{1}{2}}\left(\frac{|\boldsymbol{\zeta}-\mathbf{z}|}{\varepsilon}\right) d[\mathbf{y} \boldsymbol{\zeta} \mathbf{z} \boldsymbol{\xi}] \lesssim \varepsilon^{2 d}
$$

since $\varphi^{\frac{1}{2}}$ is integrable and G is square integrable on D.
Consider the contribution A_{2}. We write the squared integral as a double integral over the variables $(\mathbf{y}, \boldsymbol{\zeta}, \mathbf{z}, \boldsymbol{\xi})$ and dealing with the integration in \mathbf{x} and \mathbf{t} using $2 a b \leq a^{2}+b^{2}$ as in the A_{3} contribution, obtain that

$$
A_{2} \lesssim \int_{D^{4}} G(\mathbf{y}, \boldsymbol{\zeta}) \varphi^{\frac{1}{2}}\left(\frac{|\mathbf{y}-\boldsymbol{\zeta}|}{\varepsilon}\right) G(\mathbf{z}, \boldsymbol{\xi}) \varphi^{\frac{1}{2}}\left(\frac{|\mathbf{z}-\boldsymbol{\xi}|}{\varepsilon}\right) d[\mathbf{y} \boldsymbol{\zeta} \mathbf{z} \boldsymbol{\xi}]
$$

Using Hölder's inequality, we obtain that

$$
A_{2} \lesssim\left(\left(\int_{0}^{\infty} \varphi^{\frac{p^{\prime}}{2}}\left(\frac{r}{\varepsilon}\right) r^{d-1} d r\right)^{\frac{1}{p^{\prime}}}\left(\int_{D^{2}} G^{p}(\mathbf{y}, \mathbf{z}) d \mathbf{y} d \mathbf{z}\right)^{\frac{1}{p}}\right)^{2} \lesssim \varepsilon^{2 d \frac{1+\eta}{2+\eta}}
$$

with $p=2+\eta$ and $p^{\prime}=\frac{2+\eta}{1+\eta}$ since $\varphi^{\frac{1}{2}}(r) r^{d-1}$, whence $\varphi^{\frac{p^{\prime}}{2}}(r) r^{d-1}$, is integrable.

Convergence of multiple scattering

We have therefore obtained that

$$
\begin{equation*}
\mathbb{E}\left\{\left\|u_{\varepsilon}-u+\mathcal{G} q_{\varepsilon} \mathcal{G} f\right\|\right\} \lesssim \varepsilon^{d \frac{1+\eta}{2+\eta}} \ll \varepsilon^{\frac{d}{2}} . \tag{19}
\end{equation*}
$$

For what follows, it is useful to recast the above result as:

Proposition 5 Let $q(\mathrm{x}, \omega)$ be constructed so that [H2]-[H3] holds. Let u_{ε} be the solution to (8) and $u_{0}=\mathcal{G} f$. We assume that u_{0} is continuous on D. Then we have the following strong convergence result:

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \mathbb{E}\left\{\left\|\frac{u_{\varepsilon}-u_{0}}{\varepsilon^{\frac{d}{2}}}+\frac{1}{\varepsilon^{\frac{d}{2}}} \mathcal{G} q\left(\frac{\dot{-}}{\varepsilon}, \omega\right) u_{0}\right\|\right\}=0 . \tag{20}
\end{equation*}
$$

Oscillatory integral in one space dimension

In dimension $d=1$, the leading term of the corrector $\varepsilon^{-\frac{1}{2}}\left(u_{\varepsilon}-u_{0}\right)$ is thus given by:

$$
\begin{equation*}
u_{1 \varepsilon}(x, \omega)=-\frac{1}{\sqrt{\varepsilon}} \mathcal{G} q_{\varepsilon} \mathcal{G} f=\int_{D}-G(x, y) \frac{1}{\sqrt{\varepsilon}} q\left(\frac{y}{\varepsilon}, \omega\right) u_{0}(y) d y \tag{21}
\end{equation*}
$$

where D is an interval (a, b). The convergence is more precise in dimension $d=1$ than in higher space dimensions. For the Helmholtz equation, the Green function in $d=1$ is Lipschitz continuous. Then $u_{1 \varepsilon}(x, \omega)$ is of class $\mathcal{C}(D) \mathbb{P}$-a.s. and we can seek convergence in that functional class. Since $u_{0}=\mathcal{G} f$, it is continuous for $f \in L^{2}(D)$.

The variance of the random variable $u_{1 \varepsilon}(x, \omega)$ is given by

$$
\begin{equation*}
\mathbb{E}\left\{u_{1 \varepsilon}^{2}(x, \omega)\right\}=\int_{D^{2}} G(x, y) G(x, z) \frac{1}{\varepsilon} R\left(\frac{y-z}{\varepsilon}\right) u_{0}(y) u_{0}(z) d y d z \tag{22}
\end{equation*}
$$

Because $R(x)$ is assumed to be integrable, the above integral converges, as $\varepsilon \rightarrow 0$, to the following limit:

$$
\begin{equation*}
\mathbb{E}\left\{u_{1}^{2}(x, \omega)\right\}=\int_{D} G^{2}(x, y) \hat{R}(0) u_{0}^{2}(y) d y \tag{23}
\end{equation*}
$$

where

$$
\begin{equation*}
\widehat{R}(0)=\sigma^{2}:=\int_{-\infty}^{\infty} R(r) d r=2 \int_{0}^{\infty} \mathbb{E}\{q(0) q(r)\} d r \tag{24}
\end{equation*}
$$

Because (21) is an average of random variables decorrelating sufficiently fast, we expect a central limit-type result to show that $u_{1 \varepsilon}(x, \omega)$ converges to a Gaussian random variable. Combined with the variance (24), we expect the limit to be the following stochastic integral:

$$
\begin{equation*}
u_{1}(x, \omega)=-\sigma \int_{D} G(x, y) u_{0}(y) d W_{y}(\omega) \tag{25}
\end{equation*}
$$

where $d W_{y}(\omega)$ is standard white noise on $(\mathcal{C}(D), \mathcal{B}(\mathcal{C}(D)), \mathbb{P})$. More precisely, we show the following result:

Theorem 6 Let us assume that $G(x, y)$ is Lipschitz continuous. Then, under the conditions of Proposition 5, the process $u_{1 \varepsilon}(x, \omega)$ converges weakly and in distribution in the space of continuous paths $\mathcal{C}(D)$ to the limit $u_{1}(x, \omega)$ in (25).

As a consequence, the corrector to homogenization satisfies that

$$
\begin{equation*}
\frac{u_{\varepsilon}-u_{0}}{\sqrt{\varepsilon}}(x) \xrightarrow{\text { dist. }}-\sigma \int_{D} G(x, y) u_{0}(y) d W_{y}, \quad \text { as } \varepsilon \rightarrow 0 \tag{26}
\end{equation*}
$$

in the space $L^{1}\left(\Omega ; L^{2}(D)\right)$.

Weak Convergence and Criterion for Tightness

We recall the classical result on the weak convergence of random variables with values in the space of continuous paths:

Proposition 7 Suppose $\left(Z_{n} ; 1 \leq n \leq \infty\right)$ are random variables with values in the space of continuous functions $\mathcal{C}(D)$. Then Z_{n} converges weakly (in distribution) to Z_{∞} provided that:
(a) any finite-dimensional joint distribution $\left(Z_{n}\left(x_{1}\right), \ldots, Z_{n}\left(x_{k}\right)\right)$ converges to the joint distribution $\left(Z_{\infty}\left(x_{1}\right), \ldots, Z_{\infty}\left(x_{k}\right)\right)$ as $n \rightarrow \infty$.
(b) $\left(Z_{n}\right)$ is a tight sequence of random variables. A sufficient condition for tightness of $\left(Z_{n}\right)$ is the following Kolmogorov criterion: there exist positive constants ν, β, and δ such that

> (i) $\quad \sup _{n \geq 1} \mathbb{E}\left\{\left|Z_{n}(t)\right|^{\nu}\right\}<\infty, \quad$ for some $t \in D$, (ii) $\mathbb{E}\left\{\left|Z_{n}(s)-Z_{n}(t)\right|^{\beta}\right\} \lesssim|t-s|^{1+\delta}$
uniformly in $n \geq 1$ and $t, s \in D$.

Tightness

Tightness of $u_{1 \varepsilon}(x, \omega)$ is obtained with $\nu=\beta=2$ and $\delta=1$. Indeed, we easily obtain that

$$
\mathbb{E}\left\{\left|u_{1 \varepsilon}(x, \omega)\right|^{2}\right\} \lesssim 1,
$$

in fact uniformly in $x \in D$. Now by assumption on $G(x, y)$ we obtain that

$$
\begin{aligned}
& \mathbb{E}\left\{\left|u_{1 \varepsilon}(x, \omega)-u_{1 \varepsilon}(\xi, \omega)\right|^{2}\right\}=\mathbb{E}\left(\int_{D}[G(x, y)-G(\xi, y)] \frac{1}{\sqrt{\varepsilon}} q\left(\frac{y}{\varepsilon}\right) u_{0}(y) d y\right)^{2} \\
& =\int_{D^{2}}[G(x, y)-G(\xi, y)][G(x, \zeta)-G(\xi, \zeta)] \frac{1}{\varepsilon} R\left(\frac{\zeta-y}{\varepsilon}\right) u_{0}(y) u_{0}(\zeta) d y d \zeta \\
& \lesssim|x-\xi|^{2} \int_{D^{2}} \frac{1}{\varepsilon}\left|R\left(\frac{\zeta-y}{\varepsilon}\right)\right| u_{0}(y) u_{0}(\zeta) d y d \zeta \lesssim|x-\xi|^{2},
\end{aligned}
$$

since the correlation function $R(r)$ is integrable and u_{0} is bounded. This proves tightness of the sequence $u_{1 \varepsilon}(x, \omega)$, or equivalently weak convergence of the measures \mathbb{P}_{ε} generated by $u_{1 \varepsilon}(x, \omega)$ on $(\mathcal{C}(D), \mathcal{B}(\mathcal{C}(D))$).

Finite dimensional distributions

Now any finite-dimensional distribution $\left(u_{1 \varepsilon}\left(x_{j}, \omega\right)\right)_{1 \leq j \leq n}$ has the characteristic function

$$
\Phi_{\varepsilon}(\mathbf{k})=\mathbb{E}\left\{e^{i k_{j} u_{1 \varepsilon}\left(x_{j}, \omega\right)}\right\}, \quad \mathbf{k}=\left(k_{1}, \ldots, k_{n}\right)
$$

The above characteristic function can be recast as

$$
\Phi_{\varepsilon}(\mathbf{k})=\mathbb{E}\left\{e^{i \int_{D} m(y) \frac{1}{\sqrt{\varepsilon}} q_{\varepsilon}(y) d y}\right\}, \quad m(y)=-\sum_{j=1}^{n} k_{j} G\left(x_{j}, y\right) u_{0}(y)
$$

As a consequence (Lévi continuity theorem), convergence of the finite dimensional distributions will be proved if we can show convergence of:

$$
\begin{equation*}
I_{m \varepsilon}:=\int_{D} m(y) \frac{1}{\sqrt{\varepsilon}} q\left(\frac{y}{\varepsilon}\right) d y \xrightarrow{\text { dist. }} I_{m}:=\int_{D} m(y) \sigma d W_{y}, \quad \varepsilon \rightarrow 0 \tag{28}
\end{equation*}
$$

for arbitrary continuous moments $m(y)$.

Such integrals have been extensively analyzed in the literature, where the above integral, for $D=(a, b)$ may be seen as the solution $x_{\varepsilon}(b)$ of the following ordinary differential equation with random coefficients:

$$
\dot{x}_{\varepsilon}=\frac{1}{\sqrt{\varepsilon}} q\left(\frac{t}{\varepsilon}\right) m(t), \quad x_{\varepsilon}(a)=0
$$

Since we will use the same methodology in higher space dimensions, we give a short proof of (28) using the central limit theorem for correlated discrete random variables as stated e.g. in [Bo-82].

Approximation by piecewise constant integrand

Note that if we replace $m(y)$ by $m_{h}(y)$, then

$$
\begin{equation*}
\mathbb{E}\left\{\left(I_{m \varepsilon}-I_{m_{h} \varepsilon}\right)^{2}\right\} \lesssim\left\|m-m_{h}\right\|_{\infty}^{2}, \tag{29}
\end{equation*}
$$

where $\|\cdot\|_{\infty}$ is the uniform norm on D. It is therefore sufficient to consider (28) for a sequence of functions m_{h} converging to m in the uniform sense. Since m is (uniformly) continuous, we can approximate it by piecewise constant functions m_{h} that are constant on M intervals of size $h=\frac{b-a}{M}$. Let $m_{h j}$ be the value of m_{h} on the $j^{\text {th }}$ interval and define the random variables

$$
M_{\varepsilon j}=m_{h j} \int_{(j-1) h}^{j h} \frac{1}{\sqrt{\varepsilon}} q\left(\frac{y}{\varepsilon}\right) d y .
$$

Independence of random variables

We want to show that the variables $M_{\varepsilon j}$ become independent in the limit $\varepsilon \rightarrow 0$. This is done by showing that

$$
\mathcal{E}(\mathbf{k})=\left|\mathbb{E}\left\{e^{i \sum_{j=1}^{M} k_{j} M_{\varepsilon j}}\right\}-\prod_{j=1}^{M} \mathbb{E}\left\{e^{i k_{j} M_{\varepsilon j}}\right\}\right| \rightarrow 0 \quad \text { as } \varepsilon \rightarrow 0
$$

for all $\mathbf{k}=\left\{k_{j}\right\}_{1 \leq j \leq M} \in \mathbb{R}^{M}$. Let $\mathbf{k} \in \mathbb{R}^{M}$ fixed, $0<\eta<\frac{h}{2}$ and define

$$
P_{\varepsilon j}^{\eta}=m_{h j} \int_{(j-1) h+\eta}^{j h-\eta} \frac{1}{\sqrt{\varepsilon}} q\left(\frac{y}{\varepsilon}\right) d y, \quad Q_{\varepsilon j}^{\eta}=M_{\varepsilon j}-P_{\varepsilon j}^{\eta}
$$

Now we write

$$
\begin{aligned}
\mathbb{E}\left\{e^{i \sum_{j=1}^{M} k_{j} M_{\varepsilon j}}\right\}= & \mathbb{E}\left\{\left[e^{i k_{1} Q_{\varepsilon 1}^{\eta}}-1\right] e^{i k_{1} P_{\varepsilon 1}^{\eta}+i \sum_{j=2}^{M} k_{j} M_{\varepsilon j}}\right\} \\
& +\mathbb{E}\left\{e^{i k_{1} P_{\varepsilon 1}^{\eta}+i \sum_{j=2}^{M} k_{j} M_{\varepsilon j}}\right\}
\end{aligned}
$$

Using the strong mixing condition (6), we find that

$$
\left|\mathbb{E}\left\{e^{i k_{1} P_{\varepsilon 1}^{\eta}+i \sum_{j=2}^{M} k_{j} M_{\varepsilon j}}\right\}-\mathbb{E}\left\{e^{i k_{1} P_{\varepsilon 1}^{\eta}}\right\} \mathbb{E}\left\{e^{i \sum_{j=2}^{M} k_{j} M_{\varepsilon j}}\right\}\right| \lesssim \varphi\left(\frac{2 \eta}{\varepsilon}\right)
$$

Now we find that $\mathbb{E}\left\{Q_{\varepsilon j}^{\eta}\right\}=0$ and $\mathbb{E}\left\{\left[Q_{\varepsilon j}^{\eta}\right]^{2}\right\} \lesssim \eta$. The latter result comes from integrating $\varepsilon^{-1} R\left(\frac{t-s}{\varepsilon}\right) d s d t$ over a cube of size $O\left(\eta^{2}\right)$. Since $\left|e^{i x}-1\right| \lesssim|x|$, we deduce that
for an arbitrary random variable Z (equal to 0 or to $\sum_{j=2}^{M} k_{j} M_{\varepsilon j}$ here). Thus,

$$
\left|\mathbb{E}\left\{e^{i k_{1} M_{\varepsilon 1}+i \sum_{j=2}^{M} k_{j} M_{\varepsilon j}}\right\}-\mathbb{E}\left\{e^{i k_{1} M_{\varepsilon 1}}\right\} \mathbb{E}\left\{e^{i \sum_{j=2}^{M} k_{j} M_{\varepsilon j}}\right\}\right| \lesssim \varphi\left(\frac{2 \eta}{\varepsilon}\right)+\eta^{\frac{1}{2}}
$$

By induction, we thus find that for all $0<\eta<\frac{h}{2}$,

$$
\mathcal{E} \lesssim M \varphi\left(\frac{2 \eta}{\varepsilon}\right)+\eta^{\frac{1}{2}}
$$

This expression tends to 0 say for $\eta=\varepsilon^{\frac{1}{2}}$.

This shows that the random variables $M_{\varepsilon j}$ become independent as $\varepsilon \rightarrow 0$.

We show below that each $M_{\varepsilon j}$ converges to a centered Gaussian variable as $\varepsilon \rightarrow 0$.

The sum over j thus yields in the limit a centered Gaussian variable with variance the sum of the M individual variances.

Central Limit Theorem for discrete random variables

By stationarity of the process $q(x, \omega)$, we are thus led to showing that

$$
\int_{0}^{h} \frac{1}{\sqrt{\varepsilon}} q\left(\frac{y}{\varepsilon}\right) d y \xrightarrow{\text { dist. }} \int_{0}^{h} \sigma d W_{y}=\sigma W_{h}=\sigma \mathcal{N}(0, h), \quad \varepsilon \rightarrow 0
$$

where $\mathcal{N}(0, h)$ is the centered Gaussian variable with variance h. We break up h into $N=h / \varepsilon$ (which we assume is an integer) intervals and call

$$
q_{j}=\int_{(j-1) \varepsilon}^{j \varepsilon} \frac{1}{\varepsilon} q\left(\frac{y}{\varepsilon}\right) d y=\int_{j-1}^{j} q(y) d y, \quad j \in \mathbb{Z} .
$$

The q_{j} are stationary mixing random variables and we are interested in the limit

$$
\begin{equation*}
\sqrt{\varepsilon} \sum_{j=1}^{N} q_{j}=\frac{\sqrt{h}}{\sqrt{N}} \sum_{j=1}^{N} q_{j} . \tag{30}
\end{equation*}
$$

Following [Bo-82], we introduce \mathcal{A}_{m} and \mathcal{A}^{m} as the σ-algebras generated by $\left(q_{j}\right)_{j \leq m}$ and $\left(q_{j}\right)_{j \geq m}$, respectively. Let then

$$
\begin{equation*}
\rho(n)=\sup \left\{\frac{\mathbb{E}\{(\eta-\mathbb{E}\{\eta\})(\xi-\mathbb{E}\{\xi\})\}}{\left(\mathbb{E}\left\{\eta^{2}\right\} \mathbb{E}\left\{\xi^{2}\right\}\right)^{\frac{1}{2}}} ; \eta \in L^{2}\left(\mathcal{A}_{0}\right), \quad \xi \in L^{2}\left(\mathcal{A}^{n}\right\}\right\} \tag{31}
\end{equation*}
$$

Then provided that $\sum_{n \geq 1} \rho(n)<\infty$, we obtain the following central limit theorem

$$
\begin{equation*}
\frac{\sqrt{h}}{\sqrt{N}} \sum_{j=1}^{N} q_{j} \xrightarrow{\text { dist. }} \sqrt{h} \sigma \mathcal{N}(0,1) \equiv \sigma \mathcal{N}(0, h) \tag{32}
\end{equation*}
$$

where $\mathcal{N}(0,1)$ is the standard normal variable, where \equiv is used to mean equality in distribution, and where $\sigma^{2}=\sum_{n \in \mathbb{Z}} \mathbb{E}\left\{q_{0} q_{n}\right\}$. It remains to verify that the two definitions of σ above and in (24) agree and that
$\sum_{n \geq 1} \rho(n)<\infty$. Note that

$$
\begin{aligned}
& \sum_{n \in \mathbb{Z}} \mathbb{E}\left\{q_{0} q_{n}\right\}=\int_{0}^{1} \int_{-\infty}^{\infty} \mathbb{E}\{q(y) q(z)\} d y d z \\
& =\int_{0}^{1} \int_{-\infty}^{\infty} \mathbb{E}\{q(y) q(y+z)\} d y d z=\int_{0}^{1} \hat{R}(0) d y=\hat{R}(0),
\end{aligned}
$$

thanks to (24). Now we observe that $\rho(n) \leq \varphi(n-1)$ so that summability of $\rho(n)$ is implied by the integrability of $\varphi(r)$ on \mathbb{R}^{+}. This concludes the proof of the convergence in distribution of $u_{1 \varepsilon}$ in the space of continuous paths $\mathcal{C}(D)$.

It now remains to recall the convergence result (20) to obtain (26) in the space $L^{1}\left(\Omega ; L^{2}(D)\right)$.

Oscillatory integral in arbitrary space dimensions

In dimension $1 \leq d \leq 3$ for second-order elliptic operators, the leading term in the random corrector $\varepsilon^{-\frac{d}{2}}\left(u_{\varepsilon}-u_{0}\right)$ is given by:

$$
\begin{equation*}
u_{1 \varepsilon}(\mathbf{x}, \omega)=\int_{D}-G(\mathbf{x}, \mathbf{y}) \frac{1}{\varepsilon^{\frac{d}{2}}} q_{\varepsilon}(\mathbf{y}, \omega) u_{0}(\mathbf{y}) d \mathbf{y} . \tag{33}
\end{equation*}
$$

The variance of $u_{1 \varepsilon}(\mathrm{x}, \omega)$ is given by

$$
\mathbb{E}\left\{u_{1 \varepsilon}^{2}(\mathbf{x}, \omega)\right\}=\int_{D^{2}} G(\mathbf{x}, \mathbf{y}) G(\mathbf{x}, \mathbf{z}) \frac{1}{\varepsilon^{d}} R\left(\frac{\mathbf{y}-\mathbf{z}}{\varepsilon}\right) u_{0}(\mathbf{y}) u_{0}(\mathbf{z}) d \mathbf{y} d \mathbf{z} .
$$

As in the one-dimensional case, it converges as $\varepsilon \rightarrow 0$ to the limit

$$
\begin{equation*}
\mathbb{E}\left\{u_{1}^{2}(\mathbf{x}, \omega)\right\}=\sigma^{2} \int_{D} G^{2}(\mathbf{x}, \mathbf{y}) u_{0}^{2}(\mathbf{y}) d \mathbf{y}, \quad \sigma^{2}=\int_{\mathbb{R}^{d}} \mathbb{E}\{q(\mathbf{0}) q(\mathbf{y})\} d \mathbf{y} . \tag{34}
\end{equation*}
$$

Because of the singularities of the Green's function $G(\mathbf{x}, \mathbf{y})$ in dimension $d \geq 2$, we prove here less accurate results than those obtained in dimension $d=1$.

We want to obtain convergence of the above corrector in distribution on $(\Omega, \mathcal{F}, \mathbb{P})$ and weakly in D. More precisely, let $M_{k}(\mathrm{x})$ for $1 \leq k \leq K$ be sufficiently smooth functions such that

$$
\begin{equation*}
m_{k}(\mathbf{y})=-\int_{D} M_{k}(\mathbf{x}) G(\mathbf{x}, \mathbf{y}) u_{0}(\mathbf{y}) d \mathbf{x}=-\mathcal{G} M_{k}(\mathrm{y}) u_{0}(\mathrm{y}), \quad 1 \leq k \leq K \tag{35}
\end{equation*}
$$

are continuous functions (we thus assume that $u_{0}(\mathbf{x})$ is continuous as well). Let us introduce the random variables

$$
\begin{equation*}
I_{k \varepsilon}(\omega)=\int_{D} m_{k}(\mathbf{y}) \frac{1}{\varepsilon^{\frac{d}{2}}} q\left(\frac{\mathbf{y}}{\varepsilon}, \omega\right) d \mathbf{y} \tag{36}
\end{equation*}
$$

Because of hypothesis [H3], the accumulation points of the integrals $I_{k \varepsilon}(\omega)$ are not modified if $q\left(\frac{\mathbf{y}}{\varepsilon}, \omega\right)$ is replaced by $q_{\varepsilon}(\mathbf{y}, \omega)$. The main result of this section is the following:

Theorem 8 Under the above conditions and the hypotheses of Proposition 5, the random variables $I_{k \varepsilon}(\omega)$ converge in distribution to the mean
zero Gaussian random variables $I_{k}(\omega)$ as $\varepsilon \rightarrow 0$, where the correlation matrix is given by

$$
\begin{equation*}
\Sigma_{j k}=\mathbb{E}\left\{I_{j} I_{k}\right\}=\sigma^{2} \int_{D} m_{j}(\mathbf{y}) m_{k}(\mathbf{y}) d \mathbf{y} \tag{37}
\end{equation*}
$$

where σ is given by

$$
\begin{equation*}
\sigma^{2}=\int_{\mathbb{R}^{d}} \mathbb{E}\{q(\mathbf{0}) q(\mathbf{y})\} d \mathbf{y} \tag{38}
\end{equation*}
$$

Moreover, we have the stochastic representation

$$
\begin{equation*}
I_{k}(\omega)=\int_{D} m_{k}(\mathbf{y}) \sigma d W_{\mathbf{y}} \tag{39}
\end{equation*}
$$

where $d W_{\mathbf{y}}$ is standard multi-parameter Wiener process.

As a result, for $M(\mathrm{x})$ sufficiently smooth, we obtain that

$$
\begin{equation*}
\left(\frac{u_{\varepsilon}-u_{0}}{\varepsilon^{\frac{d}{2}}}, M\right) \xrightarrow{\text { dist. }}-\sigma \int_{D} \mathcal{G} M(\mathbf{y}) \mathcal{G} f(\mathbf{y}) d W_{\mathbf{y}} \tag{40}
\end{equation*}
$$

Proof

The convergence in (40) is a direct consequence of (39) since

$$
\int_{D^{2}} M(\mathbf{x}) G(\mathbf{x}, \mathbf{y}) u_{0}(\mathbf{y}) d W_{\mathbf{y}} d \mathbf{x}=\int_{D} \mathcal{G} M(\mathrm{y}) \mathcal{G} f(\mathrm{y}) d W_{\mathbf{y}}
$$

and of the strong convergence (20) in Proposition 5. The equality (39) is directly deduced from (37) since $I_{k}(\omega)$ is a (multivariate) Gaussian variable. In order to prove (37), we use a methodology similar to that in the proof of Theorem 6.

The characteristic function of the random variables $I_{k \varepsilon}(\omega)$ is given by

$$
\Phi_{\varepsilon}(\mathbf{k})=\mathbb{E}\left\{e^{i \sum_{k=1}^{K} k_{j} I_{j \varepsilon}(\omega)}\right\}, \quad \mathbf{k}=\left(k_{1}, \ldots, k_{K}\right),
$$

and may be recast as

$$
\Phi_{\varepsilon}(\mathbf{k})=\mathbb{E}\left\{e^{\left.i \int_{D} m(y)\right)^{\frac{-d}{2}} q\left(\frac{\mathbf{y}}{\varepsilon}, \omega\right) d \mathbf{y}}\right\}, \quad m(\mathbf{y})=\sum_{j=1}^{K} k_{j} m_{j}(\mathbf{y}) .
$$

So (37) follows from showing that

$$
\begin{equation*}
I_{\varepsilon}(\omega)=\int_{D} m(\mathbf{y}) \frac{1}{\varepsilon^{\frac{d}{2}}} q\left(\frac{\mathbf{y}}{\varepsilon}, \omega\right) d \mathbf{y} \xrightarrow{\text { dist. }} \int_{D} m(\mathbf{y}) \sigma d W_{\mathbf{y}} \tag{41}
\end{equation*}
$$

for an arbitrary continuous function $m(\mathbf{y})$. As in the one-dimensional case and for the same reasons, we replace $m(\mathbf{y})$ by $m_{h}(\mathbf{y})$, which is constant on small hyper-cubes \mathcal{C}_{j} of size h (and volume h^{d}) and that there are $M \approx h^{-d}$ of them. Because ∂D is assumed to be sufficiently smooth, it can be covered by $M_{S} \approx h^{-d+1}$ cubes and we set $m_{h}(\mathbf{x})=0$ on those cubes. The contribution to $I_{\varepsilon}(\omega)$ is seen to converge to 0 as $h \rightarrow 0$ in the mean-square sense as in (29).

We define the random variables

$$
M_{\varepsilon j}(\omega)=m_{h j} \int_{\mathcal{C}_{j}} \frac{1}{\varepsilon^{\frac{d}{2}}} q\left(\frac{\mathbf{y}}{\varepsilon}, \omega\right) d \mathbf{y}, \quad 1 \leq j \leq M
$$

where $m_{h j}$ is the value of m_{h} on \mathcal{C}_{j} and are interested in the limiting
distribution as $\varepsilon \rightarrow 0$ of the random variable

$$
\begin{equation*}
I_{\varepsilon}^{h}(\omega)=\sum_{j=1}^{M} M_{\varepsilon j}(\omega) \tag{42}
\end{equation*}
$$

We show below that these random variables are again independent in the limit $\varepsilon \rightarrow 0$ and each variable converges to a centered Gaussian variable. As a consequence, $I_{\varepsilon}^{h}(\omega)$ converges in distribution to a centered Gaussian variable whose variance is the sum of the variances of the variables $M_{\varepsilon j}(\omega)$ in the limit $\varepsilon \rightarrow 0$.

That the random variables $M_{\varepsilon j}$ are independent in the limit $\varepsilon \rightarrow 0$ is shown using a similar method to that of the one-dimensional case. We want to obtain that

$$
\mathcal{E}(\mathbf{k})=\left|\mathbb{E}\left\{e^{i \sum_{j=1}^{M} k_{j} M_{\varepsilon j}}\right\}-\prod_{j=1}^{M} \mathbb{E}\left\{e^{i k_{j} M_{\varepsilon j}}\right\}\right| \rightarrow 0 \text { as } \varepsilon \rightarrow 0
$$

for all $\mathbf{k}=\left\{k_{j}\right\}_{j} \in \mathbb{R}^{M}$. Let $0<\eta<\frac{h}{2}$ and $\mathcal{D}_{j}^{\eta}=\left\{\mathbf{x} \in \mathcal{C}_{j} ; d\left(\mathbf{x}, \partial \mathcal{C}_{j}\right)>\eta\right\}$. We define

$$
P_{\varepsilon j}^{\eta}=m_{h j} \int_{\mathcal{D}_{j}^{\eta}} \frac{1}{\varepsilon^{\frac{d}{2}}} q\left(\frac{\mathbf{y}}{\varepsilon}, \omega\right) d \mathbf{y}, \quad Q_{\varepsilon j}^{\eta}=M_{\varepsilon j}-P_{\varepsilon j}^{\eta}
$$

We write again:

$$
\begin{aligned}
\mathbb{E}\left\{e^{i \sum_{j=1}^{M} k_{j} M_{\varepsilon j}}\right\}= & \mathbb{E}\left\{\left[e^{\left.\left.i k_{1} Q_{\varepsilon 1}^{\eta}-1\right] e^{i k_{1} P_{\varepsilon 1}^{\eta}+i \sum_{j=2}^{M} k_{j} M_{\varepsilon j}}\right\}}\right.\right. \\
& +\mathbb{E}\left\{e^{i k_{1} P_{\varepsilon 1}^{\eta}+i \sum_{j=2}^{M} k_{j} M_{\varepsilon j}}\right\} .
\end{aligned}
$$

Using the strong mixing condition (6), we find that

$$
\left\lvert\, \mathbb{E}\left\{e^{i k_{1} P_{\varepsilon 1}^{\eta}+i \sum_{j=2}^{M} k_{j} M_{\varepsilon j}}\right\}-\mathbb{E}\left\{e^{\left.i k_{1} P_{\varepsilon 1}^{\eta}\right\} \mathbb{E}\left\{e^{i \sum_{j=2}^{M} k_{j} M_{\varepsilon j}}\right\} \left\lvert\, \lesssim \varphi\left(\frac{2 \eta}{\varepsilon}\right) ~ . ~\right.}\right.\right.
$$

We find as in the one-dimensional case that $\mathbb{E}\left\{Q_{\varepsilon j}^{\eta}\right\}=0$ and $\mathbb{E}\left\{\left[Q_{\varepsilon j}^{\eta}\right]^{2}\right\} \lesssim$ $\eta h^{(d-1)} \lesssim \eta$ with a bound independent of ε. This comes from integrating $\varepsilon^{-d} R\left(\frac{\mathbf{x}-\mathbf{y}}{\varepsilon}\right) d \mathbf{x} d \mathbf{y}$ on a domain of size $O\left(\left[\eta h^{d-1}\right]^{2}\right)$. The rest of the proof follows as in the one-dimensional case.

It remains to address the convergence of $M_{\varepsilon j}$ as $\varepsilon \rightarrow 0$. By invariance of $q(\mathrm{x})$, it is sufficient to consider integrals on the cube $[0, \mathrm{~h}]$, with $\mathrm{h}=$ (h, \ldots, h). It now remains to show that

$$
\begin{equation*}
\int_{[0, \mathbf{h}]} \frac{1}{\varepsilon^{\frac{d}{2}}} q\left(\frac{\mathbf{y}}{\varepsilon}, \omega\right) d \mathbf{y} \xrightarrow{\text { dist. }} \sigma \int_{[0, \mathbf{h}]} d W_{\mathbf{y}}=\sigma \mathcal{N}\left(0, h^{d}\right) . \tag{43}
\end{equation*}
$$

For a multi-index $\mathbf{j} \in \mathbb{Z}^{d}$, we define

$$
q_{\mathbf{j}}(\omega)=\int_{\mathbf{j}+[0,1]} q(\mathbf{y}, \omega) d \mathbf{y} .
$$

Then (43) will follow by homogeneity if we can show that

$$
\begin{equation*}
\frac{1}{\sigma n^{\frac{d}{2}}} \sum_{\mathrm{j} \in[0, \mathrm{n}]} q_{\mathrm{j}} \xrightarrow{\text { dist. }} \mathcal{N}(0,1) . \tag{44}
\end{equation*}
$$

Let A and B be subsets of \mathbb{Z}^{d} and let \mathcal{A} and \mathcal{B} be the σ algebras generated
by q_{j} on A and B, respectively. Then we define
$\rho(n)=\sup \left\{\frac{\mathbb{E}\{(\eta-\mathbb{E}\{\eta\})(\xi-\mathbb{E}\{\xi\})\}}{\left(\mathbb{E}\left\{\eta^{2}\right\} \mathbb{E}\left\{\xi^{2}\right\}\right)^{\frac{1}{2}}} ; \eta \in L^{2}(\mathcal{A}), \quad \xi \in L^{2}(\mathcal{B}\}, \quad d(A, B) \geq n\right\}$
We then assume that $\mathbb{E}\left\{q_{\mathrm{j}}^{6}\right\}<\infty$ as in hypothesis [H2] and that $\rho(n)=$ $o\left(n^{-d}\right)$ and that

$$
\begin{equation*}
\sum_{n=0}^{\infty} n^{d-1} \rho^{\frac{1}{2}}(n)<\infty . \tag{45}
\end{equation*}
$$

Then we verify that the hypotheses in [Bo-82] are satisfied so that (44) holds with

$$
\sigma^{2}=\sum_{\mathbf{j} \in \mathbb{Z}^{d}} \mathbb{E}\left\{q_{0} q_{\mathbf{j}}\right\}
$$

We verify as in the one-dimensional case that the above σ agrees with that in definition (38). Now we verify that (45) is a consequence of the
integrability of $r^{d-1} \varphi^{\frac{1}{2}}(r)$. The decay $\rho(n)=o\left(n^{-d}\right)$ is obtained when $\varphi(r)$ decays faster than $r^{-d-\eta}$ for some $\eta>0$.

Correctors for one-dimensional elliptic problem

Consider the homogenization of the following one-dimensional elliptic problems:

$$
\begin{align*}
& -\frac{d}{d x} a_{\varepsilon}(x, \omega) \frac{d}{d x} u_{\varepsilon}+\left(q_{0}+q_{\varepsilon}(x, \omega)\right) u_{\varepsilon}=\rho_{\varepsilon}(x, \omega) f(x), \quad x \in D=(0,1), \\
& u_{\varepsilon}(0)=u_{\varepsilon}(1)=0 \tag{46}
\end{align*}
$$

We consider homogeneous Dirichlet conditions to simplify the presentation. The coefficients $a_{\varepsilon}(x, \omega)$ and $\rho_{\varepsilon}(x, \omega)$ are uniformly bounded from above and below: $0<a_{0} \leq a_{\varepsilon}(x, \omega), \rho_{\varepsilon}(x, \omega) \leq a_{0}^{-1}$. The (deterministic) absorption term q_{0} is assumed to be a non-negative constant. The generalization to a non-negative smooth function $q_{0}(x)$ can be done.

Let us introduce the change of variables

$$
\begin{equation*}
z_{\varepsilon}(x)=a^{*} \int_{0}^{x} \frac{1}{a_{\varepsilon}(t)} d t, \quad \frac{d z_{\varepsilon}}{d x}=\frac{a^{*}}{a_{\varepsilon}(x)}, \quad a^{*}=\frac{1}{\mathbb{E}\left\{a^{-1}\right\}} . \tag{47}
\end{equation*}
$$

and $\tilde{u}_{\varepsilon}(z)=u_{\varepsilon}(x)$. Then we find, with $x=x\left(z_{\varepsilon}\right)$ that

$$
\begin{align*}
& -\left(a^{*}\right)^{2} \frac{d^{2}}{d z^{2}} \tilde{u}_{\varepsilon}+a^{*} q_{0} \tilde{u}_{\varepsilon}+a_{\varepsilon}\left[\left(1-a_{\varepsilon}^{-1} a^{*}\right) q_{0}+q_{\varepsilon}\right] \tilde{u}_{\varepsilon}=a_{\varepsilon} \rho_{\varepsilon} f, \quad 0<z<z_{\varepsilon}(\tag{1}\\
& \tilde{u}_{\varepsilon}(0)=\widetilde{u}_{\varepsilon}\left(z_{\varepsilon}(1)\right)=0 . \tag{48}
\end{align*}
$$

Let us introduce the following Green's function

$$
\begin{align*}
& -a^{*} \frac{d^{2}}{d x^{2}} G(x, y ; L)+q_{0} G(x, y ; L)=\delta(x-y) \tag{49}\\
& G(0, y ; L)=G(L, y ; L)=0
\end{align*}
$$

Then, defining

$$
\begin{equation*}
\tilde{q}_{\varepsilon}(x, \omega)=\left(1-a_{\varepsilon}^{-1}(x, \omega) a^{*}\right) q_{0}+q_{\varepsilon}(x, \omega), \tag{50}
\end{equation*}
$$

we find that

$$
\begin{aligned}
& \tilde{u}_{\varepsilon}(z)=\int_{0_{\varepsilon}}^{z_{\varepsilon}(1)} G\left(z, y ; z_{\varepsilon}(1)\right)\left(\rho_{\varepsilon} f-\tilde{q}_{\varepsilon} \tilde{u}_{\varepsilon}\right)(x(y)) \frac{a_{\varepsilon}}{a^{*}}(x(y)) d y, \\
& u_{\varepsilon}(x)=\int_{0}^{1} G\left(z_{\varepsilon}(x), z_{\varepsilon}(y) ; z_{\varepsilon}(1)\right)\left(\rho_{\varepsilon} f-\tilde{q}_{\varepsilon} u_{\varepsilon}\right)(y) d y .
\end{aligned}
$$

We recast the above equation as

$$
u_{\varepsilon}(x, \omega)=\mathcal{G}_{\varepsilon}\left(\rho_{\varepsilon} f-\tilde{q}_{\varepsilon} u_{\varepsilon}\right), \quad \mathcal{G}_{\varepsilon} u(x)=\int_{0}^{1} G\left(z_{\varepsilon}(x), z_{\varepsilon}(y) ; z_{\varepsilon}(1)\right) u(y) d y
$$

After one more iteration, we obtain the following integral equation:

$$
\begin{equation*}
u_{\varepsilon}=\mathcal{G}_{\varepsilon} \rho_{\varepsilon} f-\mathcal{G}_{\varepsilon} \tilde{q}_{\varepsilon} \mathcal{G}_{\varepsilon} \rho_{\varepsilon} f+\mathcal{G}_{\varepsilon} \tilde{q}_{\varepsilon} \mathcal{G}_{\varepsilon} \tilde{q}_{\varepsilon} u_{\varepsilon} . \tag{52}
\end{equation*}
$$

A similar convergence result may then be obtained. See [B-08].

Random and periodic homogenization

Let us go back to the problem in the periodic case:

$$
\begin{array}{ll}
-\Delta u_{\varepsilon}+q\left(\frac{\mathbf{x}}{\varepsilon}\right) u_{\varepsilon}=f & D \tag{53}\\
u_{\varepsilon}=0 & \partial D,
\end{array}
$$

on a smooth open, bounded, domain $D \subset \mathbb{R}^{d}$, where $q(\mathbf{y})$ is $[0,1]^{d_{-}}$ periodic. We introduce the fast scale $y=\frac{x}{\varepsilon}$ and introduce a function $u_{\varepsilon}=u_{\varepsilon}\left(\mathrm{x}, \frac{\mathrm{x}}{\varepsilon}\right)$. Gradients ∇_{x} become $\frac{1}{\varepsilon} \nabla_{\mathrm{y}}+\nabla_{\mathrm{x}}$ and (53) becomes formally

$$
\left(-\frac{1}{\varepsilon^{2}} \Delta_{\mathrm{y}}-\frac{2}{\varepsilon} \nabla_{\mathrm{x}} \cdot \nabla_{\mathrm{y}}-\Delta_{\mathrm{x}}+q(\mathrm{y})\right) u_{\varepsilon}(\mathrm{x}, \mathrm{y})=f(\mathrm{x}) .
$$

Plugging the expansion $u_{\varepsilon}=u_{0}+\varepsilon u_{1}+\varepsilon^{2} u_{2}$ into the above equality and equating like powers of ε yields three equations. The first equation shows that $u_{0}=u_{0}(\mathrm{x})$. The second equation shows that $u_{1}=u_{1}(\mathrm{x})$, which we
can choose as $u_{1} \equiv 0$. The third equation $-\Delta_{\mathbf{y}} u_{2}-\Delta_{\mathbf{x}} u_{0}+q(\mathbf{y}) u_{0}=f(\mathbf{x})$, admits a solution provided that

$$
-\Delta_{\mathbf{x}} u_{0}+\langle q\rangle u_{0}=f(\mathbf{x}), \quad D
$$

with $u_{0}=0$ on ∂D. Here, $\langle q\rangle$ is the average of q on $[0,1]^{d}$, which we assume is sufficiently large that the above equation admits a unique solution. We recast the above equation as $u_{0}=\mathcal{G}_{D} f$. The corrector u_{2} thus solves

$$
-\Delta_{\mathbf{y}} u_{2}=(\langle q\rangle-q(\mathbf{y})) u_{0}(\mathbf{x})
$$

and is uniquely defined along with the constraint $\left\langle u_{2}\right\rangle=0$. We denote the solution operator of the above cell problem as $\mathcal{G}_{\#}$ so that $u_{2}=$ $-\mathcal{G}_{\#}(q-\langle q\rangle) \mathcal{G} f$. Thus formally, we have obtained that

$$
\begin{equation*}
u_{\varepsilon}(\mathrm{x})=\mathcal{G} f(\mathrm{x})-\varepsilon^{2} \mathcal{G}_{\#}(q-\langle q\rangle)\left(\frac{\mathbf{x}}{\varepsilon}\right) \mathcal{G} f(\mathrm{x})+\text { I.o.t. } \tag{54}
\end{equation*}
$$

We thus observe that the corrector $u_{2 \varepsilon}(\mathbf{x}):=u_{2}\left(\mathbf{x}, \frac{\mathbf{x}}{\varepsilon}\right)$ is of order $O\left(\varepsilon^{2}\right)$
in the L^{2} sense, say. In the sense of distributions, however, the corrector may be of order $o\left(\varepsilon^{m}\right)$ for all integer m in the sense that $\int_{D} M(\mathrm{x}) u_{2 \varepsilon}(\mathrm{x}) d \mathrm{x} \ll$ ε^{m} for all m when $M(\mathrm{x}) u_{0}(\mathrm{x}) \in \mathcal{C}_{0}^{\infty}(D)$.

Large deterministic corrector

Consider the equation with random boundary condition:

$$
\left\{\begin{align*}
\left(-\Delta+\lambda^{2}\right) u_{\varepsilon}(x, \omega) & =0, & x & =\left(x^{\prime}, x_{n}\right) \in \mathbb{R}_{+}^{n}, \tag{55}\\
\frac{\partial}{\partial \nu} u_{\varepsilon}+\left(q_{0}+q\left(\frac{x^{\prime}}{\varepsilon}, \omega\right)\right) u_{\varepsilon} & =f\left(x^{\prime}\right), & x & =\left(x^{\prime}, 0\right) \in \partial \mathbb{R}_{+}^{n} .
\end{align*}\right.
$$

We follow the presentation in [BJ-11]
This equation is equivalent to the elliptic pseudo-differential equation:

$$
\begin{equation*}
\left(\sqrt{-\Delta_{\perp}+\lambda^{2}}+q_{0}+q_{\varepsilon}(x, \omega)\right) u_{\varepsilon}=f \tag{56}
\end{equation*}
$$

where Δ_{\perp} is the Laplacian on $\mathbb{R}^{d}, d=n-1$, obtained from the Laplacian on \mathbb{R}^{n} with $\partial_{x_{n}}^{2}$ eliminated.

The Green's function behaves as $|x|^{1-d}$ for $d=n-1$ and is therefore not square integrable for $d \geq 2(n \geq 3)$.

Assumptions on random field

We assume that $q(x, \omega)$ is stationary and α-mixing: For any Borel sets $A, B \subset \mathbb{R}^{d}$, the sub- σ-algebras \mathcal{F}_{A} and \mathcal{F}_{B} generated by the process restricted on A and B respectively decorrelate so rapidly that there exists some function $\alpha: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$with $\alpha(r)$ vanishing to zero as r tends to infinity, and for any \mathcal{F}_{A} measurable set U and \mathcal{F}_{B} measurable set V, we have

$$
\begin{equation*}
|\mathbb{P}(U) \mathbb{P}(V)-\mathbb{P}(U \cap V)| \leq \alpha(d(A, B)) \tag{57}
\end{equation*}
$$

We further assume that $\alpha(r)$ has the following asymptotic behavior for some real number $\delta>0$:

$$
\begin{equation*}
\alpha(r) \sim \frac{1}{r^{d+\delta}}, \text { for } r \text { sufficiently large. } \tag{58}
\end{equation*}
$$

Fourth order cumulants. A further assumption on $q(x, \omega)$ is imposed so that we have an approximate formula for the fourth order cross-moment
of the process. To formulate this condition, we need to introduce some terminologies.

Let $F=\{1,2,3,4\}$ and \mathcal{U} be the collections of two pairs of unordered numbers in F, i.e.,
$\mathcal{U}=\{p=\{(p(1), p(2)),(p(3), p(4))\} \mid p(i) \in F, p(1) \neq p(2), p(3) \neq p(4)\}$.
As members in a set, the pairs $(p(1), p(2))$ and $(p(3), p(4))$ are required to be distinct; however, they can have one common index. There are three elements in \mathcal{U} whose indices $p(i)$ are all different. They are precisely $\{(1,2),(3,4)\},\{(1,3),(2,4)\}$ and $\{(1,4),(2,3)\}$. Let us denote by \mathcal{U}_{*} the subset formed by these three elements, and its complement by \mathcal{U}^{*}.

Intuitively, we can visualize \mathcal{U} in the following manner. Draw four points with indices 1 to 4. There are six line segments connecting them. The
set \mathcal{U} can be visualized as the collection of all possible ways to choose two line segments among the six. \mathcal{U}_{*} corresponds to choices so that the two segments have disjoint ends, and \mathcal{U}^{*} corresponds to choices such that the segments share one common end.

We assume that $q(x, \omega)$ has controlled fourth order cumulants in the sense that the following holds: For each $p \in \mathcal{U}^{*}$, there exists a real valued nonnegative function ϕ_{p} in $L^{1} \cap L^{\infty}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$, so that for any four point set $\left\{x_{i}\right\}_{i=1}^{4}, x_{i} \in \mathbb{R}^{d}$, we have the following condition on the fourth order cross-moment of $\left\{q\left(x_{i}, \omega\right)\right\}$:

$$
\begin{align*}
& \left|\mathbb{E} \prod_{i=1}^{4} q\left(x_{i}\right)-\sum_{p \in \mathcal{U}_{*}} \mathbb{E}\left\{q\left(x_{p(1)}\right) q\left(x_{p(2)}\right)\right\} \mathbb{E}\left\{q\left(x_{p(3)}\right) q\left(x_{p(4)}\right)\right\}\right| \tag{60}\\
\leq & \sum_{p \in \mathcal{U}^{*}} \phi_{p}\left(x_{p(1)}-x_{p(2)}, x_{p(3)}-x_{p(4)}\right)
\end{align*}
$$

Deterministic and random correctors in $d=2$

We decompose the corrector

$$
\begin{equation*}
u_{\varepsilon}-u=\left(\mathbb{E}\left\{u_{\varepsilon}\right\}-u\right)+\left(u_{\varepsilon}-\mathbb{E}\left\{u_{\varepsilon}\right\}\right), \tag{61}
\end{equation*}
$$

the deterministic corrector and the stochastic corrector, respectively. Let us define

$$
\begin{equation*}
\tilde{R}:=\int_{\mathbb{R}^{2}} \frac{R(y)}{2 \pi|y|} d y \tag{62}
\end{equation*}
$$

and \mathcal{G} the solution operator to

$$
\begin{equation*}
\left(\sqrt{-\Delta+\lambda^{2}}+q_{0}\right) u=f \tag{63}
\end{equation*}
$$

Theorem 9 Let u_{ε} and u solve (56) and (63) respectively and $d=2$. Let $q(x, \omega)$ satisfy the same conditions as in the previous theorem. Then
we have,

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \frac{\mathbb{E}\left\{u_{\varepsilon}\right\}-u}{\varepsilon}=\widetilde{R} \mathcal{G} u \tag{64}
\end{equation*}
$$

Here the limit is taken in the weak sense. That is, for an arbitrary test function $M \in C_{c}^{\infty}\left(\mathbb{R}^{2}\right)$, the real number $\varepsilon^{-1}\left\langle M, \mathbb{E}\left\{\xi_{\varepsilon}\right\}\right\rangle$ converges to $\langle\mathcal{G} M, \widetilde{R} u\rangle$.

Theorem 10 Let u_{ε} and u solve (56) and (63) respectively and $d=2$. Let $q(x, \omega)$ be stationary and mean-zero with strong mixing coefficient $\alpha(r)$ satisfying (58), and be uniformly bounded. Assume further that the joint fourth order cumulant of q satisfies (60). Then:

$$
\begin{equation*}
\frac{u_{\varepsilon}-\mathbb{E}\left\{u_{\varepsilon}\right\}}{\varepsilon} \xrightarrow{\text { distribution }}-\sigma \int_{\mathbb{R}^{2}} G(x-y) u(y) d W_{y} \tag{65}
\end{equation*}
$$

where $\sigma^{2}=\int_{\mathbb{R}^{d}} R(x) d x$ and W_{y} is the standard multi-parameter Wiener process in \mathbb{R}^{2}. The convergence here is weakly in \mathbb{R}^{2} and in probability distribution. Proofs in [BJ-11].

Heuristic argument for deterministic corrector

Consider

$$
\begin{equation*}
u_{\varepsilon}=\mathcal{G} f-\mathcal{G} q_{\varepsilon} \mathcal{G} f+\mathcal{G} q_{\varepsilon} \mathcal{G} q_{\varepsilon} u_{\varepsilon} \tag{66}
\end{equation*}
$$

pushed to

$$
\begin{equation*}
u_{\varepsilon}=\mathcal{G} f-\mathcal{G} q_{\varepsilon} \mathcal{G} f+\mathcal{G} q_{\varepsilon} \mathcal{G} q_{\varepsilon} \mathcal{G} f-\mathcal{G} q_{\varepsilon} \mathcal{G} q_{\varepsilon} \mathcal{G} u_{\varepsilon} \tag{67}
\end{equation*}
$$

Weakly, the third term is of the form

$$
\left(q_{\varepsilon} \mathcal{G} q_{\varepsilon} u, \mathcal{G} M\right)
$$

A deterministic contribution thus appears of the form

$$
\mathbb{E} q_{\varepsilon}(x) G(x-y) q_{\varepsilon}(y)=G(x-y) R\left(\frac{x-y}{\varepsilon}\right) \sim \varepsilon^{d} G(\varepsilon z) R(z) \sim \varepsilon^{d-\alpha} G(z) R(z)
$$

This provides a large deterministic corrector when G is singular.

Long Range Potentials

Following [BGMP-08], we are interested in the solution to the following elliptic equation with random coefficients

$$
\begin{align*}
& -\frac{d}{d x}\left(a\left(\frac{x}{\varepsilon}, \omega\right) \frac{d}{d x} u^{\varepsilon}\right)=f(x), \quad 0 \leq x \leq 1, \quad \omega \in \Omega, \tag{68}\\
& u^{\varepsilon}(0, \omega)=0, \quad u^{\varepsilon}(1, \omega)=q .
\end{align*}
$$

Here $a(x, \omega)$ is a stationary ergodic random process such that $0<a_{0} \leq$ $a(x, \omega) \leq a_{0}^{-1}$ a.e. for $(x, \omega) \in(0,1) \times \Omega$, where $(\Omega, \mathcal{F}, \mathfrak{P})$ is an abstract probability space. The source term $f \in W^{-1, \infty}(0,1)$ and $q \in \mathbb{R}$. Classical theories for elliptic equations then show the existence of a unique solution $u(\cdot, \omega) \in H^{1}(0,1) \mathfrak{P}$-a.s.

As the scale of the micro-structure ε converges to 0 , the solution $u^{\varepsilon}(x, \omega)$ converges \mathfrak{P}-a.s. weakly in $H^{1}(0,1)$ to the deterministic solution \bar{u} of the
homogenized equation

$$
\begin{array}{ll}
-\frac{d}{d x}\left(a^{*} \frac{d}{d x} \bar{u}\right)=f(x), \quad 0 \leq x \leq 1, \tag{69}\\
\bar{u}(0)=0, \quad \bar{u}(1)=q . &
\end{array}
$$

The effective diffusion coefficient is given by $a^{*}=\left(\mathbb{E}\left\{a^{-1}(0, \cdot)\right\}\right)^{-1}$, where \mathbb{E} is mathematical expectation with respect to \mathfrak{P}.

The above one-dimensional boundary value problems admit explicit solutions. Introducing $a^{\varepsilon}(x)=a\left(\frac{x}{\varepsilon}\right)$ and $F(x)=\int_{0}^{x} f(y) d y$, we have:

$$
\begin{array}{r}
u^{\varepsilon}(x, \omega)=c^{\varepsilon}(\omega) \int_{0}^{x} \frac{1}{a^{\varepsilon}(y, \omega)} d y-\int_{0}^{x} \frac{F(y)}{a^{\varepsilon}(y, \omega)} d y, c^{\varepsilon}(\omega)=\frac{q+\int_{0}^{1} \frac{F(y)}{a^{\varepsilon}(y, \omega)} d y}{\int_{0}^{1} \frac{1}{a^{\varepsilon}(y, \omega)} d y},(70) \\
\bar{u}(x)=c^{*} \frac{x}{a^{*}}-\int_{0}^{x} \frac{F(y)}{a^{*}} d y, \quad c^{*}=a^{*} q+\int_{0}^{1} F(y) d y . \tag{71}
\end{array}
$$

Our aim is to characterize the behavior of $u^{\varepsilon}-\bar{u}$ as $\varepsilon \rightarrow 0$.

Hypothesis on the random process

Let us define the mean zero stationary random process

$$
\begin{equation*}
\varphi(x, \omega)=\frac{1}{a(x, \omega)}-\frac{1}{a^{*}} . \tag{72}
\end{equation*}
$$

Hypothesis 11 We assume that φ is of the form

$$
\begin{equation*}
\varphi(x)=\Phi\left(g_{x}\right), \tag{73}
\end{equation*}
$$

where Φ is a bounded function such that

$$
\begin{equation*}
\int \Phi(g) e^{-\frac{g^{2}}{2}} d g=0 \tag{74}
\end{equation*}
$$

and g_{x} is a stationary Gaussian process with mean zero and variance one.
The autocorrelation function of g :

$$
R_{g}(\tau)=\mathbb{E}\left\{g_{x} g_{x+\tau}\right\}
$$

is assumed to have a heavy tail of the form

$$
\begin{equation*}
R_{g}(\tau) \sim \kappa_{g} \tau^{-\alpha} \text { as } \tau \rightarrow \infty \tag{75}
\end{equation*}
$$

where $\kappa_{g}>0$ and $\alpha \in(0,1)$.

This hypothesis is satisfied by a large class of random coefficients. For instance, if we take $\Phi=\operatorname{sgn}$, then φ models a two-component medium. If we take $\Phi=$ tanh or arctan, then φ models a continuous medium with bounded variations.

Heavy tail of process

The autocorrelation function of the random process a has a heavy tail, as stated in the following proposition.

Proposition 12 The process φ defined by (73) is a stationary random process with mean zero and variance V_{2}. Its autocorrelation function

$$
\begin{equation*}
R(\tau)=\mathbb{E}\{\varphi(x) \varphi(x+\tau)\} \tag{76}
\end{equation*}
$$

has a heavy tail of the form

$$
\begin{equation*}
R(\tau) \sim \kappa \tau^{-\alpha} \text { as } \tau \rightarrow \infty \tag{77}
\end{equation*}
$$

where $\kappa=\kappa_{g} V_{1}^{2}$,

$$
\begin{align*}
& V_{1}=\mathbb{E}\left\{g_{0} \Phi\left(g_{0}\right)\right\}=\frac{1}{\sqrt{2 \pi}} \int g \Phi(g) e^{-\frac{g^{2}}{2}} d g \tag{78}\\
& V_{2}=\mathbb{E}\left\{\Phi^{2}\left(g_{0}\right)\right\}=\frac{1}{\sqrt{2 \pi}} \int \Phi^{2}(g) e^{-\frac{g^{2}}{2}} d g \tag{79}
\end{align*}
$$

Proof. The fact that φ is a stationary random process with mean zero and variance V_{2} is straightforward in view of the definition of φ. In particular, Eq. (74) implies that φ has mean zero.

For any x, τ, the vector $\left(g_{x}, g_{x+\tau}\right)^{T}$ is a Gaussian random vector with mean $(0,0)^{T}$ and 2×2 covariance matrix:

$$
C=\left(\begin{array}{cc}
1 & R_{g}(\tau) \\
R_{g}(\tau) & 1
\end{array}\right)
$$

Therefore the autocorrelation function of the process φ is

$$
\begin{aligned}
R(\tau) & =\mathbb{E}\left\{\Phi\left(g_{x}\right) \Phi\left(g_{x+\tau}\right)\right\}=\frac{1}{2 \pi \sqrt{\operatorname{det} C}} \iint \Phi\left(g_{1}\right) \Phi\left(g_{2}\right) \exp \left(-\frac{g^{T} C^{-1} g}{2}\right) d^{2} g \\
& =\frac{1}{2 \pi \sqrt{1-R_{g}^{2}(\tau)}} \iint \Phi\left(g_{1}\right) \Phi\left(g_{2}\right) \exp \left(-\frac{g_{1}^{2}+g_{2}^{2}-2 R_{g}(\tau) g_{1} g_{2}}{2\left(1-R_{g}^{2}(\tau)\right)}\right) d g_{1} d g_{2} .
\end{aligned}
$$

For large $\tau, R_{g}(\tau)$ is small and we expand the value of the double integral in powers of $R_{g}(\tau)$, which gives the autocorrelation function of φ.

Analysis of the corrector

The error term $u^{\varepsilon}-\bar{u}$ has two different contributions: integrals of random processes with long term memory effects and lower-order terms. We consider the latter. The following lemma provides an estimate for the magnitude of these integrals.

Lemma 13 Let $\varphi(x)$ be a mean zero stationary random process of the form (73). There exists $K>0$ such that, for any $F \in L^{\infty}(0,1)$, we have

$$
\begin{equation*}
\sup _{x \in[0,1]} \mathbb{E}\left\{\left|\int_{0}^{x} \varphi^{\varepsilon}(t) F(t) d t\right|^{2}\right\} \leq K\|F\|_{\infty}^{2} \varepsilon^{\alpha} \tag{80}
\end{equation*}
$$

Proof. We verify that the I.h.s. is bounded by

$$
\int_{0}^{1} \int_{0}^{1} F(t) F(s) R\left(\frac{t-s}{\varepsilon}\right) d t d s
$$

Since $|R(u)| \leq \kappa u^{-\alpha}$, we obtain the bound

$$
\varepsilon^{\alpha} C\|F\|_{\infty}^{2} \int_{[0,1]^{2}}|z-t|^{-\alpha} d z d t \leq \varepsilon^{\alpha} \frac{2 C}{1-\alpha}\|F\|_{\infty}^{2}
$$

Corollary 14 Let $\varphi(x)$ be a mean zero stationary random process of the form (73) and let $f \in W^{-1, \infty}(0,1)$. The solutions u^{ε} of (70) and \bar{u} of (71) verify that:

$$
\begin{equation*}
u^{\varepsilon}(x)-\bar{u}(x)=-\int_{0}^{x} \varphi^{\varepsilon}(y) F(y) d y+\left(c^{\varepsilon}-c^{*}\right) \frac{x}{a^{*}}+c^{*} \int_{0}^{x} \varphi^{\varepsilon}(y) d y+r^{\varepsilon}(x) \tag{81}
\end{equation*}
$$

where

$$
\begin{equation*}
\sup _{x \in[0,1]} \mathbb{E}\left\{\left|r^{\varepsilon}(x)\right|\right\} \leq K \varepsilon^{\alpha}, \tag{82}
\end{equation*}
$$

for some $K>0$. Similarly, we have that

$$
\begin{equation*}
c^{\varepsilon}-c^{*}=a^{*} \int_{0}^{1}\left(F(y)-\int_{0}^{1} F(z) d z-a^{*} q\right) \varphi^{\varepsilon}(y) d y+\rho^{\varepsilon} \tag{83}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbb{E}\left\{\left|\rho^{\varepsilon}\right|\right\} \leq K \varepsilon^{\alpha} \tag{84}
\end{equation*}
$$

for some $K>0$.

Proof. We first establish the estimate for $c^{\varepsilon}-c$. We write

$$
c^{\varepsilon}-c^{*}=\frac{\int_{0}^{1} F(y)\left(\frac{1}{a^{\varepsilon}(y)}-\frac{1}{a^{*}}\right) d y}{\int_{0}^{1} \frac{1}{a^{\varepsilon}(y)} d y}+\left(q+\frac{1}{a^{*}} \int_{0}^{1} F(y) d y\right)\left(\frac{1}{\int_{0}^{1} \frac{1}{a^{\varepsilon}(y)} d y}-\frac{1}{\frac{1}{a^{*}}}\right)
$$

which gives (83) with

$$
\rho^{\varepsilon}=\frac{a^{*}}{\int_{0}^{1} \frac{1}{a^{\varepsilon}(y)} d y}\left[\left(a^{*} q+\int_{0}^{1} F(y) d y\right)\left(\int_{0}^{1} \varphi^{\varepsilon}(y) d y\right)^{2}-\int_{0}^{1} F(y) \varphi^{\varepsilon}(y) d y \int_{0}^{1} \varphi^{\varepsilon}(y) d y\right] .
$$

Since $\int_{0}^{1} \frac{1}{a^{\varepsilon}(y)} d y$ is bounded from below a.e. by a positive constant a_{0}, we deduce from Lemma 13 and the Cauchy-Schwarz estimate that $\mathbb{E}\left\{\left|\rho^{\varepsilon}\right|\right\} \leq K \varepsilon^{\alpha}$. The analysis of $u^{\varepsilon}-\bar{u}$ follows along the same lines. We
write

$$
u^{\varepsilon}(x)-\bar{u}(x)=c^{\varepsilon} \int_{0}^{x} \frac{1}{a^{\varepsilon}(y)} d y-\int_{0}^{x} \frac{F(y)}{a^{\varepsilon}(y)} d y-c^{*} \frac{x}{a^{*}}+\int_{0}^{x} \frac{F(y)}{a^{*}} d y
$$

which gives (81) with

$$
r^{\varepsilon}(x)=\left(c^{\varepsilon}-c^{*}\right) \int_{0}^{x} \varphi^{\varepsilon}(y) d y=r_{1}^{\varepsilon}(x)+r_{2}^{\varepsilon}(x)
$$

where we have defined

$$
\begin{aligned}
& r_{1}^{\varepsilon}(x)=\left[a^{*} \int_{0}^{1}\left(F(y)-\int_{0}^{1} F(z) d z-a^{*} q\right) \varphi^{\varepsilon}(y) d y\right]\left[\int_{0}^{x} \varphi^{\varepsilon}(y) d y\right] \\
& r_{2}^{\varepsilon}(x)=\rho^{\varepsilon}\left[\int_{0}^{x} \varphi^{\varepsilon}(y) d y\right]
\end{aligned}
$$

The Cauchy-Schwarz estimate and Lemma 13 give that $\mathbb{E}\left\{\left|r_{1}^{\varepsilon}(x)\right|\right\} \leq K \varepsilon^{\alpha}$. Besides, φ^{ε} is bounded by $\|\Phi\|_{\infty}$, so $\left|r_{2}^{\varepsilon}(x)\right| \leq\|\Phi\|_{\infty}\left|\rho^{\varepsilon}\right|$. The estimate on ρ^{ε} then shows that $\mathbb{E}\left\{\left|r_{2}^{\varepsilon}(x)\right|\right\} \leq K \varepsilon^{\alpha}$.

Characterization of correctors

Theorem 15 Let u^{ε} and \bar{u} be the solutions in (70) and (71), respectively, and let $\varphi(x)$ be a mean zero stationary random process of the form (73). Then $u^{\varepsilon}-\bar{u}$ is a random process in $\mathcal{C}(0,1)$, the space of continuous functions on $[0,1]$. We have the following convergence in distribution in the space of continuous functions $\mathcal{C}(0,1)$:

$$
\begin{equation*}
\frac{u^{\varepsilon}(x)-\bar{u}(x)}{\varepsilon^{\frac{\alpha}{2}}} \xrightarrow{\text { distribution }} \sqrt{\frac{\kappa}{H(2 H-1)}} \mathcal{U}^{H}(x), \tag{85}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathcal{U}^{H}(x) & =\int_{\mathbb{R}} K(x, t) d W_{t}^{H} \\
K(x, t) & =1_{[0, x]}(t)\left(c^{*}-F(t)\right)+x\left(F(t)-\int_{0}^{1} F(z) d z-a^{*} q\right) 1_{[0,1]}(t \not x 87)
\end{aligned}
$$

Here $1_{[0, x]}$ is the characteristic function of the set $[0, x]$ and W_{t}^{H} is a fractional Brownian motion with Hurst index $H=1-\frac{\alpha}{2}$.

The fractional Brownian motion W_{t}^{H} is a mean zero Gaussian process with autocorrelation function

$$
\begin{equation*}
\mathbb{E}\left\{W_{t}^{H} W_{s}^{H}\right\}=\frac{1}{2}\left(|t|^{2 H}+|s|^{2 H}-|s-t|^{2 H}\right) . \tag{88}
\end{equation*}
$$

In particular, the variance of W_{t}^{H} is $\mathbb{E}\left\{\left|W_{t}^{H}\right|^{2}\right\}=|t|^{2 H}$.
The increments of W_{t}^{H} are stationary but not independent for $H \neq \frac{1}{2}$.
Moreover, W_{t}^{H} admits the following spectral representation

$$
\begin{equation*}
W_{t}^{H}=\frac{1}{2 \pi C(H)} \int_{\mathbb{R}} \frac{e^{i \xi t}-1}{i \xi|\xi|^{H-\frac{1}{2}}} d \hat{W}(\xi), \quad t \in \mathbb{R} \tag{89}
\end{equation*}
$$

where

$$
\begin{equation*}
C(H)=\left(\frac{1}{2 H \sin (\pi H) \Gamma(2 H)}\right)^{1 / 2} \tag{90}
\end{equation*}
$$

and \hat{W} is the Fourier transform of a standard Brownian motion W, that is, a complex Gaussian measure such that:

$$
\mathbb{E}\left\{d \widehat{W}(\xi) \overline{d \widehat{W}\left(\xi^{\prime}\right)}\right\}=2 \pi \delta\left(\xi-\xi^{\prime}\right) d \xi d \xi^{\prime}
$$

Note that the constant $C(H)$ is defined such that $\mathbb{E}\left\{\left(W_{1}^{H}\right)^{2}\right\}=1$.

Convergence of random integrals

Theorem 16 Let φ be of the form (73) and let $F \in L^{1}(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$. We define the mean zero random variable M_{F}^{ε} by

$$
\begin{equation*}
M_{F}^{\varepsilon}=\varepsilon^{-\frac{\alpha}{2}} \int_{\mathbb{R}} \varphi^{\varepsilon}(t) F(t) d t \tag{91}
\end{equation*}
$$

Then the random variable M_{F}^{ε} converges in distribution as $\varepsilon \rightarrow 0$ to the mean zero Gaussian random variable M_{F}^{0} defined by

$$
\begin{equation*}
M_{F}^{0}=\sqrt{\frac{\kappa}{H(2 H-1)}} \int_{\mathbb{R}} F(t) d W_{t}^{H}, \tag{92}
\end{equation*}
$$

where W_{t}^{H} is a fractional Brownian motion with Hurst index $H=1-\frac{\alpha}{2}$.
The limit random variable M_{F}^{0} is a Gaussian random variable with mean zero and variance

$$
\begin{equation*}
\mathbb{E}\left\{\left|M_{F}^{0}\right|^{2}\right\}=\frac{\kappa}{H(2 H-1)} \times \frac{1}{2 \pi C(H)^{2}} \int_{\mathbb{R}}|\hat{F}(\xi)|^{2}|\xi|^{2 H-1} d \xi . \tag{93}
\end{equation*}
$$

We first show that the variance of M_{F}^{ε} converges to the variance of M_{F}^{0} as $\varepsilon \rightarrow 0$.

We then prove convergence in distribution by using the Gaussian property of the underlying process g_{x}.

Convergence of the variances

We begin with a key technical lemma.
Lemma 17 1. There exist $T, K>0$ such that the autocorrelation function $R(\tau)$ of the process φ satisfies

$$
\left|R(\tau)-V_{1}^{2} R_{g}(\tau)\right| \leq K R_{g}(\tau)^{2}, \quad \text { for all } \quad|\tau| \geq T
$$

2. There exist T, K such that

$$
\left|\mathbb{E}\left\{g_{x} \Phi\left(g_{x+\tau}\right)\right\}-V_{1} R_{g}(\tau)\right| \leq K R_{g}^{2}(\tau) \quad \text { for all } \quad|\tau| \geq T
$$

Proof. The first point is a refinement of what we proved in Proposition 12: we found that the autocorrelation function of the process φ is

$$
R(\tau)=\frac{1}{2 \pi \sqrt{1-R_{g}^{2}(\tau)}} \iint \Phi\left(g_{1}\right) \Phi\left(g_{2}\right) \exp \left(-\frac{g_{1}^{2}+g_{2}^{2}-2 R_{g}(\tau) g_{1} g_{2}}{2\left(1-R_{g}^{2}(\tau)\right)}\right) d g_{1} d g_{2}
$$

For large τ, the coefficient $R_{g}(\tau)$ is small and we can expand the value of the double integral in powers of $R_{g}(\tau)$, which gives the result of the first item. The proof of the second item follows along the same lines.

We first write

$$
\mathbb{E}\left\{g_{x} \Phi\left(g_{x+\tau}\right)\right\}=\frac{1}{2 \pi \sqrt{1-R_{g}^{2}(\tau)}} \iint g_{1} \Phi\left(g_{2}\right) \exp \left(-\frac{g_{1}^{2}+g_{2}^{2}-2 R_{g}(\tau) g_{1} g_{2}}{2\left(1-R_{g}^{2}(\tau)\right)}\right) d g_{1} d g_{2}
$$

and we expand the value of the double integral in powers of $R_{g}(\tau)$.

Convergence of the variances II

For $F \in L^{1}(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$, we define the mean zero random variable $M_{F}^{\varepsilon, g}$ by and recall the definition of M_{F}^{ε} :

$$
\begin{equation*}
M_{F}^{\varepsilon, g}=\varepsilon^{-\frac{\alpha}{2}} \int_{\mathbb{R}} g_{\frac{t}{\varepsilon}} F(t) d t, \quad M_{F}^{\varepsilon}=\varepsilon^{-\frac{\alpha}{2}} \int_{\mathbb{R}} \varphi^{\varepsilon}(t) F(t) d t \tag{94}
\end{equation*}
$$

Lemma 18 Let $F \in L^{1}(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$ and let g_{x} be the Gaussian random process described in Hypothesis 11. Then

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \mathbb{E}\left\{\left|M_{F}^{\varepsilon, g}\right|^{2}\right\}=\frac{\kappa_{g} 2^{-\alpha} \Gamma\left(\frac{1-\alpha}{2}\right)}{\sqrt{\pi} \Gamma\left(\frac{\alpha}{2}\right)} \int_{\mathbb{R}} \frac{|\hat{F}(\xi)|^{2}}{|\xi|^{1-\alpha}} d \xi \tag{95}
\end{equation*}
$$

Proof. We write the square of the integral as a double integral, which gives

$$
\mathbb{E}\left\{\left|\int_{\mathbb{R}} F(y) g_{\frac{y}{\varepsilon}} d y\right|^{2}\right\}=\int_{\mathbb{R}^{2}} R_{g}\left(\frac{y-z}{\varepsilon}\right) F(y) F(z) d y d z
$$

This implies the estimate

$$
\begin{aligned}
& \left|\mathbb{E}\left\{\left|M_{F}^{\varepsilon, g}\right|^{2}\right\}-\int_{\mathbb{R}^{2}} \frac{\kappa_{g}}{|y-z|^{\alpha}} F(y) F(z) d y d z\right| \\
& \quad \leq \int_{\mathbb{R}^{2}}\left|\varepsilon^{-\alpha} R_{g}\left(\frac{y-z}{\varepsilon}\right)-\frac{\kappa_{g}}{|y-z|^{\alpha}}\right||F(y)||F(z)| d y d z
\end{aligned}
$$

By (75), for any $\delta>0$, there exists T_{δ} such that, for all $|\tau| \geq T_{\delta}$,

$$
\left|R_{g}(\tau)-\kappa_{g} \tau^{-\alpha}\right| \leq \delta \tau^{-\alpha}
$$

We decompose the integration domain into three subdomains D_{1}, D_{2}, and D_{3} :

$$
\begin{aligned}
& D_{1}=\left\{(y, z) \in \mathbb{R}^{2},|y-z| \leq T_{\delta} \varepsilon\right\} \\
& D_{2}=\left\{(y, z) \in \mathbb{R}^{2}, T_{\delta} \varepsilon<|y-z| \leq 1\right\} \\
& D_{3}=\left\{(y, z) \in \mathbb{R}^{2}, 1<|y-z|\right\}
\end{aligned}
$$

First,

$$
\begin{aligned}
& \int_{D_{1}}\left|\varepsilon^{-\alpha} R_{g}\left(\frac{y-z}{\varepsilon}\right)-\frac{\kappa_{g}}{|y-z|^{\alpha}}\right||F(y)||F(z)| d y d z \\
& \quad \leq \int_{D_{1}}\left|\varepsilon^{-\alpha} R_{g}\left(\frac{y-z}{\varepsilon}\right)\right||F(y)||F(z)| d y d z+\int_{D_{1}} \kappa_{g}|y-z|^{-\alpha}|F(y) \| F(z)| d y d z \\
& \quad \leq 2 \varepsilon^{-\alpha}\left\|R_{g}\right\|_{\infty} \int_{\mathbb{R}} \int_{0}^{T_{\delta} \varepsilon}|F(y+z)| d y|F(z)| d z+2 \kappa_{g} \int_{\mathbb{R}} \int_{0}^{T_{\delta} \varepsilon} y^{-\alpha}|F(y+z)| d y \mid F(\\
& \quad \leq 2 \varepsilon^{-\alpha}\left\|R_{g}\right\|_{\infty}\|F\|_{\infty}\|F\|_{1} \int_{0}^{T_{\delta} \varepsilon} d y+2 \kappa_{g}\|F\|_{\infty}\|F\|_{1} \int_{0}^{T_{\delta} \varepsilon} y^{-\alpha} d y \\
& \quad \leq\|F\|_{\infty}\|F\|_{1}\left(2 T_{\delta} R_{g}(0)+\frac{2 \kappa_{g} T_{\delta}^{1-\alpha}}{1-\alpha}\right) \varepsilon^{1-\alpha}
\end{aligned}
$$

where we have used the fact that $R_{g}(\tau)$ is maximal at $\tau=0$, and the
value of the maximum is equal to the variance of g. Second,

$$
\begin{aligned}
\int_{D_{2}}\left|\varepsilon^{-\alpha} R_{g}\left(\frac{y-z}{\varepsilon}\right)-\frac{\kappa_{g}}{|y-z|^{\alpha}}\right||F(y) \| F(z)| d y d z & \leq \delta \int_{D_{2}}|y-z|^{-\alpha}|F(y) \| F(z)| d y \\
& \leq 2 \delta\|F\|_{\infty}\|F\|_{1} \int_{T_{\delta} \varepsilon}^{1} y^{-\alpha} d y \\
& \leq \frac{2 \delta\|F\|_{\infty}\|F\|_{1}}{1-\alpha}
\end{aligned}
$$

and finally

$$
\begin{aligned}
\int_{D_{3}}\left|\varepsilon^{-\alpha} R_{g}\left(\frac{y-z}{\varepsilon}\right)-\frac{\kappa_{g}}{|y-z|^{\alpha}}\right||F(y)||F(z)| d y d z & \leq \delta \int_{D_{3}}|y-z|^{-\alpha}|F(y)||F(z)| d y \\
& \leq \delta \int_{D_{3}}|F(y) \| F(z)| d y d z \\
& \leq \delta\|F\|_{1}^{2}
\end{aligned}
$$

Therefore, there exists $K>0$ such that

$$
\limsup _{\varepsilon \rightarrow 0}\left|\mathbb{E}\left\{\left|M_{F}^{\varepsilon, g}\right|^{2}\right\}-\int_{\mathbb{R}^{2}} \frac{\kappa_{g}}{|y-z|^{\alpha}} F(y) F(z) d y d z\right| \leq K\left(\|F\|_{\infty}^{2}+\|F\|_{1}^{2}\right) \delta .
$$

Since this holds true for any $\delta>0$, we get

$$
\lim _{\varepsilon \rightarrow 0}\left|\mathbb{E}\left\{\left|M_{F}^{\varepsilon, g}\right|^{2}\right\}-\int_{\mathbb{R}^{2}} \frac{\kappa_{g}}{|y-z|^{\alpha}} F(y) F(z) d y d z\right|=0
$$

We recall that the Fourier transform of the function $|x|^{-\alpha}$ is

$$
\begin{equation*}
\left.\left|\widehat{\left.x\right|^{-\alpha}}(\xi)=c_{\alpha}\right| \xi\right|^{\alpha-1}, \quad c_{\alpha}=\int_{\mathbb{R}} \frac{e^{i t}}{|t|^{\alpha}} d t=\frac{\sqrt{\pi} 2^{1-\alpha} \Gamma\left(\frac{1-\alpha}{2}\right)}{\Gamma\left(\frac{\alpha}{2}\right)} \tag{96}
\end{equation*}
$$

Using the Parseval equality, we find that

$$
\int_{\mathbb{R}^{2}} \frac{1}{|y-z|^{\alpha}} F(y) F(z) d y d z=\frac{c_{\alpha}}{2 \pi} \int_{\mathbb{R}} \frac{|\widehat{F}(\xi)|^{2}}{|\xi|^{1-\alpha}} d \xi .
$$

The right-hand side is finite, because (i) $F \in L^{1}(\mathbb{R})$ so that $\widehat{F}(\xi) \in L^{\infty}(\mathbb{R})$, (ii) $F \in L^{1}(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$ so $F \in L^{2}(\mathbb{R})$ and $\hat{F} \in L^{2}(\mathbb{R})$, and (iii) $\alpha \in(0,1)$.

Lemma 19 Let $F \in L^{1}(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$ and let the process $\varphi(x)$ be of the form (73). Then we have:

$$
\lim _{\varepsilon \rightarrow 0} \mathbb{E}\left\{\left(M_{F}^{\varepsilon}-V_{1} M_{F}^{\varepsilon, g}\right)^{2}\right\}=0
$$

Proof.

We write the square of the integral as a double integral:

$$
\mathbb{E}\left\{\left(M_{F}^{\varepsilon}-V_{1} M_{F}^{\varepsilon, g}\right)^{2}\right\}=\varepsilon^{-\alpha} \int_{\mathbb{R}^{2}} F(y) F(z) Q\left(\frac{y}{\varepsilon}, \frac{z}{\varepsilon}\right) d y d z
$$

where

$$
Q(y, z)=\mathbb{E}\left\{\Phi\left(g_{y}\right) \Phi\left(g_{z}\right)-V_{1} \Phi\left(g_{y}\right) g_{z}-V_{1} g_{y} \Phi\left(g_{z}\right)+V_{1}^{2} g_{y} g_{z}\right\} .
$$

By Lemma 17 and (75), there exist K, T such that $|Q(y, z)| \leq K|y-z|^{-2 \alpha}$ for all $|x-y| \geq T$. Besides, Φ is bounded and g_{x} is square-integrable, so
there exists K such that, for all $y, z \in \mathbb{R},|Q(y, z)| \leq K$. We decompose the integration domain \mathbb{R}^{2} into three subdomains D_{1}, D_{2}, and D_{3} :

$$
\begin{aligned}
& D_{1}=\left\{(y, z) \in \mathbb{R}^{2},|y-z| \leq T \varepsilon\right\}, \\
& D_{2}=\left\{(y, z) \in \mathbb{R}^{2}, T \varepsilon<|y-z| \leq 1\right\}, \\
& D_{3}=\left\{(y, z) \in \mathbb{R}^{2}, 1<|y-z|\right\} .
\end{aligned}
$$

We get the estimates

$$
\begin{aligned}
\left|\int_{D_{1}} F(y) F(z) Q\left(\frac{y}{\varepsilon}, \frac{z}{\varepsilon}\right) d y d z\right| & \leq K \int_{D_{1}}|F(y) \| F(z)| d y d z \\
& \leq 2 K \int_{\mathbb{R}} \int_{0}^{T \varepsilon}|F(y+z)| d y|F(z)| d z \\
& \leq 2 K\|F\|_{\infty}\|F\|_{1} T \varepsilon,
\end{aligned}
$$

$$
\begin{aligned}
\left|\int_{D_{2}} F(y) F(z) Q\left(\frac{y}{\varepsilon}, \frac{z}{\varepsilon}\right) d y d z\right| & \left.\leq K \int_{D_{2}}\left|\frac{y}{\varepsilon}-\frac{z}{\varepsilon}\right|^{-2 \alpha} \right\rvert\, F(y) \| F(z) d y d z \\
& \leq 2 K \varepsilon^{2 \alpha} \int_{\mathbb{R}} \int_{T \varepsilon}^{1} y^{-2 \alpha}|F(y+z)| d y|F(z)| d z \\
& \leq 2 K\|F\|_{1}\|F\|_{\infty} \varepsilon^{2 \alpha} \int_{T \varepsilon}^{1} y^{-2 \alpha} d y \\
& \leq 2 K\|F\|_{1}\|F\|_{\infty}\left\{\begin{array}{l}
\frac{1}{1-2 \alpha} \varepsilon^{2 \alpha} \text { if } \alpha<\frac{1}{2} \\
|\ln (T \varepsilon)| \varepsilon \text { if } \alpha=\frac{1}{2} \\
\frac{T^{1-2 \alpha}}{2 \alpha-1} \varepsilon \text { if } \alpha>\frac{1}{2}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
\left|\int_{D_{3}} F(y) F(z) Q\left(\frac{y}{\varepsilon}, \frac{z}{\varepsilon}\right) d y d z\right| & \left.\leq K \int_{D_{3}}\left|\frac{y}{\varepsilon}-\frac{z}{\varepsilon}\right|^{-2 \alpha}|F(y)| \right\rvert\, F(z) d y d z \\
& \leq 2 K \varepsilon^{2 \alpha} \int_{\mathbb{R}} \int_{1}^{\infty} y^{-2 \alpha}|F(y+z)| d y|F(z)| d z \\
& \leq 2 K \varepsilon^{2 \alpha} \int_{\mathbb{R}} \int_{1}^{\infty}|F(y+z)| d y|F(z)| d z \\
& \leq 2 K\|F\|_{1}^{2} \varepsilon^{2 \alpha}
\end{aligned}
$$

which gives the desired result:

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon^{-\alpha}\left|\int_{\mathbb{R}^{2}} F(y) F(z) Q\left(\frac{y}{\varepsilon}, \frac{z}{\varepsilon}\right) d y d z\right|=0
$$

The following proposition is now a straightforward corollary of Lemmas 18 and 19 and the fact that $\kappa=\kappa_{g} V_{1}^{2}$.

Proposition 20 Let $F \in L^{1}(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$ and let the process $\varphi(x)$ be of
the form (73). Then we find that:

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \mathbb{E}\left\{\left|M_{F}^{\varepsilon}\right|^{2}\right\}=\frac{\kappa 2^{-\alpha} \Gamma\left(\frac{1-\alpha}{2}\right)}{\sqrt{\pi} \Gamma\left(\frac{\alpha}{2}\right)} \int_{\mathbb{R}} \frac{|\widehat{F}(\xi)|^{2}}{|\xi|^{1-\alpha}} d \xi . \tag{97}
\end{equation*}
$$

The limit of the variance of M_{F}^{ε} is (97) and the variance of M^{0} is (93). These two expressions are reconciled by using the identity $1-\alpha=2 H-$ 1 and standard properties of the Γ function, namely $\Gamma(H) \Gamma\left(H+\frac{1}{2}\right)=$ $2^{1-2 H} \sqrt{\pi} \Gamma(2 H)$ and $\Gamma(1-H) \Gamma(H)=\pi(\sin (\pi H))^{-1}$. We get

$$
\frac{2^{-\alpha} \Gamma\left(\frac{1-\alpha}{2}\right)}{\sqrt{\pi} \Gamma\left(\frac{\alpha}{2}\right)}=\frac{2^{-2+2 H} \Gamma\left(H-\frac{1}{2}\right)}{\sqrt{\pi} \Gamma(1-H)}=\frac{2^{-2+2 H} \Gamma\left(H+\frac{1}{2}\right)}{\sqrt{\pi}\left(H-\frac{1}{2}\right) \Gamma(1-H)}=\frac{\Gamma(2 H) \sin (\pi H)}{\pi(2 H-1)} .
$$

By (90) this shows that

$$
\frac{2^{-\alpha} \Gamma\left(\frac{1-\alpha}{2}\right)}{\sqrt{\pi} \Gamma\left(\frac{\alpha}{2}\right)} 2 \pi=\frac{1}{H(2 H-1) C(H)^{2}},
$$

and this implies that the variance (93) of M_{F}^{0} is exactly the limit (97) of the variance of M_{F}^{ε} :

$$
\lim _{\varepsilon \rightarrow 0} \mathbb{E}\left\{\left|M_{F}^{\varepsilon}\right|^{2}\right\}=\mathbb{E}\left\{\left|M_{F}^{0}\right|^{2}\right\}
$$

Convergence of random integrals

We can now give the proof of Theorem 16.
Step 1. The sequence of random variables $M_{F}^{\varepsilon, g}$ defined by (94) converges in distribution as $\varepsilon \rightarrow 0$ to

$$
M_{F}^{0, g}=\sqrt{\frac{\kappa_{g}}{H(2 H-1)}} \int_{\mathbb{R}} F(t) d W_{t}^{H} .
$$

Since the random variable $M_{F}^{\varepsilon, g}$ is a linear transform of a Gaussian process, it has Gaussian distribution. Moreover, its mean is zero. The same statements hold true for $M_{F}^{0, g}$. Therefore, the characteristic functions of $M_{F}^{\varepsilon, g}$ and $M_{F}^{0, g}$ are
$\mathbb{E}\left\{e^{i \lambda M_{F}^{\varepsilon, g}}\right\}=\exp \left(-\frac{\lambda^{2}}{2} \mathbb{E}\left\{\left(M_{F}^{\varepsilon, g}\right)^{2}\right\}\right), \quad \mathbb{E}\left\{e^{i \lambda M_{F}^{0, g}}\right\}=\exp \left(-\frac{\lambda^{2}}{2} \mathbb{E}\left\{\left(M_{F}^{0, g}\right)^{2}\right\}\right)$
where $\lambda \in \mathbb{R}$. Convergence of the characteristic functions implies that of the distributions [?]. Therefore, it is sufficient to show that the variance of $M_{F}^{\varepsilon, g}$ converges to the variance of $M_{F}^{0, g}$ as $\varepsilon \rightarrow 0$. This follows from Lemma 18.

Step 2: M_{F}^{ε} converges in distribution to M_{F}^{0} as $\varepsilon \rightarrow 0$.
Let $\lambda \in \mathbb{R}$. Since $M_{F}^{0}=V_{1} M_{F}^{0, g}$, we have

$$
\begin{align*}
\left|\mathbb{E}\left\{e^{i \lambda M_{F}^{\varepsilon}}\right\}-\mathbb{E}\left\{e^{i \lambda M_{F}^{0}}\right\}\right| \leq & \left|\mathbb{E}\left\{e^{i \lambda M_{F}^{\varepsilon}}\right\}-\mathbb{E}\left\{e^{i \lambda V_{1} M_{F}^{\varepsilon, g}}\right\}\right| \\
& +\left|\mathbb{E}\left\{e^{i \lambda V_{1} M_{F}^{\varepsilon, g}}\right\}-\mathbb{E}\left\{e^{i \lambda V_{1} M_{F}^{0, g}}\right\}\right| . \tag{98}
\end{align*}
$$

Since $\left|e^{i x}-1\right| \leq|x|$ we can write

$$
\left|\mathbb{E}\left\{e^{i \lambda M_{\bar{E}}^{\varepsilon}}\right\}-\mathbb{E}\left\{e^{i \lambda V_{1} M_{F}^{\varepsilon g}}\right\}\right| \leq|\lambda| \mathbb{E}\left\{\left|M_{F}^{\varepsilon}-V_{1} M_{F}^{\varepsilon, g}\right|\right\} \leq|\lambda| \mathbb{E}\left\{\left(M_{F}^{\varepsilon}-V_{1} M_{F}^{\varepsilon, g}\right)^{2}\right\}^{1 / 2},
$$

which goes to zero by the result of Lemma 19. This shows that the first term of the right-hand side of (98) converges to 0 as $\varepsilon \rightarrow 0$. The second term of the right-hand side of (98) also converges to zero by the result of Step 1. This completes the proof of Theorem 16.

Convergence of random integral processes

Let F_{1}, F_{2} be two functions in $L^{\infty}(0,1)$. We consider the random process $M^{\varepsilon}(x)$ defined for any $x \in[0,1]$ by

$$
\begin{equation*}
M^{\varepsilon}(x)=\varepsilon^{-\frac{\alpha}{2}}\left(\int_{0}^{x} F_{1}(t) \varphi^{\varepsilon}(t) d t+x \int_{0}^{1} F_{2}(t) \varphi^{\varepsilon}(t) d t\right) \tag{99}
\end{equation*}
$$

With the notation (91) of the previous section, we have

$$
M^{\varepsilon}(x)=M_{F_{x}}^{\varepsilon}=\varepsilon^{-\frac{\alpha}{2}} \int_{\mathbb{R}} F_{x}(t) \varphi^{\varepsilon}(t) d t
$$

where

$$
\begin{equation*}
F_{x}(t)=F_{1}(t) 1_{[0, x]}(t)+x F_{2}(t) 1_{[0,1]}(t) \tag{100}
\end{equation*}
$$

is indeed a function in $L^{1}(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$.

Theorem 21 Let φ be a random process of the form (73) and let $F_{1}, F_{2} \in$ $L^{\infty}(0,1)$. Then the random process $M^{\varepsilon}(x)$ defined by (99) converges in
distribution as $\varepsilon \rightarrow 0$ in the space of the continuous functions $\mathcal{C}(0,1)$ to the continuous Gaussian process

$$
\begin{equation*}
M^{0}(x)=\sqrt{\frac{\kappa}{H(2 H-1)}} \int_{\mathbb{R}} F_{x}(t) d W_{t}^{H} \tag{101}
\end{equation*}
$$

where F_{x} is defined by (100) and W_{t}^{H} is a fractional Brownian motion with Hurst index $H=1-\frac{\alpha}{2}$.

The limit random process M^{0} is a Gaussian process with mean zero and autocorrelation function given by

$$
\begin{equation*}
\mathbb{E}\left\{M^{0}(x) M^{0}(y)\right\}=\frac{\kappa}{H(2 H-1)} \times \frac{1}{2 \pi C(H)^{2}} \int_{\mathbb{R}} \frac{\hat{F}_{x}(\xi) \overline{\hat{F}_{y}(\xi)}}{|\xi|^{2 H-1}} d \xi \tag{102}
\end{equation*}
$$

The proof of Theorem 21 is based on a classical result on the weak convergence of continuous random processes [Billingsley]:

Proposition 22 Suppose $\left(M^{\varepsilon}\right)_{\varepsilon \in(0,1)}$ are random processes with values in the space of continuous functions $\mathcal{C}(0,1)$ with $M^{\varepsilon}(0)=0$. Then M^{ε} converges in distribution to M^{0} provided that:
(i) for any $0 \leq x_{1} \leq \ldots \leq x_{k} \leq 1$, the finite-dimensional distribution $\left(M^{\varepsilon}\left(x_{1}\right), \cdots, M^{\varepsilon}\left(x_{k}\right)\right)$ converges to the distribution $\left(M^{0}\left(x_{1}\right), \ldots, M^{0}\left(x_{k}\right)\right)$ as $\varepsilon \rightarrow 0$.
(ii) $\left(M^{\varepsilon}\right)_{\varepsilon \in(0,1)}$ is a tight sequence of random processes in $\mathcal{C}(0,1)$. A sufficient condition for tightness of $\left(M^{\varepsilon}\right)_{\varepsilon \in(0,1)}$ is the Kolmogorov criterion: $\exists \delta, \beta, C>0$ such that

$$
\begin{equation*}
\mathbb{E}\left\{\left|M^{\varepsilon}(s)-M^{\varepsilon}(t)\right|^{\beta}\right\} \leq C|t-s|^{1+\delta}, \tag{103}
\end{equation*}
$$

uniformly in $\varepsilon, t, s \in(0,1)$.

Convergence of finite-dimensional distributions

For the proof of convergence of the finite-dimensional distributions, we want to show that for each set of points $0 \leq x_{1} \leq \cdots \leq x_{k} \leq 1$ and each $\Lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right) \in \mathbb{R}^{k}$, we have the following convergence result for the characteristic functions:

$$
\begin{equation*}
\mathbb{E}\left\{\exp \left(i \sum_{j=1}^{k} \lambda_{j} M^{\varepsilon}\left(x_{j}\right)\right)\right\} \xrightarrow{\varepsilon \rightarrow 0} \mathbb{E}\left\{\exp \left(i \sum_{j=1}^{k} \lambda_{j} M^{0}\left(x_{j}\right)\right)\right\} \tag{104}
\end{equation*}
$$

Convergence of the characteristic functions implies that of the joint distributions. Now the above characteristic function may be recast as

$$
\begin{equation*}
\mathbb{E}\left\{\exp \left(i \sum_{j=1}^{k} \lambda_{j} M^{\varepsilon}\left(x_{j}\right)\right)\right\}=\mathbb{E}\left\{\exp i\left(\varepsilon^{-\frac{\alpha}{2}} \int_{\mathbb{R}} \varphi^{\varepsilon}(t) F_{\wedge}(t) d t\right)\right\} \tag{105}
\end{equation*}
$$

where

$$
F_{\Lambda}(t)=\left(\sum_{j=1}^{k} \lambda_{j} 1_{\left[0, x_{j}\right]}(t)\right) F_{1}(t)+\left(\sum_{j=1}^{k} \lambda_{j} x_{j}\right) 1_{[0,1]}(t) F_{2}(t)
$$

Since $F_{\Lambda} \in L^{\infty}(\mathbb{R}) \cap L^{1}(\mathbb{R})$ when $F_{1}, F_{2} \in L^{\infty}(0,1)$, we can apply Theorem 16 to obtain that:

$$
\mathbb{E}\left\{\exp \left(i \sum_{j=1}^{k} \lambda_{j} M^{\varepsilon}\left(x_{j}\right)\right)\right\} \xrightarrow{\varepsilon \rightarrow 0} \mathbb{E}\left\{\exp i\left(\sqrt{\frac{\kappa}{H(2 H-1)}} \int_{\mathbb{R}} F_{\Lambda}(t) d W_{t}^{H}\right)\right\}
$$

which in turn establishes (104).

Tightness

It is possible to control the increments of the process M^{ε}, as shown by the following proposition.

Proposition 23 There exists K such that, for any $F_{1}, F_{2} \in L^{\infty}(0,1)$ and for any $x, y \in[0,1]$,

$$
\begin{equation*}
\sup _{\varepsilon \in(0,1)} \mathbb{E}\left\{\left|M^{\varepsilon}(y)-M^{\varepsilon}(x)\right|^{2}\right\} \leq K\left(\left\|F_{1}\right\|_{\infty}^{2}|y-x|^{2-\alpha}+\left\|F_{2}\right\|_{\infty}^{2}|y-x|^{2}\right) \tag{106}
\end{equation*}
$$

where M^{ε} is defined by (99).

Proof.

The proof is a refinement of the ones of Lemmas 18 and 19. We can split the random process M^{ε} into two components: $M^{\varepsilon}(x)=M^{\varepsilon, 1}(x)+$
$M^{\varepsilon, 2}(x)$, with

$$
M^{\varepsilon, 1}(x)=\varepsilon^{-\frac{\alpha}{2}} \int_{0}^{x} F_{1}(t) \varphi^{\varepsilon}(t) d t, \quad M^{\varepsilon, 2}(x)=x \varepsilon^{-\frac{\alpha}{2}} \int_{0}^{1} F_{2}(t) \varphi^{\varepsilon}(t) d t
$$

We have
$\mathbb{E}\left\{\left|M^{\varepsilon}(y)-M^{\varepsilon}(x)\right|^{2}\right\} \leq 2 \mathbb{E}\left\{\left|M^{\varepsilon, 1}(y)-M^{\varepsilon, 1}(x)\right|^{2}\right\}+2 \mathbb{E}\left\{\left|M^{\varepsilon, 2}(y)-M^{\varepsilon, 2}(x)\right|^{2}\right\}$.
The second moment of the increment of $M^{\varepsilon, 2}$ is given by

$$
\mathbb{E}\left\{\left|M^{\varepsilon, 2}(y)-M^{\varepsilon, 2}(x)\right|^{2}\right\}=|x-y|^{2} \varepsilon^{-\alpha} \int_{[0,1]^{2}} R\left(\frac{z-t}{\varepsilon}\right) F_{2}(z) F_{2}(t) d z d t
$$

Since there exists $K>0$ such that $|R(\tau)| \leq K \tau^{-\alpha}$ for all τ, we have

$$
\begin{aligned}
\varepsilon^{-\alpha} \int_{[0,1]^{2}} R\left(\frac{z-t}{\varepsilon}\right) F_{2}(z) F_{2}(t) d z d t & \leq K \int_{[0,1]^{2}}|z-t|^{-\alpha}\left|F_{2}(z) \| F_{2}(t)\right| d z d t \\
& \leq K\left\|F_{2}\right\|_{\infty}^{2} \int_{-1}^{1}|z|^{-\alpha} d z=\frac{2 K}{1-\alpha}\left\|F_{2}\right\|_{\infty}^{2}
\end{aligned}
$$

which gives the following estimate

$$
\mathbb{E}\left\{\left|M^{\varepsilon, 2}(y)-M^{\varepsilon, 2}(x)\right|^{2}\right\} \leq \frac{2 K}{1-\alpha}\left\|F_{2}\right\|_{\infty}^{2}|x-y|^{2}
$$

The second moment of the increment of $M^{\varepsilon, 1}$ for $x<y$ is given by

$$
\mathbb{E}\left\{\left|M^{\varepsilon, 1}(y)-M^{\varepsilon, 1}(x)\right|^{2}\right\}=\varepsilon^{-\alpha} \int_{[x, y]^{2}} R\left(\frac{z-t}{\varepsilon}\right) F_{1}(z) F_{1}(t) d z d t
$$

We distinguish the cases $|y-x| \leq \varepsilon$ and $|y-x| \geq \varepsilon$.

First case. Let us assume that $|y-x| \leq \varepsilon$. Since R is bounded by V_{2}, we have

$$
\mathbb{E}\left\{\left|M^{\varepsilon, 1}(y)-M^{\varepsilon, 1}(x)\right|^{2}\right\} \leq V_{2}\left\|F_{1}\right\|_{\infty}^{2} \varepsilon^{-\alpha}|y-x|^{2}
$$

Since $|y-x| \leq \varepsilon$, this implies

$$
\mathbb{E}\left\{\left|M^{\varepsilon, 1}(y)-M^{\varepsilon, 1}(x)\right|^{2}\right\} \leq V_{2}\left\|F_{1}\right\|_{\infty}^{2}|y-x|^{2-\alpha}
$$

Second case. Let us assume that $|y-x| \geq \varepsilon$. Since R can be bounded by a power-law function $|R(\tau)| \leq K \tau^{-\alpha}$ we have

$$
\begin{aligned}
\mathbb{E}\left\{\left|M^{\varepsilon, 1}(y)-M^{\varepsilon, 1}(x)\right|^{2}\right\} & \leq K\left\|F_{1}\right\|_{\infty}^{2} \int_{[x, y]^{2}}|z-t|^{-\alpha} d z d t \\
& \leq 2 K\left\|F_{1}\right\|_{\infty}^{2} \int_{x}^{y} \int_{0}^{y-x} t^{-\alpha} d t d z \\
& \leq \frac{2 K}{1-\alpha}\left\|F_{1}\right\|_{\infty}^{2}|y-x|^{2-\alpha},
\end{aligned}
$$

which completes the proof.
This Proposition allows us to get two results.

1) Applying Prop. 23 with $F_{2}=0$ and $y=0$, we re-prove Lemma 13.
2) By applying Proposition 23, we obtain that the increments of the process M^{ε} satisfy the Kolmogorov criterion (103) with $\beta=2$ and $\delta=$ $1-\alpha>0$. This gives the tightness of the family of processes M^{ε} in the space $\mathcal{C}(0,1)$.

Proof of convergence theorem

We can now give the proof of Theorem 15. The error term can be written in the form

$$
\varepsilon^{-\frac{\alpha}{2}}\left(u^{\varepsilon}(x)-\bar{u}(x)\right)=\varepsilon^{-\frac{\alpha}{2}}\left(\int_{0}^{x} F_{1}(t) \varphi^{\varepsilon}(t) d t+x \int_{0}^{1} F_{2}(t) \varphi^{\varepsilon}(t) d t\right)+\widetilde{r}^{\varepsilon}(x)
$$

where $F_{1}(t)=c^{*}-F(t), F_{2}(t)=F(t)-\int_{0}^{1} F(z) d z-a^{*} q$, and $\widetilde{r}^{\varepsilon}(x)=$ $\varepsilon^{-\alpha / 2}\left[r^{\varepsilon}(x)+\rho^{\varepsilon} a^{*-1} x\right]$. The first term of the right-hand side is of the form (99). Therefore, by applying Theorem 21, we get that this process converges in distribution in $\mathcal{C}(0,1)$ to the limit process (86). It remains to show that the random process $\widetilde{r}^{\varepsilon}(x)$ converges as $\varepsilon \rightarrow 0$ to zero in $\mathcal{C}(0,1)$ in probability.

We have

$$
\mathbb{E}\left\{\left|\widetilde{r}^{\varepsilon}(x)-\widetilde{r}^{\varepsilon}(y)\right|^{2}\right\} \leq 2 \varepsilon^{-\alpha} \mathbb{E}\left\{\left|r^{\varepsilon}(x)-r^{\varepsilon}(y)\right|^{2}\right\}+2 a^{*-2} \varepsilon^{-\alpha} \mathbb{E}\left\{\left|\rho^{\varepsilon}\right|^{2}\right\}|x-y|^{2}
$$

From the expression (85) of r^{ε}, and the fact that c^{ε} can be bounded uniformly in ε by a constant c_{0}, we get

$$
\varepsilon^{-\alpha} \mathbb{E}\left\{\left|r^{\varepsilon}(x)-r^{\varepsilon}(y)\right|^{2}\right\} \leq 2 \varepsilon^{-\alpha} c_{0} \mathbb{E}\left\{\left|\int_{x}^{y} \varphi^{\varepsilon}(t) d t\right|^{2}\right\}
$$

Upon applying Proposition 23, we obtain that there exists $K>0$ such that

$$
\varepsilon^{-\alpha} \mathbb{E}\left\{\left|r^{\varepsilon}(x)-r^{\varepsilon}(y)\right|^{2}\right\} \leq K|x-y|^{2-\alpha}
$$

Besides, since ρ^{ε} can be bounded uniformly in ε by a constant ρ_{0}, we have $\mathbb{E}\left\{\left|\rho^{\varepsilon}\right|^{2}\right\} \leq \rho_{0} \mathbb{E}\left\{\left|\rho^{\varepsilon}\right|\right\} \leq K \varepsilon^{\alpha}$ for some $K>0$. Therefore, we have established that there exists $K>0$ such that

$$
\mathbb{E}\left\{\left|\widetilde{r}^{\varepsilon}(x)-\widetilde{r}^{\varepsilon}(y)\right|^{2}\right\} \leq K|x-y|^{2-\alpha}
$$

uniformly in ε, x, y. This shows that $\widetilde{r}^{\varepsilon}(x)$ is a tight sequence in the space $\mathcal{C}(0,1)$ by the Kolmogorov criterion (103). Furthermore, the finite-
dimensional distributions of $\widetilde{r}^{\varepsilon}(x)$ converges to zero because

$$
\sup _{x \in[0,1]} \mathbb{E}\left\{\left|\widetilde{r}_{\varepsilon}(x)\right|\right\} \xrightarrow{\varepsilon \rightarrow 0} 0
$$

by (82) and (84). Proposition 22 then shows that $\widetilde{r}^{\varepsilon}(x)$ converges to zero in distribution in $\mathcal{C}(0,1)$. Since the limit is deterministic, the convergence actually holds true in probability.

Reference

[B-08] Bal Central limits and homogenization in random media. arXiv:0710.0363. Shorter version in M.M.S. 08.
[BGMP-08] Bal-Garnier-Motsch-Perrier Random integrals and correctors in homogenization A.S. 2008
[BJ-11] Bal-Jing Corrector Theory for elliptic equations in random media with singular Green's functions. C.M.S. 2011
[Bo-82] E. Bolthausen, On the central limit theorem for stationary mixing random fields, Ann. Prob. 10 (1982) pp. 1047-1050

